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PRECISE ESTIMATES OF BOUNDS

ON RELATIVE OPERATOR ENTROPIES

SHIGERU FURUICHI

(Communicated by J. Pečarić)

Abstract. Recently, Zou obtained the generalized results on the bounds for Tsallis relative oper-
ator entropy. In this short paper, we give precise bounds for Tsallis relative operator entropy. We
also give precise bounds of relative operator entropy.

1. Introduction

As one of extensions for relative operator entropy

S(A|B) ≡ A1/2 log
(
A−1/2BA−1/2

)
A1/2

introduced by Fujii and Kamei [2] (similar quantity was introduced by Belavkin and
Staszewski in [1]), for invertible positive operators A and B , Tsallis relative operator
entropy was defined as [6]:

Tr(A|B) ≡ A1/2 lnr

(
A−1/2BA−1/2

)
A1/2 =

A�rB−A
r

for r ∈ (0,1] and invertible positive operators A and B , where one-parameter extended
logarithmic function lnr(·) is defined as lnr x ≡ xr−1

r which uniformly converges to the
usual logarithmic function logx when r → 0. Here the weighted geometric mean is
defined by A�rB ≡ A1/2

(
A−1/2BA−1/2

)r
A1/2 for r ∈ [0,1] and invertible positive oper-

ators A and B . Tsallis relative operator entropy Tr(A|B) is a one-parameter extension
of relative operator entropy S(A|B) in the sense that

lim
r→0

Tr(A|B) = S(A|B).

Recently, Zou obtained new operator inequalities on Tsallis relative operator en-
tropy Tr(A|B) in [7]. His results generalized our previous results [3].
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THEOREM 1. ([7]) For a > 0 , r ∈ (0,1] , t ∈ [0,1] and two invertible positive
operators A and B, the following inequalities hold:

c3A�rB− c1A�r−1B− c2A � Tr(A|B) � c1B+ c2A�rB− c3A (1)

where A�rB ≡ A1/2
(
A−1/2BA−1/2

)r
A1/2 is defined for r ∈ R and invertible positive

operators A and B. For simplicity, we also set ci ≡ ci(a,r, t), (i = 1,2,3) where

c1(a,r, t) ≡ rar−1

d(a,r,t)
, c2(a,r,t) ≡ t(ar −1)

d(a,r,t)
, c3(a,r, t) ≡ rar +(t−1)(ar−1)

d(a,r, t)
,

with d(a,r, t) ≡ r{tar +(1− t)}.

As remarked in [7], the inequalities (1) recovers the inequalities [3]:

A�rB− 1
a
A�r−1B+

(
lnr

1
a

)
A � Tr(A|B) � 1

a
B−

(
lnr

1
a

)
A�rB−A (2)

putting t = 1 in the inequalities (1), since c1 = 1
a , c2 = − lnr

1
a and c3 = 1. That is, the

inequalities (1) generalized the inequalities (2). Again taking the limit as r → 0 in the
inequalities (2), we recover the following inequalities shown by Furuta in [4]:

(1− loga)A− 1
a
AB−1A � S(A|B) � (loga−1)A+

1
a
B. (3)

In this short paper, we give the further precise inequalities concerning the inequalities
(1) and (2).

2. Main results

THEOREM 2. Let A and B be positive invertible operators on a Hilbert space,
and a > 0 , r ∈ (0,1] , t ∈ [0,1] . Then the following inequalities (i) and (ii) hold.

(i) If 0 < a � 1 , then

A�rB− 1
a
A�r−1B+

(
lnr

1
a

)
A � c3A�rB− c1A�r−1B− c2A

� Tr(A|B)
� c1B+ c2A�rB− c3A

� 1
a
B−

(
lnr

1
a

)
A�rB−A

(ii) If a � 1 , then

c3A�rB− c1A�r−1B− c2A � A�rB− 1
a
A�r−1B+

(
lnr

1
a

)
A

� Tr(A|B)

� 1
a
B−

(
lnr

1
a

)
A�rB−A

� c1B+ c2A�rB− c3A
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Proof. Thanks to the theory by Kubo and Ando [5], if we use the notion of the
representing function fm(x) = 1mx for operator mean m , then the scalar inequality
fm(x) � fn(x) (for x > 0) is equivalent to the operator inequality AmB � AnB for all
positive operators A and B . Therefore we have only to consider the scalar inequalities
to prove the operator inequalities in this theorem. In addition, the second inequality and
the third inequality in both (i) and (ii) have already proven in the inequalities (1) and
(2). We thus prove the first inequality and the last inequality in both (i) and (ii). To do
so, we firstly set the function l(a,r,t,x) as

l(a,r,t,x) ≡ c3(a,r,t)xr − c1(a,r,t)xr−1 − c2(a,r,t).

By elementary calculations, we have

dl(a,r,t,x)
dt

=
(ar −1)

r{tar +(1− t)}2 h(a,r,x),

where h(a,r,x) = (1− r)arxr + rar−1xr−1 − 1. Since we have dh(a,r,x)
dx = r(1− r)ar−1

xr−2(ax−1) , we have h(a,r,x) � h(a,r,1/a) = 0 for any a > 0, x > 0 and r ∈ (0,1] .
Thus we have dl(a,r,t,x)

dt � 0 if 0 < a � 1, and dl(a,r,t,x)
dt � 0 if a � 1. Therefore we have

l(a,r, t,x) � l(a,r,1,x) if 0 < a � 1, and l(a,r,t,x) � l(a,r,1,x) if a � 1. When t = 1,
it follows that c1 = 1

a , c2 = − lnr
(

1
a

)
and c3 = 1. Thus the first inequalities in both (i)

and (ii) have been proven.
We also set the function u(a,r,t,x) as

u(a,r,t,x) ≡ c1(a,r,t)x+ c2(a,r,t)xr − c3(a,r,t).

By elementary calculations, we have

du(a,r,t,x)
dt

=
(ar −1)

r{tar +(1− t)}2 g(a,r,x),

where g(a,r,x) = xr − rar−1x− (1− r)ar. Since dg(a,r,x)
dx = r(xr−1 − ar−1) , we have

g(a,r,x) � g(a,r,a) = 0 for any a > 0, x > 0 and r ∈ (0,1] . Thus we have du(a,r,t,x)
dt � 0

if 0 < a � 1, and du(a,r,t,x)
dt � 0 if a � 1. Therefore we have u(a,r,t,x) � u(a,r,1,x) if

0 < a � 1, and u(a,r,t,x) � u(a,r,1,x) if a � 1. Thus the last inequalities in both (i)
and (ii) have been proven. �

REMARK 1. Theorem2 shows that the inequalities (1) give tight bounds of Tr(A|B)
when 0 < a � 1, however the inequalities (2) give tight bounds of Tr(A|B) when a � 1.

In the paper [7], Zou obtained the lower bound of T−r(A|B) for r ∈ (0,1] as

(ar − lnr a)A−ar−1AB−1A � T−r(A|B). (4)

We also obtain the different upper bound of Tsallis relative operator entropy as:

Tr(A|B) � (lnr a−ar)A+ar−1B. (5)
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The above inequality (5) can be proven by the scalar inequality

lnr x � lnr a−ar +ar−1x (6)

which is obtained by putting z = x
a in the fundamental inequality lnr z � z− 1 for

z > 0 and r ∈ (0,1]. Thus we have the following proposition, taking account for the
inequalities (4) and (5) with the following inequalities [3, 7]:

T−r(A|B) � S(A|B) � Tr(A|B). (7)

PROPOSITION 1. For a > 0 , r ∈ (0,1] and invertible positive operators A and
B, the following inequalities hold.

(ar − lnr a)A−ar−1AB−1A � T−r(A|B) � S(A|B)
� Tr(A|B) � (lnr a−ar)A+ar−1B. (8)

In the paper [3], we also obtained the following inequality

Tr(A|B) � 1
a
B−A−

(
lnr

1
a

)
A�rB (9)

from the scalar inequality lnr x � x
a −1− (

lnr
1
a

)
xr . By the slight modification of this

scalar inequality, we can obtain the following inequality:

T−r(A|B) � A− 1
a
AB−1A+

(
lnr

1
a

)
A�−rB. (10)

Thus we also have the following proposition.

PROPOSITION 2. For a > 0 , r ∈ (0,1] and invertible positive operators A and
B, we have

A− 1
a
AB−1A+

(
lnr

1
a

)
A�−rB � T−r(A|B) � S(A|B)

� Tr(A|B) � 1
a
B−A−

(
lnr

1
a

)
A�rB. (11)

One may have an interest in the precise ordering on two inequalities (8) and (11).
Then we can show the following corollary by Theorem 2.

COROLLARY 1. For a > 0 , r ∈ (0,1] and invertible positive operators A and B,
we have the following inequalities.

(i) If 0 < a � 1 , then we have

A− 1
a
AB−1A+

(
lnr

1
a

)
A�−rB � (ar − lnr a)A−ar−1AB−1A

� T−r(A|B) � S(A|B) � Tr(A|B)
� (lnr a−ar)A+ar−1B

� 1
a
B−A−

(
lnr

1
a

)
A�rB.
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(ii) If a � 1 , then we have

(ar − lnr a)A−ar−1AB−1A � A− 1
a
AB−1A+

(
lnr

1
a

)
A�−rB

� T−r(A|B) � S(A|B) � Tr(A|B)

� 1
a
B−A−

(
lnr

1
a

)
A�rB � (lnr a−ar)A+ar−1B.

Proof. When a � 1, we put t = 0 in Theorem 2. Then we have c1 = ar−1 , c2 = 0,
c3 = ar − lnr a and we have the last inequality in (i):

ar−1B+(lnr a−ar)A � 1
a
B−A−

(
lnr

1
a

)
A�rB

which is equivalent to

ar−1x+(lnr a−ar) � x
a
−

(
lnr

1
a

)
xr −1.

From this inequality, we have

−ar−1 1
x
− (lnr a−ar) � 1− 1

ax
+

(
lnr

1
a

)
x−r

which is equivalent to

A− 1
a
AB−1A+

(
lnr

1
a

)
A�−rB � (ar − lnr a)A−ar−1AB−1A.

Thus (i) was proven. (ii) can be proven by similar way. �

If we take a = 1 in Corollary 1, then we recover the inequalities:

A−AB−1A � T−r(A|B) � S(A|B) � Tr(A|B) � B−A

which were given in the paper [7]. If we also take the limit r → 0 in Corollary 1, then
we recover the inequalities (3).

We can show another bounds of the relative operator entropy S(A|B) under the
restricted conditions. For this purpose, we prepare the following lemma.

LEMMA 1.

(i) For r ∈ [1/2,1] , α ∈ [−1,0)∪ (0,1] and x � 1 , we have

0 � 1− 1
x

� x−r −1
−r

� 2(x−1)
x+1

� 2(xα −1)
α(xα +1)

� logx

� xα −1

αxα/2
� x−1√

x
� xr −1

r
� x−1.
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(ii) For r ∈ [1/2,1] , α ∈ [−1,0)∪ (0,1] and 0 < x � 1 , we have

1− 1
x

� x−r −1
−r

� x−1√
x

� xα −1

αxα/2
� logx

� 2(xα −1)
α(xα +1)

� 2(x−1)
x+1

� xr −1
r

� x−1 � 0.

Proof. The first inequality in (i) is trivial. We put f (r,x) ≡ xr−1
r − x−1√

x . Then we

have d f (r,x)
dx = 2xr+1/2−x−1

2x3/2 � 0 for r � 1/2 and x � 1. Thus we have f (r,x) � f (r,1) = 0

which proves the eighth inequality in (i). Since we have d
dr

(
x−r−1
−r

)
= 1−xr+r logx

xrr2
� 0

(which implies the second inequality), we have x−r−1
−r � x−1/2−1

−1/2 if r � 1/2. When

x � 1, we can prove the inequality 2(x−1)
x+1 � x−1/2−1

−1/2 with elementary calculations. Thus
we have the third inequality of (i). We note that we have the inequalities

2(x−1)
x+1

� logx � x−1√
x

, (x � 1). (12)

We put g(α,x) ≡ 2(xα−1)
α(xα +1) for x � 1. Since we have g(−α,x) = g(α,x) , we consider

the case 0 < α � 1. Then we have dg(α ,x)
dα =

2{xα logx2α−(x2α−1)}
α2(xα +1)2 � 0, by replac-

ing x in the second inequality of (12) with x2α . Thus we have g(1,x) � g(α,x) �
limα→0 g(α,x) = logx which imply the fourth and fifth inequalities of (i). We also put
h(α,x) ≡ xα−1

αxα/2 for x � 1. Since we have h(−α,x) = h(α,x) , we consider the case

0 < α � 1. Then we have dh(α ,x)
dα = (xα +1) logxα−2(xα−1)

2α2xα/2 � 0, by replacing x in the first
inequality of (12) with xα . Thus we have logx = limα→0 h(α,x) � h(α,x) � h(1,x)
which imply the sixth and seventh inequalities of (i). The last inequality of (i) comes

from d
dr

(
xr−1

r

)
= xr

r2
(x−r −1+ r logx) � 0. Replacing x in (i) with 1/x , then we have

the inequalities (ii) with elementary calculations. �

REMARK 2. If 0 < r < 1/2, then we have

lim
x→∞

xr−1
r

x−1√
x

= lim
x→∞

xr+1/2− x1/2

r(x−1)
= lim

x→∞

(r+1/2)xr−1/2−1/2x−1/2

r
= 0.

This means that there exists x > 0 such that xr−1
r � x−1√

x when 0 < r < 1/2. Actually,

if we take r = 10/21, then we have xr−1
r − x−1√

x =−23829.6 when x = 4 ·1013. For the

same case r = 10/21, we have xr−1
r − x−1√

x = 16866.3 when x = 3 · 1013. We should

consider the case that r is small. If we take r = 0.001, then we have xr−1
r − x−1√

x =

7.26842 ·10−9 when x = 1.005, and xr−1
r − x−1√

x = −2.66798 ·10−8 when x = 1.015.

Therefore we may conclude that there is no ordering between xr−1
r and x−1√

x for 0 <
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r < 1/2 and x > 1. We also do not have the ordering between x−r−1
−r and x−1√

x for

0 < r < 1/2 and 0 < x < 1.
If 0 < r < 1/2, then we also have

lim
x→∞

2(x−1)
x+1

x−r−1
−r

= lim
x→∞

−2r(x−1)
(x+1)(x−r −1)

= lim
x→∞

2r
1− x−r + r(x−r−1 + x−r)

= 2r < 1.

This also means that there exists x > 0 such that 2(x−1)
x+1 � x−r−1

−r when 0 < r < 1/2.

Actually, if we take r = 10/21, then we have 2(x−1)
x+1 − x−r−1

−r = −0.00681889 when

x = 6 ·102 . For the same case r = 10/21, we have 2(x−1)
x+1 − x−r−1

−r = 0.000907845 when
x = 5 ·102 . We also consider the case that r is small. If we take r = 0.001, then we have
2(x−1)
x+1 − x−r−1

−r = 2.09877 ·10−9 when x = 1.005, and 2(x−1)
x+1 − x−r−1

−r =−1.6419 ·10−7

when x = 1.015. Therefore we may conclude that there is no ordering between 2(x−1)
x+1

and x−r−1
−r for 0 < r < 1/2 and x > 1. We also do not have the ordering between 2(x−1)

x+1

and xr−1
r for 0 < r < 1/2 and 0 < x < 1.

THEOREM 3. (i) For r ∈ [1/2,1] , α ∈ [−1,0)∪(0,1] and 0 < A � B, we have

0 � T−1(A|B) � T−r(A|B) � 2A1/2

{
I−A1/2

(
A+B

2

)−1

A1/2

}
A1/2

� 2
α

A1/2

{
I−A1/2

(
A+A�αB

2

)−1

A1/2

}
A1/2 � S(A|B)

�
A�α/2B−A�−α/2B

α
� A�1/2B−A

(
A−1�1/2B

−1)A � Tr(A|B) � T1(A|B).

(ii) For r ∈ [1/2,1] , α ∈ [−1,0)∪ (0,1] and 0 < B � A, we have

T−1(A|B) � T−r(A|B) � A�1/2B−A
(
A−1�1/2B

−1)A �
A�α/2B−A�−α/2B

α

� S(A|B) � 2
α

A1/2

{
I−A1/2

(
A+A�αB

2

)−1

A1/2

}
A1/2

� 2A1/2

{
I−A1/2

(
A+B

2

)−1

A1/2

}
A1/2 � Tr(A|B) � T1(A|B) � 0.

Proof. We note that T1(A|B) = B−A and T−1(A|B) = A−AB−1A . We apply (i)
of Lemma 1. Then the condition x � 1 implies A−1/2BA−1/2 � I , and hence (i) of the
present theorem requires the conditions 0 < A � B . By some calculations, we obtain
this theorem thanks to the theory of operator mean by Kubo and Ando [5]. (ii) of the
present theorem can be proven similarly by applying (ii) of Lemma 1. �

If we relax the condition 1/2 � r � 1, then we have the following result.
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COROLLARY 2.

(i) For r ∈ (0,1] and 0 < A � B, we have

0 � T−1(A|B) � T−r(A|B) � 2
r
A1/2

{
I−A1/2

(
A+A�rB

2

)−1

A1/2

}
A1/2

� S(A|B) �
A�r/2B−A�−r/2B

r
� Tr(A|B) � T1(A|B).

(ii) For r ∈ (0,1] and 0 < B � A, we have

T−1(A|B) � T−r(A|B) �
A�r/2B−A�−r/2B

r
� S(A|B)

� 2
r
A1/2

{
I−A1/2

(
A+A�rB

2

)−1

A1/2

}
A1/2

� Tr(A|B) � T1(A|B) � 0.

Proof. The proof can be done by using Theorem 3 and the following scalar in-
equalities.

(i) For r ∈ (0,1] and x � 1, we have

x−r −1
−r

� 2(xr −1)
r(xr +1)

� logx � xr −1

rxr/2
� xr −1

r
.

(ii) For r ∈ (0,1] and 0 < x � 1, we have

x−r −1
−r

� xr −1

rxr/2
� logx � 2(xr −1)

r(xr +1)
� xr −1

r
. �

REMARK 3. The bounds of S(A|B) in Corollary 2 are tighter than those in Corol-
lary 1, whenever the conditions (i) A � B or (ii) B � A are satisfied.
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