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CHARACTERIZATIONS OF INNER PRODUCT SPACES

BY INEQUALITIES INVOLVING SEMI–INNER PRODUCT

PAWEŁ WÓJCIK

(Communicated by M. Sal Moslehian)

Abstract. Using the notion of semi-inner product in normed spaces, in this paper we provide
some new characterizations of inner product spaces. We answer a question posed by Dragomir,
whether the property (N) is characteristic for inner product spaces. We show that the space X is
of (N)-type if and only if the norm in X comes from an inner product.

1. Introduction

Let (X ,‖·‖) be a normed space over K ∈ {R , C} . G. Lumer [6] and J. R. Giles
[4] proved that in a normed space X there always exists a mapping [·|·] : X ×X → K

satisfying the following properties:
(sip1) ∀x,y,z∈X ∀α ,β∈K : [αx+ βy|z] = α [x|z]+ β [y|z] ;
(sip2) ∀x,y∈X ∀α∈K : [x|αy] = α [x|y] ;
(sip3) ∀x,y∈X : | [x|y] | � ‖x‖·‖y‖ ;
(sip4) ∀x∈X : [x|x] = ‖x‖2 .
Such a mapping is called a semi–inner–product (s.i.p.) in X (generating the norm

‖ · ‖ ). There may exist infinitely many different semi-inner-products in X . There is a
unique one if and only if X is smooth (i.e., there is a unique supporting hyperplane at
each point of the unit sphere S ). If X is an inner product space, the only s.i.p. on X is
the inner-product itself.

The semi–orthogonality of vectors x and y in X (with respect to a given semi-
inner product), is defined as follows:

x⊥sy :⇔ [y|x] = 0.

Of course, in an inner product space we have ⊥s = ⊥ .
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2. Open problem

By [3, Proposition 4, p.21] “a normed space X is smooth if and only if there exists
a unique Lumer-Giles semi-inner product which generates the norm”.

DEFINITION 1. [3, Definition 28, p. 165] Assume that (X ,‖·‖) is a smooth normed
linear space. It is said to be of (N)-type if the s.i.p. [·|·] that generates the norm satisfies
the condition:

∀x,y,z∈X : | [x|y+ z] | � | [x|y] |+ | [x|z] |. (1)

It is obvious that any inner product space is a smooth normed space of (N)-type.

PROBLEM 1. [3, Remark 22, p. 165] Is it true that a normed space of (N)-type has
to be inner product space?

We will solve this open problem. Namely, we will give a characterization of inner
product spaces. In fact, we will prove that Problem 1 can be strengthen. Indeed, it is
not necessary to assume that X is smooth.

3. Main results

In this section, we treat the Problem 1. Thus, we derive a new condition charac-
terizing inner product spaces. The following theorem will be useful to derive the main
result.

THEOREM 1. [5], [2] Let X be a normed space such that dimX � 3 . The normed
linear space X is an inner product space if and only if for each two-dimensional sub-
space X1 of X there exists a linear operator P : X → X1 with the following properties:

(i) P = P◦P;
(ii) ‖P‖ = 1 .

For real spaces it has been proved by Kakutani [5]. Bohnenblust [2] extended it to
complex spaces.

Next we prove the main result of this section.

THEOREM 2. Let X be a normed space such that dimX = 3 and let [·|·] be a
given semi-inner product in X . The space X satisfies (1) if and only if the norm in X
comes from an inner product.

Proof. Assume that X satisfies (1). Fix arbitrarily a subspace M ⊂ X and suppose
that dimM = 2. Fix arbitrarily two linearly independent vectors a,b∈M . Using (sip1)
and (sip4) we have for c := − [b|a]

‖a‖2 a+b

[c|a]
(sip1)
= − [b|a]

‖a‖2 [a|a]+ [b|a]
(sip4)
= − [b|a]

‖a‖2‖a‖2 +[b|a] = 0, i.e., a⊥sc. (2)
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Fix p /∈ M . Define d := − [p|a]
‖a‖2 a+ p . Applying again (sip1) and (sip4) we get

[d|a]
(sip1)
= − [p|a]

‖a‖2 [a|a]+ [p|a]
(sip4)
= − [p|a]

‖a‖2‖a‖2 +[p|a] = 0, i.e., a⊥sd. (3)

It is easy to see that span{a,c} = M and d /∈ M . Therefore span{a,c,d} = X . Define

u := − [d|c]
‖c‖2 c+d . In a similar way we obtain

[u|c] = 0, i.e., c⊥su. (4)

Moreover,

[u|a] =
[
− [d|c]
‖c‖2 c+d|a

]
= − [d|c]

‖c‖2 [c|a]+ [d|a]
(2),(3)
= 0, i.e., a⊥su. (5)

We will show that for any γ ∈ K we have M⊥sγu . Fix m ∈ M and γ ∈ K . It
follows that, for some α,β ∈ K , one has m = αa+ βc . Using (1), we get

| [γu|m] |= | [γu|αa+βc] |
(1)
� | [γu|αa] |+ | [γu|βc] | (sip1)

=

= |γ|·(| [u|αa] |+ | [u|βc] |) (sip2)
= |γ|·

(
|α ·[u|a] |+ |β ·[u|c] |

) (4),(5)
=

= |γ|·
(
|α ·0|+ |β ·0|

)
= 0,

hence M⊥sγu .
It is easy to see that u /∈ M . Therefore span{a,c,u}= X . Define a linear mapping

P : X → X by P(α1a+ α2c+ α3u) := α1a+ α2c . It is easy to see that P(X) = M and
P = P ◦P . Thus P is a projection from X onto M . Applying properties M⊥sγu and
P(X) = M we obtain

∀γ∈K : P(X)⊥sγu. (6)

Since ‖P‖ = ‖P◦P‖ � ‖P‖·‖P‖ , we get 1 � ‖P‖ . Now we prove the converse,
i.e., ‖P‖� 1. Fix x∈X . It follows that, for some α,β ,γ∈K , one has x=αa+βc+γu .

Since [Px|Px]
(sip4)
= ‖Px‖2 � 0, we get [Px|Px] = | [Px|Px] | . Thus we have

‖Px‖2 = [Px|Px] = | [Px|Px] | = | [Px|Px]+0| (6)
=

= | [Px|Px]+[γu|Px] | (sip1)
= | [P(x)+ γu|Px] |

(sip3)
�

� ‖P(x)+ γu‖ · ‖P(x)‖= ‖αa+ βc+ γu‖ · ‖Px‖=
= ‖x‖ · ‖Px‖,

whence ‖Px‖ � ‖x‖ . Thus ‖P‖ � 1 and finally ‖P‖ = 1.
From Theorem 1, the norm in X comes from an inner product. The converse

implication is obvious. �
Now, let us prove the general case.
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THEOREM 3. Let X be a normed space such that dimX � 3 and let [·|·] be a
given semi-inner product in X . Then, the following conditions are equivalent:

(a) ∀x,y,z∈X : | [x|y+ z] | � | [x|y] |+ | [x|z] |;
(b) ∀x,y,z∈X : [x|y+ z] = [x|y]+ [x|z] ;
(c) The norm in X comes from an inner product.

Proof. Implications (c)⇒(b)⇒(a) are obvious. We show (a)⇒(c). Assume that
X satisfies (a). We show that the parallelogram law holds. Fix arbitrarily two vectors
x,y ∈ X . Fix a subspace Y ⊂ X such that x,y ∈ Y and dimY = 3. We define the norm
‖·‖Y : Y → R by ‖·‖Y := ‖·‖ . According to Theorem 2, the norm ‖·‖Y satisfies the
parallelogram law. Thus

‖x+ y‖2 +‖x− y‖2 = ‖x+ y‖2
Y +‖x− y‖2

Y = 2‖x‖2
Y +2‖y‖2

Y = 2‖x‖2 +2‖y‖2 .

We have proved that the parallelogram law holds. Therefore, the norm has to come
from an inner product. �

4. Norm derivatives

From now on we assume that the considered normed spaces are real. Let (X ,‖·‖)
be a real normed space. We define two mappings ρ ′

+,ρ ′− : X ×X → R :

ρ ′
±(x,y) := lim

t→0±
‖x+ ty‖2−‖x‖2

2t
= ‖x‖ · lim

t→0±
‖x+ ty‖−‖x‖

t
.

This mappings are called norm derivatives. Now, we recall their useful properties (the
proofs can be found in [1] and [3]):

(nd1) ∀x,y∈X ∀α∈R : ρ ′±(x,αx+ y) = α‖x‖2 + ρ ′±(x,y) ;
(nd2) ∀x,y∈X ∀α�0 : ρ ′±(αx,y) = αρ ′±(x,y) = ρ ′±(x,αy) ;
(nd2’) ∀x,y∈X ∀α<0 : ρ ′±(αx,y) = αρ ′∓(x,y) = ρ ′±(x,αy) ;
(nd3) ∀x,y∈X : |ρ ′±(x,y)| � ‖x‖·‖y‖ ;
(nd4) ∀x∈X : ρ ′±(x,x) = ‖x‖2 ;

Moreover, the mappings ρ ′
+,ρ ′− are continuous with respect to the second variable, but

not necessarily with respect to the first one.
Now, fix the semi-inner product [·|·] . Then,

∀x,y∈X ρ ′
±(x,y) = lim

t→0±
[y|x+ ty] . (7)

It is known that, X is smooth if and only if ρ ′
+(x,y) = ρ ′−(x,y) = [y|x] for all x,y ∈ X .

The following mapping 〈·|·〉g : X ×X → R was introduced by Miličić [7]:

〈y|x〉g := 1
2

(
ρ ′

+(x,y)+ ρ ′−(x,y)
)

and is called a M-semi-inner product (briefly M-s.i.p.). From the above properties of
the mappings ρ ′

+,ρ ′− we get:
(Msip1) ∀x,y∈X ∀α∈R : 〈αx+ y|x〉g = α‖x‖2 + 〈y|x〉g ;
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(Msip2) ∀x,y∈X ∀α∈R : 〈αx|y〉g = α 〈x|y〉g = 〈x|αy〉g ;
(Msip3) ∀x,y∈X : | 〈x|y〉g | � ‖x‖·‖y‖ ;

(Msip4) ∀x∈X : 〈x|x〉g = ‖x‖2 ;
In a similar way as earlier, we introduce ρ -orthogonality:

x⊥ ρ y :⇔ 〈y|x〉g = 0.

If (X ,〈·|·〉) is an inner product space, then 〈y|x〉 = [y|x] = 〈y|x〉g for arbitrary x,y ∈ X .
Hence we have ⊥ = ⊥s = ⊥ ρ .

5. Semi-smooth spaces

A normed space X is called semi-smooth if the M-semi-inner-product is additive
with respect to the first variable, i.e.,

∀x,y∈X 〈x+ y|z〉g = 〈x|z〉g + 〈y|z〉g .

Each smooth space is semi-smooth in the above sense but not conversely ( l1 is a suit-
able example). If X is a real semi-smooth space, then the M-semi-inner-product is a
real semi-inner-product in sense of Lumer-Giles.

THEOREM 4. Assume that (X ,‖·‖) is a semi-smooth normed linear space such
that dimX � 3 . Then, the following conditions are equivalent:

(a) ∀x,y,z∈X : | 〈x|y+ z〉g | � | 〈x|y〉g |+ | 〈x|z〉g |;
(b) ∀x,y,z∈X : 〈x|y+ z〉g = 〈x|y〉g + 〈x|z〉g ;
(c) The norm in X comes from an inner product.

Proof. The space X is semi-smooth. Therefore, the M-semi-inner-product is a
real semi-inner-product. Now by applying Theorem 3 we arrive at the desired asser-
tion. �

6. Concluding remarks and problems

Let us now consider the conditions:

(A) ∀x,y,z∈X : |ρ ′
+(x+ y,z)| � |ρ ′

+(x,z)|+ |ρ ′
+(y,z)| ;

(B) ∀x,y,z∈X : |ρ ′−(x+ y,z)| � |ρ ′−(x,z)|+ |ρ ′−(y,z)| ;
The latter two conditions are equivalent. Indeed, suppose that (A) holds. Fix arbitrarily
three vectors x,y,z . Then we have

|ρ ′
−(x+ y,z)| (nd2’)

= |−ρ ′
+((−x)+ (−y),z)| = |ρ ′

+((−x)+ (−y),z)|
(A)
�

� |ρ ′
+(−x,z)|+ |ρ ′

+(−y,z)| (nd2’)= |−ρ ′
−(x,z)|+ |−ρ ′

−(y,z)| =
= |ρ ′

−(x,z)|+ |ρ ′
−(y,z)|.
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The reverse implication can be proved analogously.
In the case of a smooth space X we have ρ ′

+(·,�) = ρ ′−(·,�) = [�|·] . Thus, if X is
smooth, then (1)⇔(A)⇔(B). According to Theorem 3, both (A) and (B) characterizes
X as an inner product space.

The case of non-smooth spaces remains an open problem. But on the other hand,
the following assertion holds true.

THEOREM 5. For an arbitrary real normed space X we have (1)⇒(A) and
(1)⇒(B).

Proof. Fix arbitrarily three vectors x,y,z ∈ X . Then we have

|ρ ′
+(x+ y,z)| (7)=

∣∣∣∣ lim
t→0+

[z|x+ y+ tz]
∣∣∣∣ = lim

t→0+
|[z|x+ y+ tz]| =

= lim
t→0+

∣∣∣∣
[
z|x+

1
2
tz+ y+

1
2
tz

]∣∣∣∣
(1)
�

� lim
t→0+

(∣∣∣∣
[
z|x+

1
2
tz

]∣∣∣∣+
∣∣∣∣
[
z|x+

1
2
tz

]∣∣∣∣
)

=

= lim
t→0+

∣∣∣∣
[
z|x+

1
2
tz

]∣∣∣∣+ lim
t→0+

∣∣∣∣
[
z|x+

1
2
tz

]∣∣∣∣ .
On the other hand, we also have

∣∣ρ ′
+(x,z)

∣∣+ ∣∣ρ ′
+(y,z)

∣∣ (nd2)
=

∣∣∣∣2ρ ′
+

(
x,

1
2
z

)∣∣∣∣+
∣∣∣∣2ρ ′

+

(
y,

1
2
z

)∣∣∣∣ (7)
=

=
∣∣∣∣2 lim

t→0+

[
1
2
z|x+ t ·1

2
z

]∣∣∣∣+
∣∣∣∣2 lim

t→0+

[
1
2
z|y+ t ·1

2
z

]∣∣∣∣ =

=
∣∣∣∣ lim
t→0+

[
z|x+

1
2
tz

]∣∣∣∣+
∣∣∣∣ lim
t→0+

[
z|y+

1
2
tz

]∣∣∣∣ =

= lim
t→0+

∣∣∣∣
[
z|x+

1
2
tz

]∣∣∣∣+ lim
t→0+

∣∣∣∣
[
z|x+

1
2
tz

]∣∣∣∣ .
Finally, we obtain |ρ ′

+(x + y,z)| �
∣∣ρ ′

+(x,z)
∣∣ +

∣∣ρ ′
+(y,z)

∣∣ . In a similar way one can
prove (1)⇒(B). �

The problem arises whether the reverse is true.

PROBLEM 2. If the condition (A) holds, does ‖·‖ derive from an inner product?

There is the following natural problem connected with Theorems 2, 3.

PROBLEM 3. Is it necessary to assume that dimX � 3? The two-dimensional
case remains an open problem.
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