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CHARACTERIZATIONS OF INNER PRODUCT SPACES
BY INEQUALITIES INVOLVING SEMI-INNER PRODUCT

PAWEE WOJICIK

(Communicated by M. Sal Moslehian)

Abstract. Using the notion of semi-inner product in normed spaces, in this paper we provide
some new characterizations of inner product spaces. We answer a question posed by Dragomir,
whether the property (N) is characteristic for inner product spaces. We show that the space X is
of (N)-type if and only if the norm in X comes from an inner product.

1. Introduction

Let (X,]||-]|) be a normed space over K € {R,C}. G. Lumer [6] and J. R. Giles

[4] proved that in a normed space X there always exists a mapping [-|] : X x X — K
satisfying the following properties:

(sipl) Viyzex Vapex @ [ox+Bylz) = o[x|z]+ B [y[z]:

(sip2) Viyex Voek @ [xloy] = @[x[y];

(sip3) Viyex: | [yl < [lx[l[Iylls

(sip4) Yeex @ [x|x] = ||x[|%.

Such a mapping is called a semi—inner—product (s.i.p.) in X (generating the norm

| - |1). There may exist infinitely many different semi-inner-products in X . There is a
unique one if and only if X is smooth (i.e., there is a unique supporting hyperplane at

each

point of the unit sphere S). If X is an inner product space, the only s.i.p. on X is

the inner-product itself.

The semi—orthogonality of vectors x and y in X (with respect to a given semi-

inner product), is defined as follows:

xLly = [l =0.

Of course, in an inner product space we have L, = 1.
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2. Open problem

By [3, Proposition 4, p.21] “a normed space X is smooth if and only if there exists
a unique Lumer-Giles semi-inner product which generates the norm”.

DEFINITION 1. [3, Definition 28, p. 165] Assume that (X, ||-||) is a smooth normed
linear space. It is said to be of (N)-type if the s.i.p. [-|-] that generates the norm satisfies
the condition:

Vayzex + |y +2][ <[ [xly] [+ [xl2] |- (1)

It is obvious that any inner product space is a smooth normed space of (N)-type.

PROBLEM 1. [3, Remark 22, p. 165] Is it true that a normed space of (N)-type has
to be inner product space?

We will solve this open problem. Namely, we will give a characterization of inner
product spaces. In fact, we will prove that Problem 1 can be strengthen. Indeed, it is
not necessary to assume that X is smooth.

3. Main results

In this section, we treat the Problem 1. Thus, we derive a new condition charac-
terizing inner product spaces. The following theorem will be useful to derive the main
result.

THEOREM 1. [5],[2] Let X be a normed space such that dimX > 3. The normed
linear space X is an inner product space if and only if for each two-dimensional sub-
space X1 of X there exists a linear operator P: X — X with the following properties:

(i) P=PoP;

(i) [|P[[=1.

For real spaces it has been proved by Kakutani [5]. Bohnenblust [2] extended it to
complex spaces.
Next we prove the main result of this section.

THEOREM 2. Let X be a normed space such that dimX =3 and let [-|-] be a
given semi-inner product in X. The space X satisfies (1) if and only if the norm in X
comes from an inner product.

Proof. Assume that X satisfies (1). Fix arbitrarily a subspace M C X and suppose
that dimM = 2. Fix arbitrarily two linearly independent vectors a,b € M. Using (sipl)

and (sip4) we have forc::—‘[‘ljﬁ’;a—i-b
siph  [bla] siph  [bld] ,
lela] “= ~ a4l + [bld] s —”a”2||a||2+[b\a]=0, ie, ale ()
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Fix p ¢ M. Define d := — [’"Tz]a + p. Applying again (sipl) and (sip4) we get

llal

[da]“ié”—ﬁ;'ﬁﬂ [aampm“24)—|[|’;'ﬁ§||a||2+[pa1=o, e ald. ()

It is easy to see that span{a,c} = M and d ¢ M. Therefore span{a,c,d} = X . Define

U= — %c +d. In a similar way we obtain

[ulc] =0, ie., clu. 4)
Moreover,

3)

[ua]:[ [d|c]c+d|a}: ] g+ 1] 2P0, ie,  ala ()

lel? llel?
We will show that for any y € K we have ML yu. Fix me M and y€ K. It
follows that, for some o, 3 € K, one has m = aa + Bc. Using (1), we get

(1) si
| [yulm] | = | [yuleta+Be] | < | [yulewa] | + | [yul Be] |2

=17 (| ulota] | + | wlBe] ) 1 (2 ] |+ B [ule] ) 45
= M-(IE-O| - |B-0|) =0,

hence M L yu.
It is easy to see that u ¢ M. Therefore span{a,c,u} = X . Define a linear mapping
P: X — X by P(oya+ ope+ oau) := oqa+ ope. It is easy to see that P(X) =M and
P =PoP. Thus P is a projection from X onto M. Applying properties M_L,yu and
P(X) =M we obtain
Voex : P(X)Lyu. (©6)
Since ||P|| = ||PoP|| < ||P||-]|P]|, we get 1 < ||P||. Now we prove the converse,
i.e., |P]| < 1. Fix x € X. It follows that, for some o, 3, y€ K, one has x=caa+Bc+7yu.

Since [Px|Px] "V || Px||? = 0, we get [Px|Px] = | [Px|Px]|. Thus we have

|Px|? = [Px|Px] = | [Px|Pa] | = | [Px|Pa] +0] 2

i (sip3)
— | [Px|PA]+[yulPA] | BV | [P(x) + yulPx]| <

<|[P(x) + yull - |P()]| = lloa+ Be+ yul| - [[Px]| =
= [lxll- [[Px]l,
whence ||Px|| < ||x||. Thus ||P]| < | and finally ||P|| =1.

From Theorem 1, the norm in X comes from an inner product. The converse
implication is obvious. [J

Now, let us prove the general case.
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THEOREM 3. Let X be a normed space such that dimX > 3 and let [-|-] be a
given semi-inner product in X . Then, the following conditions are equivalent:

@ Vxyex o |y 2| <[]+ [xl2] |

(b) Viyzex : [ly+z] = [xly]+ [x[2];

(¢c) The norm in X comes from an inner product.

Proof. Implications (c)=>(b)=>(a) are obvious. We show (a)=>(c). Assume that
X satisfies (a). We show that the parallelogram law holds. Fix arbitrarily two vectors
x,y € X. Fix a subspace ¥ C X such that x,y € Y and dimY = 3. We define the norm
I|lly: ¥ — R by ||-||y :=-]|]. According to Theorem 2, the norm ||-||y satisfies the
parallelogram law. Thus

e+ 3112+ e = 112 = [l + 317 + e = ylI§ = 20x17 +2y17 = 21Ixl|> +2{y]>-

We have proved that the parallelogram law holds. Therefore, the norm has to come
from an inner product. [

4. Norm derivatives

From now on we assume that the considered normed spaces are real. Let (X, ||-]|)
be a real normed space. We define two mappings p/,,p/ : X x X — R:

[+ 2y]| — [1x]

oyl = [l
Pl (ry) o= tim PRI ]

i SRR < -
This mappings are called norm derivatives. Now, we recall their useful properties (the
proofs can be found in [1] and [3]):

(ndl)  Vyyex Voer © (¥ 0x+y) = of|x]* + pL(x,y);

(nd2)  Viyex Vozo: pL(ax,y) =apl(xy) =pL(x ay);

(nd2’) vx,yEX V<o : PQE(OUC’Y) = OCP:IF (x,y) = p:/t(x’ OCy) 5

(d3)  Viyex:  [pL(xy) < [Ix-[Iyll:

(nd4) Viex: ph(xx) = |x]%
Moreover, the mappings p/,, p’ are continuous with respect to the second variable, but
not necessarily with respect to the first one.

Now, fix the semi-inner product [-|-]. Then,
Voyex  PLOnY) = lim [ty (7)

It is known that, X is smooth if and only if p/, (x,y) = p’ (x,y) = [y|x] forall x,y € X.
The following mapping (-|), : X x X — R was introduced by Mili¢i¢ [7]:

(ylx)g = 3 (P (x,y) +pL(x,y))
and is called a M-semi-inner product (briefly M-s.i.p.). From the above properties of
the mappings p’,,p/ we get:
(Msipl)  Veyex Voer @ (o +ylx), = orflx]> + (y]x),:
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(MSlpz) VX.,yEX VOCE]R : <(X)C|y>g =o <x‘y>g = <x‘ay>g’
(Msip3)  Viyex:  [{xly) [ < [xll-[Ivl;
(Msip4)  Viex: (xlx), = llx[12;
In a similar way as earlier, we introduce p -orthogonality:
xL,y & (yx),=0.

If (X, (-[-)) is an inner product space, then (y|x) = [y[x] = (y[x), for arbitrary x,y € X
Hence wehave L =1 =_1,.

5. Semi-smooth spaces

A normed space X is called semi-smooth if the M-semi-inner-product is additive
with respect to the first variable, i.e.,

Viyex  (x+yl2), = (xlz), + (l2),-

Each smooth space is semi-smooth in the above sense but not conversely (I! is a suit-
able example). If X is a real semi-smooth space, then the M-semi-inner-product is a
real semi-inner-product in sense of Lumer-Giles.

THEOREM 4. Assume that (X, ||-||) is a semi-smooth normed linear space such
that dimX > 3. Then, the following conditions are equivalent:

@) Veyzox t | (aly+2), | < aly) | +] ol |

(b) Vayeex : (xly+2)g = (tly) + (1f2)

(c) The normin X comes from an inner product.

Proof. The space X is semi-smooth. Therefore, the M-semi-inner-product is a
real semi-inner-product. Now by applying Theorem 3 we arrive at the desired asser-
tion. O

6. Concluding remarks and problems

Let us now consider the conditions:
(A) Vageex s [P (x+3,2)] < |p!(x.2)| + L (022)];
(B) Viyeex: |pL(x+y,2)| <|pL(x,2)|+pL(y,2)[;

The latter two conditions are equivalent. Indeed, suppose that (A) holds. Fix arbitrarily
three vectors x,y,z. Then we have

(nd2") )
P (x+2,2)| "= | = ph((=x) + (=),2)| = [P (=) + (=), 2)| <
(md2")
<Pl (=x2)|+ P (—3.2)| "= = pl(x,2)| + |- pl(n2)| =

=|p

(x,2)| + L (v,2)]-
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The reverse implication can be proved analogously.

In the case of a smooth space X we have p/, (-,0) = p’ (-,0) = [o|-]. Thus, if X is
smooth, then (1)< (A) < (B). According to Theorem 3, both (A) and (B) characterizes
X as an inner product space.

The case of non-smooth spaces remains an open problem. But on the other hand,
the following assertion holds true.

THEOREM 5. For an arbitrary real normed space X we have (1)=(A) and
(1)=(B).

Proof. Fix arbitrarily three vectors x,y,z € X . Then we have

™
P (x+y,2)| =

lim [zlx+y+1z]| = lim |[glx+y+12]| =
Jim [l +y +r2]) = lim [[z]x+y+12]]

T 1 1 (1)

= t1_1}1(1)[1+ zlx+ Sety+ Etz} <
< lim ( [zx—l—ltz ’—F [z|x+ltz] >=

t—0t 2 ] 2

[ 1
=1l =t
im | |zfx+ 5 z]

1—0t

+ lim
t—0

) [ZJH—%tz}.
2 (v39)| o o3 2

1 1 1
=21 t-=z||+|2 lim | = t-—
Hn(g[ Z|x+ Zz} ’ [2 ly+ 21}
+| I | +lt
1m - =
Jim zly+ ez

|+1t
Z|X 22 .

Finally, we obtain [p/, (x+y,2)| < [p, (x,2)| + [’ (3.2)|. In a similar way one can
prove (1)=(B). O

On the other hand, we also have

} (nd2)

1 (x,2)| + |p) (3,2)

1
=| lim [zx+—tz]
1—0t 2

1
[Jim |:Z)C—|- Etz]

= lim
0

+ lim
t—0t

The problem arises whether the reverse is true.

PROBLEM 2. If the condition (A) holds, does ||-|| derive from an inner product?

There is the following natural problem connected with Theorems 2, 3.

PROBLEM 3. Is it necessary to assume that dimX > 3? The two-dimensional
case remains an open problem.
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