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A NOTE ON A RESULT OF I. GUSIĆ ON TWO

INEQUALITIES IN LATTICE–ORDERED GROUPS

WŁODZIMIERZ FECHNER

(Communicated by J. Pečarić)

Abstract. We complement some of results of Ivica Gusić from 1998 concerning Maligranda-
Orlicz inequality in lattice-ordered groups.

A ϕ -function is a non-decreasing continuous function f : [0,+∞)→ [0,+∞) such
that f (u) = 0 if and only if u = 0 and lim

t→+∞
f (t) = +∞ (we denote by [0,+∞) the

closed halfline of nonnegative real numbers).
Lech Maligranda and Władysław Orlicz proved in [5] that if f is a convex ϕ -

function, n is a positive integer, ak are arbitrary non-negative numbers for k = 1, . . . ,n
and a0 = 0, then

n

∑
k=1

| f (ak)− f (ak−1)| � f

(
n

∑
k=1

|ak −ak−1|
)

. (1)

Inequality (1) is called Maligranda-Orlicz inequality. The original proof of (1) goes by
induction with respect to n . Moreover, the representation of ϕ -functions:

f (t) =
t∫

0

p(s)ds, t � 0,

where p is a non-negative and non-decreasing function has been utilized. The crucial
role in their proof plays the following inequality (denoted by (∗) in [5]):

f (A)+ | f (an)− f (an−1)| � f (A+ |an−an−1|), (∗)

where A =
n
∑

k=1
|ak −ak−1| .

Josip Pečarić and Ivica Gusić in [6] extended Maligranda-Orlicz inequality for
functions defined on a set of the form [0,β1]× ·· · × [0,βr] , having increasing incre-
ments and attaining values in [0,+∞) . Then, Ivica Gusić in [3] proved this inequality
for mappings f acting between positive cones of lattice-ordered groups, having increas-
ing increments and vanishing at zero. Moreover, he studied the converse inequality for
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increasing functions with decreasing increments. He considered inequalities (2) and (3)
below with three independent variables, which are analogous to (∗) above, and then he
proved the general case inductively.

The notion of lattice-ordered groups (� -groups for short) goes back to Garrett
Birkhoff [2]. An � -group is a group which is ordered by a lattice order which is com-
patible with the group operation. In particular, the notion of absolute value | · | is well
defined for elements of an � -group by |a| = a∨−a .

If G is an � -group, then G+ denotes the set of all elements of G which are greater
or equal to 0 (we will use the additive notation in groups, even if no commutativity is
assumed). A group G is termed uniquely divisible by 2 if the function G � a �→ 2a =
a+ a ∈ G is bijective. Then, the value a

2 is well-defined for every a ∈ G . A partially
ordered group is called Archimedean, if condition na � b satisfied for all n∈N implies
a � 0 for every a,b ∈ G .

If G and H are partially ordered groups, then a map f : G → H is called increas-
ing, if f (a) � f (b) in H whenever a � b in G . A map f : G→H is decreasing if − f
is increasing. If f : G → H , then the difference operator Δh is defined by

Δh f (x) = f (x+h)− f (x), x,h ∈ G.

Next, f : G → H is said to have increasing increments [decreasing increments, re-
spectively] if for every h ∈ G+ the map G � x �→ Δh f (x) is increasing [decreasing,
respectively]. Function f : G → H is subadditive, if

f (x+ y) � f (x)+ f (y), x,y ∈ G.

If G and H are uniquely divisible by 2 and D ⊂ G is a midpoint-convex set (i.e.
1
2(x+ y) ∈ D whenever x,y ∈ D), then f : G → H is called midpoint-convex, if

f

(
x+ y

2

)
� f (x)+ f (y)

2
, x,y ∈ D.

A function f : G → H is called midpoint-concave, if − f is midpoint-convex.
Every function with increasing increments is midpoint-convex and every function

with decreasing increments is midpoint-concave (see Marek Kuczma [4, page 430]).
However, the converse is not true. If a : R → R is a discontinuous additive mapping,
then its absolute value |a| is a midpoint convex map, but does not have all increments
increasing. Moreover, a itself provides an example which shows that a function with
increasing increments does not need to be continuous. The Bernstein-Doetsch theorem
says that a real midpoint-convex function defined on an open and convex subset of a
linear-topological space which is bounded from above on some set with non-empty
interior is continuous and convex, see [4, Chapter 6.4].

Throughout the paper we will keep assuming that G and H are � -groups. We are
interested in the following two functional inequalities:

f (a)+ | f (b)− f (c)| � f (a+ |b− c|), (2)

f (a)+ | f (b)− f (c)| � f (a+ |b− c|), (3)
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which have been previously studied by Gusić in [3]. In our first result we show the
necessity of assumptions of [3, Lemma 1].

PROPOSITION 1. Assume that f : G+ → H is an arbitrary function. Then f sat-
isfies inequality (2) for all a,b,c ∈ G+ such that a � c if and only if the following
conditions are satisfied:

(a1) f (a)− f (0) � 0 for all a ∈ G+ ,

(b1) f has increasing increments.

Proof. The “if” part has been proved by Gusić in [3, Lemma 1] under an additional
assumption that f (0) = 0. Note that f satisfies (2) if and only if f − f (0) satisfies (2),
and also the condition (b1) remains untouched, therefore this assumption can be omitted
in Gusić’s result.

We will prove the “only if” part. Apply (2) for a = c = 0. We get

f (0)+ | f (b)− f (0)|� f (b),

which means that f (b)− f (0) � 0 for all b ∈ G+ .
Next, we will show that f is increasing. Fix some a1,a2 ∈ G+ such that a1 � a2 .

Put a = a1 , b = a2−a1 and let c = 0. Note that a,b,c ∈ G+ and a � c . From (2) we
derive that

f (a1) � f (a1)+ | f (a2−a1)− f (0)| � f (a1 +a2−a1) = f (a2),

as desired.
To prove (b1) fix arbitrary a1,a2 ∈ G+ such that a1 � a2 and some h ∈ G+ . Put

a = a2 , b = a1 + h and c = a1 . Note that a,b,c ∈ G+ and a � c . Therefore, one
can apply inequality (2) for these points. Using the facts that b− c = h � 0 and f is
increasing we obtain

Δh f (a1) = f (a1 +h)− f (a1) = f (b)− f (c) = | f (b)− f (c)|
� f (a+ |b− c|)− f (a) = f (a2 +h)− f (a2) = Δh f (a2).

Therefore, f has increasing increments, which completes the proof. �
Concerning functional inequality (3), the situation is much less comfortable. Gusić

proved in [3, Lemma 2] that if G is linearly ordered, then inequality (3) is satisfied for
all a,b,c ∈ G+ such that a � c by every function f : G+ → H+ which fulfils the
following assumptions:

(a2) f (a) ∈ H+ for all a ∈ G ,

(b2) f (0) = 0,

(c2) f is increasing,

(d2) f has decreasing increments.
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One can easily observe that f satisfies (3) if and only if f − f (0) does so. Therefore,
the condition (b2) can be weakened to:

(b2’) f (a) � f (0) .

In the next examples we show that there exist solutions of inequality (3) which fail to
satisfy one or more of the remaining conditions.

EXAMPLE 1. Every decreasing function f , defined on the whole group G or on
its arbitrary subset, satisfies (3). Indeed, for arbitrary a,b,c,∈ G+ one has

f (a+ |b− c|) � f (a) � f (a)+ | f (b)− f (c)|.

Therefore, (c2) does not follow from inequality (3), even if the remaining conditions
are fulfilled.

EXAMPLE 2. Assume that G is an arbitrary � -group and H = R with the standard
order and addition. Then every function f : G+ → [1,2] is a solution of inequality (3).
Indeed, it is easy to see that for arbitrary a,b,c,∈ G+ we have f (b)− f (a) ∈ [−1,1]
and therefore

f (a+ |b− c|) � 2 = 1+1 � f (a)+ | f (b)− f (c)|.

This example shows that there exist solutions of (3) which satisfy (a2), do not satisfy
neither (b2) nor (b2’) and may but do not need to satisfy (c2) and (d2).

PROPOSITION 2. Assume that f : G+ →H+ satisfies condition (c2) and inequal-
ity (3) for all a,b,c ∈ G+ such that a � c. Then f is subadditive.

Proof. Put c = 0 in (3) and use the fact that f � 0 to get

f (a)+ f (b) = f (a)+ | f (b)| � f (a+ |b|) = f (a+b)

for all a,b ∈ G+ . �
EXAMPLE 3. The converse of Proposition 2 is not true in general. There exist

subadditive functions f : G+ → H+ which does not satisfy inequality (3), even if con-
ditions (b2) and (b2’) are fulfilled. To see this one can take G = H = R with standard
order and addition and f : G+ → H+ given by

f (x) = 	x
 = min{k ∈ Z : x � k}.

Clearly, f is subadditive and f (0) = 0, whereas (3) is not satisfied (to visualize this
one can for example take points a = 2, b = 1 and c = 1

2 ).

In the next result we will show that (c2) implies (d2).

PROPOSITION 3. Assume that f : G+ →H+ satisfies condition (c2) and inequal-
ity (3) for all a,b,c ∈ G+ such that a � c. Then f satisfies condition (d2) .



INEQUALITY IN LATTICE-ORDERED GROUPS 891

Proof. Fix some x,y,h ∈ G+ and assume that x � y . We will apply (3) with the
substitutions a = x+h , b = y and c = x . We get

Δh f (x) = f (x+h)− f (x) = f (a)− f (c)
� f (a+ |b− c|)−| f (b)− f (c)|− f (c)
= f (y+h)− f (y)+ f (x)− f (x) = Δh f (y).

Above we applied the monotonicity of f . Observe also that condition a � c was satis-
fied, since x � y . �

On the half-line of nonnegative reals we can apply the Bernstein-Doetsch theorem
to get that f is continuous on (0,+∞) and concave on [0,+∞) .

COROLLARY 1. If f : [0,+∞) → [0,+∞) satisfies condition (c2) and inequality
(3) for all a,b,c ∈ [0,+∞) such that a � c, then f is concave.

Proof. From Proposition 3 we get that f is midpoint-concave on [0,+∞) . Clearly,
f is bounded from below by assumption. The Bernstein-Doetsch theorem guarantees
that f is concave and continuous on the open half-line (0,+∞) . Note that f needs
not to be continuous at 0 , but clearly, by (c2) f is concave on the closed half-line
[0,+∞) . �

Next, we will prove that solutions of (3) defined on a linearly ordered Archimedean
group are either strictly increasing or are constant on elements large enough.

PROPOSITION 4. Assume that G+ is linearly ordered and Archimedean and
f : G+ → H+ satisfies inequality (3) for all a,b,c ∈ G+ such that a � c jointly with
condition (c2) . Then, either f is strictly increasing, or there exists some x ∈ G+ such
that f is constant on the set {y ∈ G : y � x} .

Proof. Assume that f (b) = f (c) for some b,c ∈ G+ . Then, from (3) we obtain

f (a) = f (a)+ | f (b)− f (c)| � f (a+ |b− c|)
for all a � c . On the other hand, since f is increasing, then f (a) = f (a + |b− c|) .
By induction we obtain f (a) = f (a+ n|b− c|) for all a � c and all n ∈ N . Now, fix
arbitrary element u � a . Since G is Archimedean and linearly ordered, then we can
find some n ∈ N such that u � n|b− c| . Now, from the fact that f is increasing we get
f (a) � f (u) � f (a+n|b−c|) . Therefore, f is constant on the set {y∈G+ : y � x} for
some x ∈ G+ . �

The following example was suggested by the Referee, and shows that in the pre-
ceding statement one cannot take x = 0.

EXAMPLE 4. Function f : [0,+∞) → [0,+∞) given by

f (x) =
{

x, 0 � x � 1,
1, 1 < x,

satisfies all assumptions of Proposition 4, but is neither constant nor strictly increasing.
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We will terminate the paper by a result on a functional equation corresponding to
inequalities (2) and (3) for mappings acting between positive cones of vector lattices.
For the definition of a vector lattice and related notions the reader is referred to the
monograph of Abramovich and Aliprantis [1].

PROPOSITION 5. Assume that G and H are vector lattices, the cone G+ is gen-
erating in G and H is Archimedean. If f : G+ → H satisfies functional equation

f (a)+ | f (b)− f (c)| = f (a+ |b− c|) (4)

for all a,b,c ∈ G+ such that a � c, then there exists a unique positive linear operator
T : G → H such that

T (a) = f (a)− f (0), a ∈ G+.

Proof. Define g = f − f (0) and observe that g satisfies equation (4). We will
show that g is additive. To do this put a = 0 and c = 0 in (4). We obtain |g(b)|= g(b)
for all b ∈ G+ . Next, apply (4) for c = 0 to derive

f (a)+g(b) = f (a+b)

for a,b ∈ G+ . This easily implies that g : G+ → H+ is an additive mapping.
The assertion follows from the Kantorovich theorem (see [1, Theorem 1.15]),

which says that every additive mapping g : G+ → H+ extends uniquely to a positive
operator. �
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