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CONVERGENCE IN NORM OF LOGARITHMIC

MEANS OF MULTIPLE FOURIER SERIES

USHANGI GOGINAVA AND LARRY GOGOLADZE

(Communicated by L. Maligranda)

Abstract. The maximal Orlicz space such that the mixed logarithmic means of multiple Fourier
series for the functions from this space converge in L1 -norm is found.

Let Td := [−π ,π)d denote a cube in the d -dimensional Euclidean space Rd . The
elements of Rd are denoted by x :=(x1, ...,xd) .

Let D := {1,2, ...,d} , B := {l1, l2, ..., lr} , 1 � r � d , B ⊂ D , lk < lk+1 , k =
1,2, ...,r − 1, B′ := D\B . For any x =(x1, ...,xd) and any B ⊂ D , denote xB :=(
xl1 ,xl2 , ...,xlr

) ∈ Rr . We assume that |B| is the number of elements of B . If B �= ∅ ,
then for any natural numbers n we suppose that n(B) := (n,n, ...,n) ∈ R|B|. The nota-
tion a � b in the paper stands for a � cb , where c is an absolute constant.

In the sequel we shall identify the symbols

nB

∑
iB=0B

and
nl1

∑
il1=0

· · ·
nlr

∑
ilr =0

,dtB and dtl1 · · ·dtlr .

We denote by Lp
(
Td
)

the class of all measurable functions f that are 2π -periodic
with respect to all variable and satisfy

‖ f‖p :=

⎛⎝∫
Td

| f |p
⎞⎠1/p

< ∞.

Let f ∈ L1
(
Td
)
. The Fourier series of f with respect to the trigonometric system

is the series

S [ f ] :=
+∞

∑
n1,...,nd=−∞

f̂ (n1, ...,nd)ei(n1x1+···+ndxd),

where

f̂ (n1, ...,nd) :=
1

(2π)d

∫
Td

f (x1, ...,xd)e−i(n1x1+···+ndxd)dx1 · · ·dxd
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are the Fourier coefficients of the function f . The rectangular partial sums are defined
as follows:

SND( f ;x) :=
ND

∑
nD=−ND

f̂ (n1, ...,nd)ei(n1x1+···+ndxd).

In the literature, there is known the notion of the Riesz’s logarithmic means of a
Fourier series. The n -th Riesz logarithmic mean of the Fourier series of the integrable
function f is defined by

1
ln

n

∑
k=0

Sk( f )
k+1

, ln :=
n

∑
k=0

1
k+1

,

where Sk( f ) is the partial sum of its Fourier series. This Riesz’s logarithmic means with
respect to the trigonometric system has been studied by a lot of authors. We mention
for instance the papers of Szász, and Yabuta [16, 19]. This mean with respect to the
Walsh, Vilenkin system is discussed by Simon, and Gát [15, 2].

Let {qk : k � 0} be a sequence of nonnegative numbers. The Nörlund means for
the Fourier series of f are defined by

1

∑n
k=0 qk

n

∑
k=0

qkSn−k( f ).

If qk = 1
k+1 , then we get the (Nörlund) logarithmic means:

1
ln

n

∑
k=0

Sn−k( f )
k+1

.

Although, it is a kind of “reverse” Riesz’s logarithmic means. In [3] we proved some
convergence and divergence properties of the logarithmic means of Walsh-Fourier se-
ries of functions in the class of continuous functions, and in the Lebesgue space L .

The Nörlund logarithmic and Reisz logarithmic means of multiple Fourier series
are defined by

LnD ( f ;x) :=
1

∏
i∈D

lni

nD

∑
iD=0D

SnD−iD ( f ;x)
∏
j∈D

(i j +1)
,

RnD ( f ;x) :=
1

∏
i∈D

lni

nD

∑
iD=0D

SiD ( f ;x)
∏
j∈D

(i j +1)
.

It is evident that

LnD ( f ;x) =
1

πd

∫
Td

f (t)FnD (x− t)dt

and

RnD ( f ;x) =
1

πd

∫
Td

f (t)GnD (x− t)dt,
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where
FnD (x) := ∏

j∈D
Fnj (x j) , GnD (x) := ∏

j∈D
Gnj (x j) ,

Fn (u) :=
1
ln

n

∑
i=0

Dn−i (u)
i+1

, Gn (u) :=
1
ln

n

∑
i=0

Di (u)
i+1

.

Let B ⊂ D . Then the mixed logarithmic means of multiple Fourier series are
defined by (

LnB ◦RnB′
)
( f ;x) :=

1

∏
i∈D

lni

nD

∑
iD=0D

SnB−iB,iB′ ( f ;x)

∏
j∈D

(i j +1)
,

where

SnB−iB,iB′ ( f ;x) :=
nB−iB

∑
lB=−(nB−iB)

iB′

∑
lB′=−iB′

f̂ (l1, ..., ld)ei(l1x1+···+ldxd).

It is easy to show that

(
LnB ◦RnB′

)
( f ;x) =

1
πd

∫
Td

f (t)FnB (xB − tB)GnB′ (xB′ − tB′)dt

We denote by L0(Td) the Lebesgue space of functions that are measurable and
finite almost everywhere on Td . mes(A) is the Lebesgue measure of the set A ⊂ Td .

Let LQ = LQ(Td) be the Orlicz space [13] generated by Young function Q , i.e. Q
is convex continuous even function such that Q(0) = 0 and

lim
u→+∞

Q(u)
u

= +∞, lim
u→0

Q(u)
u

= 0.

This space is endowed with the norm

‖ f‖LQ(Td) = inf{k > 0 :
∫
Td

Q(| f |/k) � 1}.

In particular, if Q(u) = u logr(1+u) , r = 1,2, ..., u > 0, then the corresponding
space will be denoted by L logr L(Td) .

The rectangular partial sums of double Fourier series Sn,m ( f ;x,y) of the function
f ∈ Lp

(
T2
)
, T := [−π ,π) , 1 < p < ∞ converge in Lp norm to the function f , as

n → ∞ [20]. In the case L1
(
T2
)

this result does not hold. But for f ∈ L1 (T) , the
operator Sn ( f ;x) are of weak type (1,1) [21]. This estimate implies convergence of
Sn ( f ;x) in measure on T to the function f ∈ L1 (T) . However, for double Fourier
series this result does not hold [6, 12]. Moreover, it is proved that quadratical partial
sums Sn,n ( f ;x,y) of double Fourier series do not converge in two-dimensional measure
on T2 even for functions from Orlicz spaces wider than Orlicz space L logL

(
T2
)
. On

the other hand, it is well-known that if the function f ∈ L logL
(
T2
)
, then rectangular

partial sums Sn,m ( f ;x,y) converge in measure on T2 .
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Classical regular summation methods often improve the convergence of Fourier
series. For instance, the Fejér means of the double Fourier series of the function f ∈
L1
(
T2
)

converge in L1
(
T2
)

norm to the function f [20]. These means present the
particular case of the Nörlund means.

It is well known that the method of Nörlund logarithmic means of double Fourier
series, is weaker than the Cesáro method of any positive order. In [18] Tkebuchava
proved, that these means of double Fourier series in general do not converge in two-
dimensional measure on Td even for functions from Orlicz spaces wider than Orlicz
space L logd−1 L

(
Td
)
. In particular, the following result is true.

THEOREM T. Let LQ
(
Td
)

be an Orlicz space, such that

LQ

(
Td
)

� L logd−1 L
(

Td
)

.

Then the set of the functions from the Orlicz space LQ
(
Td
)

with Nörlund logarith-
mic means of rectangular partial sums of d -dimensional Fourier series, convergent in
measure on Td , is of first Baire category in LQ

(
Td
)
.

In [9] we considered the strong logarithmic means of rectangular partial sums
double Fourier series

σn,m ( f ;x,y) :=
1

lnlm

n

∑
i=0

m

∑
j=0

∣∣Si, j ( f ;x,y)
∣∣

(n− i+1)(m− j +1)

and prove that these means are acting from space L logL
(
T2
)

into space Lp
(
T2
)
,

0 < p < 1. This fact implies the convergence of strong logarithmic means of rectangular
partial sums of double Fourier series in measure on T2 to the function f ∈ L logL

(
T2
)
.

Uniting these results with statement from [17] we obtain, that the rectangular partial
sums of double Fourier series converge in measure for all functions from Orlicz space
if and only if their strong Nörlund logarithmic means converge in measure. Thus, not all
classic regular summation methods can improve the convergence in measure of double
Fourier series.

The results for summability of logarithmic means of Walsh-Fourier series can be
found in [8, 5, 10, 3, 4, 7, 16, 19].

In this paper we consider the mixed logarithmic means
(
LnB ◦RnB′

)
( f ) of rectan-

gular partial sums multiple Fourier series and prove that these means are acting from
space L log|B|L

(
Td
)

into space L1
(
Td
)

(see Theorem 1 ). This fact implies the con-
vergence of mixed logarithmic means of rectangular partial sums of multiple Fourier
series converge in L1 -norm. We also prove sharpness of this result (see Theorem 3). In
particular, the following are true.

THEOREM 1. Let B ⊂ D and f ∈ L log|B|L
(
Td
)
. Then∥∥(LnB ◦RnB′

)
( f )
∥∥

L1(Td) � 1+
∥∥∥| f | log|B| | f |

∥∥∥
L1(Td)

.
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THEOREM 2. Let B ⊂ D and f ∈ L log|B|L
(
Td
)
. Then∥∥(LnB ◦RnB′

)
( f )− f

∥∥
L1(Td) → 0 as ni → ∞, i ∈ D;

THEOREM 3. Let LQ
(
Td
)

be an Orlicz space, such that

LQ

(
Td
)

� L log|B|L
(

Td
)

.

Then
a)

sup
n

∥∥(LnB ◦RnB′
)∥∥

LQ(Td)→L1(Td) = ∞;

b) there exists a function f ∈ LQ
(
Td
)

such that
(
LnB ◦RnB′

)
( f ) does not converge

to f in L1
(
Td
)
-norm.

Thus, the space L log|B|L
(
Td
)

is maximal Orlicz space such that for each function
f from this space the means

(
LnB ◦RnB′

)
( f ) converge to f in L1

(
Td
)
-norm.

Proof of Theorem 1. We apply the following particular case of the Marcinkiewicz
interpolation theorem (see [1, 14]). Let T : L1

(
T 1
)→ L0

(
T 1
)

be a quasilinear operator
of weak type (1,1) and of type (α,α) for some 1 < α < ∞ at the same time, i. e.

a)

mes
{
x ∈ T1 : |T ( f ,x)| > y

}
(1)

� 1
y

∫
T1

| f (x)|dx; ∀ f ∈ L1 (T1) ∀y > 0;

b)
‖T f‖Lα(T1) � ‖ f‖Lα(T1) , ∀ f ∈ Lα (T 1) . (2)

Then ∫
T1

|T ( f ,x)| lnβ |T ( f ,x)|dx (3)

�
∫
T1

| f (x)| lnβ+1 | f (x)|dx+1 , ∀β � 0.

In [9] it it proved that for any f ∈ L1
(
T 1
)

the operator f ∗Fn has weak type (1,1),
i. e.

mes
{
x ∈ T1 : | f ∗Fn| > y

}
(4)

� 1
y

∫
T1

| f (x)|dx; ∀ f ∈ L1 (T1) ∀y > 0.
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Since
sup

n
‖Gn‖1 < ∞,

it is easy to prove that the operator f ∗Gn has type (1,1), i.e.

‖ f ∗Gn‖L1(T1) � ‖ f‖L1(T1) . (5)

From (1)–(5) we have (B′ := {s1,s2, ...,sr′ } , B := {l1, ..., lr} )∥∥(LnB ◦RnB′
)
( f )
∥∥

L1(Td)

=
∥∥∥(Rns1

◦ · · · ◦Rnsr′
◦Lnl1

◦ · · · ◦Lnlr

)
( f )
∥∥∥

L1(Td)

� · · · �
∥∥∥(Lnl1

◦ · · · ◦Lnlr

)
( f )
∥∥∥

L1(Td)

� 1+
∥∥∥∣∣∣Lnl2

◦ · · · ◦Lnlr
( f )
∣∣∣ log

∣∣Ln2 ◦ · · · ◦Lnlr
( f )
∣∣∥∥∥

L1(Td)

� · · · � 1+
∥∥∣∣Lnlr

( f )
∣∣ logr−1

∣∣Lnlr
( f )
∣∣∥∥

L1(Td)
� 1+‖| f | logr | f |‖L1(Td) .

Theorem 1 is proved. �

The validity of Theorem 2 follows immediately from Theorem 1.

Proof of Theorem 3. a) Set

αmn :=
π (12m+1)
6(22n +1/2)

, βmn :=
π (12m+5)
6(22n +1/2)

, γn :=
π

6(22n +1/2)
,

Jn :=
2n−1⋃
m=1

[αmn + γn,βmn − γn] .

In order to prove theorem we need the following lemma proved in [11].

LEMMA 1. Let 0 � z � γn and x ∈ Jn . Then

F22n (x− z) � 1
x
.

Let
Q
(
22n|B|

)
� 22n|B| for n > n0.

By virtue of estimate ([13], Ch. 2)

‖ f‖LQ
� 1+‖Q(| f |)‖L1

.
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We can write∥∥∥∥∥L22n(B) ◦R22n(B′)

(
1[0,γn]|B|

(2γn)|B|

)∥∥∥∥∥
L1(Td)

(6)

�
∥∥∥L22n(B) ◦R22n(B′)

∥∥∥
LQ(Td)→L1(Td)

∥∥∥∥∥ 1[0,γn]|B|

(2γn)
|B|

∥∥∥∥∥
LQ(Td)

�
∥∥∥L22n(B) ◦R22n(B′)

∥∥∥
LQ(Td)→L1(Td)

⎛⎝1+

∥∥∥∥∥Q
(

1[0,γn]|B|

(2γn)|B|

)∥∥∥∥∥
L1(Td)

⎞⎠
�
∥∥∥L22n(B) ◦R22n(B′)

∥∥∥
LQ(Td)→L1(Td)

(
1+ γ |B|n Q

(
1

(2γn)
|B|

))

�
∥∥∥L22n(B) ◦R22n(B′)

∥∥∥
LQ(Td)→L1(Td)

Q
(
22n|B|)

22n|B| .

From Lemma 1 we get

L22n(B) ◦R22n(B′)

(
1[0,γn]|B|

(2γn)
|B| ;x

)

=
1

(2γn)|B|
1

πd

∫
[0,γn]|B|

∏
j∈B

F22n (x j − z j)dzB

∫
T|B′ |

∏
i∈B′

G22n (xi − zi)dzB′

=
1

(2γn)
|B| ∏

j∈B

1
π

∫
[0,γn]

F22n (x j − z j)dz j ∏
i∈B′

1
π

∫
T

G22n (zi)dzi

=
1

(2γn)
|B| ∏

j∈B

1
π

∫
[0,γn]

F22n (x j − z j)dz j

� 1

(2γn)|B|
∏
j∈B

γn

x j
,x j ∈ Jn, j ∈ B.

Consequently, ∥∥∥∥∥L22n(B) ◦R22n(B′)

(
1[0,γn]|B|

(2γn)|B|

)∥∥∥∥∥
L1(Td)

(7)

� ∏
j∈B

∫
Jn

dx j

x j
� cn|B|.

Combining (6) and (7) we obtain∥∥∥L22n(B) ◦R22n(B′)

∥∥∥
LQ(Td)→L1(Td)

� 22n|B|n|B|

Q
(
22n|B|) . (8)
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The fact that
LQ

(
Td
)

� L log|B|L
(

Td
)

is equivalent to the condition

lim
u→∞

sup
u log|B| u
Q(u)

= ∞.

Thus there exists {uk : k � 1} such that

lim
k→∞

uk log|B| uk

Q(uk)
= ∞, uk+1 > uk, k = 1,2, ...,

and a monotonically increasing sequence of positive integers {rk : k � 1} such that

22|B|rk � uk < 22|B|(rk+1).

Then we have
22rk|B|r|B|k

Q
(
22rk|B|

) � uk log|B| uk

Q(uk)
→ ∞.

Thus from (8) we conclude that

sup
n

∥∥(Ln(B) ◦Rn(B′)
)∥∥

LQ(Td)→L1(Td) = ∞.

This complete the proof of Theorem 3 a). Part b) follows immediately from part a). �
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