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A GENERALIZED CAUCHY–SCHWARZ INEQUALITY

MOWAFFAQ HAJJA

(Communicated by H. Martini)

Abstract. In the course of realizing certain triangle centers as points that minimize certain quan-
tities, C. Kimberling and P. Moses, in Math. Mag. 85 (2012) 221–227, discovered an inequality
in three variables that generalizes the Cauchy-Schwarz inequality, and made a conjecture regard-
ing a generalization of that inequality to an arbitrary number of variables. In this paper, we give
a proof of a stronger form of that conjecture.

1. Introduction

Given a triangle ABC and a point P in its plane, the trilinear coordinates (or
simply, the trilinears) of P with respect to ABC are the signed distances x,y, and
z from P to the sidelines BC , CA , and AB , respectively. Here, the signed distance
between P and a sideline, say BC , is taken to be positive if A and P lie on the same
side of line BC , i.e, if they lie in one of the two half-planes into which the line BC
divides the plane; it is taken to be negative otherwise. For example, the trilinears of
P are equal if and only if P is the incenter of ABC , i.e., the point where the internal
angle bisectors of ABC meet. We notice that this is the point at which the quantity
f = x2 + y2 + z2 − (xy+ yz+ zx) attains its minimum. This follows immediately from
the representation

2 f = (x− y)2 +(y− z)2 +(z− x)2.

One can also prove that the point at which the quantity g = x2 + y2 + z2 attains its min-
imum is the point known as the Lemoine or symmedian point of ABC . This is defined
to be the point of concurrence of the symmedians of ABC , where the symmedians are
the reflections of the medians about the respective internal angle bisectors, and where
the medians are the cevians joining the vertices of ABC to midpoints of the opposite
sides. Motivated by these observations, C. Kimberling and P. Moses considered the
points that minimize the quantity (x2 + y2 + z2)− t(xy+ yz+ zx) for arbitrary values of
t ∈ R , and found out that several of the points catalogued in [7] and [9] are realized in
this manner.
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Along the way, they discovered an inequality that involves the side lengths a,b,c
of a triangle, and then realized that the inequality actually holds for arbitrary numbers
a,b,c . The inequality states that if k,t ∈ [−1,2] are such that (k+2)(t +2) = 4, then

[a2 +b2 + c2 + k(bc+ ca+ab)][x2+ y2 + z2 + t(yz+ zx+ xy)]

�(ax+by+ cz)2(1+ k)(1+ t)
(1)

for all x,y,z,a,b,c ∈R , thus generalizing the Cauchy-Schwarz inequality – being noth-
ing but the special case k = t = 0. They then made a conjecture regarding a generaliza-
tion of (1) to an arbitrary number of variables. We state and strengthen this conjecture
in the next section, and we give a proof.

We digress here to say that it is fairly natural to feel that a triangle center ought to
be the point that minimizes (or maximizes) a certain quantity of some geometric or/and
algebraic significance. For an elaboration on this and other similar feelings, see [2].

2. The conjecture and its proof

We now turn to our main goal. We state, as Conjecture 1, the conjecture posed in
[8], and we prove a stronger form in Theorem 1. Lemma 1, which is taken from [1], is
used in the proof of Theorem 1. The first equivalence in Lemma 1 is included because
it is easier to remember.

CONJECTURE 1. ([8]) Suppose that n � 3 and that the following conditions hold:

k and t both lie in the interval

[ −2
n−1

,2

]
; (2)(

k+
n+1
n−1

)(
t +

n+1
n−1

)
=

3n−1
n−1

; (3)

a1,a2, · · · ,an,x1,x2, · · · ,xn are real numbers; (4)

B =
3n−1

4(n−1)3 [2+ k(n−1)][2+ t(n−1)]. (5)

Then(
∑

1�i�n

a2
i + k ∑

1�i< j�n

aia j

)(
∑

1�i�n

x2
i + t ∑

1�i< j�n

xix j

)
� B

(
∑

1�i�n

aixi

)2

. (6)

LEMMA 1. (Theorem 1 (ii) of [1].) Let n � 2 , and let α,β ∈ R . Let F : R
n → R

be given by the quadratic form

F(x1, · · · ,xn) = α

(
∑

1�i�n

x2
i

)
+ β

(
∑

1�i< j�n

xix j

)
.
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Then

F(x1, · · · ,xn) � 0 ∀ xi ∈ R ⇐⇒F(x1, · · · ,xn) � 0 for the 3 n-tuples

(1,0, · · · ,0),(1,1, · · · ,1),(1,−1,0, · · · ,0)
⇐⇒α � 0, 2α + β (n−1) � 0, 2α −β � 0.

THEOREM 1. (A stronger form of Conjecture 1.) Suppose that n � 3 and that the
following conditions hold:

h and t are real numbers that lie in the interval

[ −2
n−1

,2

]
; (7)

(
h+

2
n−2

)(
t +

2
n−2

)
=
(

2
n−2

)2

; (8)

a1,a2, · · · ,an,x1,x2, · · · ,xn are real numbers; (9)

A =
(2−h)(2− t)

4
. (10)

Then(
∑

1�i�n

a2
i +h ∑

1�i< j�n

aia j

)(
∑

1�i�n

x2
i + t ∑

1�i< j�n

xix j

)
� A

(
∑

1�i�n

aixi

)2

. (11)

Moreover, (11) is stronger than (6).

Proof. Let n , h , t , a1, · · · ,an , and A be as given in the theorem. Let F : R
n → R

be defined by

F(x1, · · · ,xn) =

(
∑

1�i�n

x2
j

)
+ t

(
∑

1�i< j�n

xix j

)
. (12)

It follows from Lemma 1 that F(x1, · · · ,xn) � 0 for all xi ∈ R.
To prove (11), it is clearly enough to prove (11) for all (x1, · · · ,xn) ∈ R

n that lie in
the hyperplane defined by

H(x1, · · · ,xn) =

(
∑

1�i�n

aixi

)
− c = 0, (13)

where c is an arbitrary real number.
Note that if t = 2, then A = 0, and (11) is vacuous. If t = −2/(n−1) , then h = 2

and A = 0, and (11) is again vacuous. If c = 0, then ∑1�i�n aixi = 0 on H , and (11) is
again vacuous. So we assume that

−2
n−1

< t < 2, c �= 0. (14)

It follows that

(a1, · · · ,an) �= (0, · · · ,0),
−2

n−1
< h < 2. (15)
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It also follows from (8) that

h =
−2t

(n−2)t +2
, 2−h = 2

(
(n−1)t +2
(n−2)t +2

)
. (16)

Under the assumptions in (14) and (15), we would like to minimize the function F
given in (12) under the constraint given by (13). It suffices to prove that the minimum
μ satisfies the inequality(

∑
1�i�n

a2
i +h ∑

1�i< j�n

aia j

)
μ � Ac2. (17)

Actually we shall show that equality holds in (17).
To achieve our goal, we use the method of Lagrange to obtain the system of equa-

tions

M

⎡
⎢⎢⎢⎢⎣

x1

x2

· · ·
· · ·
xn

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

λa1

λa2

· · ·
· · ·

λan

⎤
⎥⎥⎥⎥⎦ , where M =

⎡
⎢⎢⎢⎢⎣

2 t · · · · · · t
t 2 · · · · · · t
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
t t · · · · · · 2

⎤
⎥⎥⎥⎥⎦ . (18)

By Lemma 3.1 of [3], the determinant Δ = det(M) of M and the minors Δi, j = det(Mi, j)
are given by

Δ = det(M) = ((n−1)t +2)(2− t)n−1 ,

Δi, j = det(Mi, j) =

⎧⎨
⎩

((n−2)t +2)(2− t)n−2 if i = j,

(−1) j−1−i(2− t)n−2t if i �= j.

Since Δ �= 0, we may use Cramer’s rule for solving the system (18). We have

Δi,1 =

⎧⎨
⎩

((n−2)t +2)(2− t)n−2 if i = 1,

(−1)i(2− t)n−2t if i �= 1.

Δ1 := det

⎡
⎢⎢⎢⎢⎣

λa1 t · · · · · · t
λa2 2 · · · · · · t
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·

λan t · · · · · · 2

⎤
⎥⎥⎥⎥⎦

= λ
(
a1Δ1,1−a2Δ2,1 + · · ·+(−1)n−1Δn−1,1

)
= λ (2− t)n−2 [((n−2)t +2)a1− (a2 +a3 + · · ·+an)t]

Δ1

Δ
=

λ ((n−2)t +2)a1− (a2 +a3 + · · ·+an)t)
(2− t)((n−1)t +2)

=
λ (a1u−St)

(2− t)u
,
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where

u = (n−1)t +2, S = a1 + · · ·+an. (19)

Thus the solution (ρ1, · · · ,ρn) of the system (18) is given by

ρi =
λ (aiu−St)

(2− t)u
, 1 � i � n. (20)

Note also that the leading i-th minor Δi of M is given by

Δi = det(Mi) = ((i−1)t +2)(2− t)i−1 .

Therefore the leading minors of M are positive for all t in the given interval. By
Theorem 7.2.5 of [6], we conclude that M is a positive definite matrix. But M is also
the unconstrainedHessian of F (i.e., the Hessian of F on R

n without being restricted to
the constraint H ). Therefore F attains a strict local (and actually its absolute) minimum
at the critical point (ρ1, · · · ,ρn) found earlier in (20). A comprehensive reference for
constrained critical points is Hancock’s classic [4]. More accessible accounts can be
found in [10], [5], and [11].

Let μ be the value of F at its minimum point (ρ1, · · · ,ρn) . Then we can compute
μ in two ways. First, we put xi = ρi in our system (18), multiply the resulting equations
by ρ1 , · · · , ρn , and add. We obtain

2μ = ∑
1�i�n

ρ2
i + t ∑

1�i< j�n

ρiρ j = λ (a1ρ1 + · · ·+anρn) = λc. (21)

We can also use (20) to obtain

μ = ∑
1�i�n

ρ2
i + t ∑

1�i< j�n

ρiρ j. (22)

Note that μ = 0 ⇐⇒ λ = 0, by (21). Also, if λ = 0, then ρ1 = ρ2 = · · · = ρn = 0, by
(20), and hence c = a1ρ1 + · · ·+anρn = 0, a contradiction. Therefore, neither μ nor λ
is 0, and we shall divide by them freely.

Using (22) and (20), we obtain

(2− t)2u2μ
λ 2 = ∑

1�i�n

(aiu−St)2 + t ∑
1�i< j�n

(aiu−St)2(a ju−St)2

= u2P−2S2tu+nS2t2 + t

[
n(n−1)

2
S2t2−S2tu(n−1)+u2R

]
,

where

P = ∑
1�i�n

a2
i , R = ∑

1�i< j�n

aia j. (23)
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Therefore

(2− t)2u2μ
λ 2 = u2P+S2

[
nt2−2ut +

n(n−1)t3

2
− t2u(n−1)

]
+ tu2R

= u2P+S2
[(

nt2 +
n(n−1)t3

2

)
− tu(2+ t(n−1))

]
+ tu2R

= u2P+S2
[
u
nt2

2
−u2t

]
+ tu2R,

2(2− t)2uμ
λ 2 = 2uP+(P+2R)

[
nt2−2ut

]
+2tuR (because S2 = P+2R)

= (2u+nt2−2ut)P+2(nt2−ut)R
= ((2− t)u+ t(nt−u))P+2t(nt−u)
= ((2− t)u− t(2− t))P−2t(2− t)R (by (19))

= (2− t)(((n−2)t +2)P−2tR)
= (2− t)((n−2)t+2)(P+hR) (by (16)),

c2(2− t)u
2((n−2)t +2)μ

= (P+hR) (by (21)),

(P+hR)μ =
c2(2− t)u

2((n−2)t +2)
=

k2(2− t)((n−1)t+2)
2((n−2)t +2)

by (19)

=
c2(2− t)(2−h)

4
(by (16)),

= c2A.

This is nothing but the equality version of (17), and the proof of (11) is complete.
It remains to prove the last statement. Letting P , R , and F be defined as in (23)

and (12), and letting L = ∑n
i=1 aixi , we see that (6) states that

(P+ kR)F � BL2, (24)

while (11) states that
(P+hR)F � AL2. (25)

Thus, to show that (25) implies (24), one needs to show that

(P+ kR)A− (P+hR)B, i.e., (A−B)P+(kA−hB)R

is non-negative. In view of Lemma 1, this is equivalent to showing that the three quan-
tities

A−B, 2(A−B)+ (n−1)(kA−hB), 2(A−B)− (kA−hB) (26)

are non-negative. Using (3) and (8), we obtain

k =
3n−1

(n−1)t +n+1
− n+1

n−1
, h =

4
(n−2)((n−2)t+2)

− 2
n−2

. (27)
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Substituting in the quantities in (26) the values of k and h obtained in (27) and the
values of A and B given in (10) and (5), and using Maple to simplify the calculations,
we obtain

kA−hB = 2(A−B) =
(−2+ t)2(n−3)n((n−1)t+2)

2(n−1)((n−1)t+n+1)((n−2)t+2)
.

If t � 0, then the right hand side is trivially non-negative. If t < 0, then the right hand
side is again non-negative because

(n−2)t +2 > (n−1)t +2, (n−1)t +n+1 > (n−1)t +2,

and because of the assumption (n−1)t +2 � 0.
This proves that (11) implies (6). �
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