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TWO TRIGONOMETRIC INTEGRAL INEQUALITIES
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(Communicated by L. Leindler)

Abstract. The present paper establishes some important trigonometric integral inequalities re-
lated to functions of mean value bounded variation in real sense.

1. Introduction

One important tool in Fourier analysis is the following well-known trigonometric
inequality (see, e.g., [8]) ∣∣∣∣∣

n

∑
k=1

sinkx
k

∣∣∣∣∣ = O(1), (1)

where and in the sequel, O(1) always indicates a bound independent of n .
To generalize this inequality, a number of authors (see, for example, the references

in [2], [3], [5] and [4]) discussed various conditions to relax the monotonicity. The
following class of sequences of real numbers was defined in [1].

DEFINITION 1. A real sequence A = {an} is said to satisfy the mean value bounded
variation condition (in real sense) if there is a λ � 2 and a positive constant M depend-
ing upon the sequence A and λ only such for all n = 1,2, · · · that

2n

∑
k=n

|Δak| :=
2n

∑
k=n

|ak −ak+1| � M
n

λn

∑
k=n/λ

|ak|, (2)

where
λn
∑

k=n/λ
means ∑

n/λ�k�λn
. We denote the set of real sequences satisfying (2) as

MVBVS (Mean Value Bounded Variation Sequences).

Recently, Feng and Zhou proved the following Theorem in [2].
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THEOREM 1. Let a real sequence {an}∈MVBVS . Then, for all n and x∈ [0,π ] ,

n

∑
k=1

ak sinkx = O(1)

holds if and only if
nan = O(1).

In Fourier analysis, positivity and monotonicity are two most important prior fac-
tors setting on coefficients of a trigonometric (Fourier) series to guarantee various prop-
erties. Theorem 1 is a very general extension of the precedent results, especially of (1).
Indeed, the mean value bounded variation concept in real sense is not only a successful
ultimate generalization in monotonicity (it was shown in [9] that the MVBV condi-
tion generalizes decreasing monotonicity, and cannot be further weakened), but also an
efficient replacement of positivity.

Also in [2], Feng and Zhou established the following weighted trigonometric in-
equality.

THEOREM 2. Let a real sequence {an} ∈ MVBVS , 0 < γ < 1 , then for any nat-
ural number n and x ∈ [0,π ] ,

∣∣∣∣∣
n

∑
k=1

ak sinkx

∣∣∣∣∣ = O(x−γ)

holds if and only if
n1−γan = O(1).

Motivated by the definition of MVBVS, Zhao, Feng and Zhou [6] recently defined
the mean value bounded variation (in real sense) for functions:

DEFINITION 2. A Lebesgue measurable function f : R+ → R is said to be of
mean value bounded variation in real sense, in symbols f ∈ MVBVF, if it is of locally
bounded variation and if there exist λ � 2, A > 1 and a constant M0 > 0 depending
only upon f such for all a > A that

∫ 2a

a
|d f | � M0

a

∫ λa

a/λ
| f (x)|dx (3)

holds, where R+ := (0,∞),R := (−∞,∞) .

Without loss of generality we may assume M0 > 1 in (3).
This paper shall establish trigonometric integral inequalities corresponding to The-

orem 1 and Theorem 2. Exactly, we prove that
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THEOREM 3. Assume a real function f (x) ∈ MVBVF , if
∫ a+1

a
| f (x)|dx is uni-

formly bounded for arbitrary a > A, then for any a > A, t ∈ [0,∞) ,∣∣∣∣
∫ ∞

a
f (x)sin txdx

∣∣∣∣ = O(1)

holds if and only if
x| f (x)| = O(1),

where A > 1 is the constant appearing in Definition 2.

THEOREM 4. Let 0 < γ < 1 . Assume a real function f (x) ∈ MVBVF . If∫ a+1

a
xγ | f (x)|dx is uniformly bounded for arbitrary a > A, then for any t ∈ (0,∞) ,

∣∣∣∣
∫ ∞

a
f (x)sin txdx

∣∣∣∣ = O(t−γ)

holds if and only if
x1−γ | f (x)| = O(1).

This inequality also holds for cosine integrals.

THEOREM 5. Let 0 < γ < 1 . Assume a real function f (x) ∈ MVBVF . If∫ a+1

a
xγ | f (x)|dx is uniformly bounded for arbitrary a > A, then for any t ∈ (0,∞) ,

∣∣∣∣
∫ ∞

a
f (x)cos txdx

∣∣∣∣ = O(t−γ)

holds if and only if
x1−γ | f (x)| = O(1).

Throughout the paper, we always use M0 to stand for the positive constant appear-
ing in (3), and M denotes a positive constant that may not be necessarily the same at
each occurrence.

2. Preliminaries

We need several lemmas.

LEMMA 1. Assume a real function f (x) ∈ MVBVF . If

x1−γ f (x) = O(1), x ∈ (0,∞), 0 < γ < 1,

then for any real number t satisfying 1/t > A, we have

1
t

∫ ∞

1/t
|d f | = O(t−γ).
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Proof. By condition (3), we have

1
t

∫ ∞

1/t
|d f | � 1

t

∞

∑
j=0

∫ 2 j+1/t

2 j/t
|d f | �

∞

∑
j=0

M0

2 j

∫ 2 jλ/t

2 j/(tλ )
| f (x)|dx

�
∞

∑
j=0

M
2 j

∫ 2 jλ/t

2 j/(tλ )
xγ−1dx

� M
tγ

∞

∑
j=0

1

2(1−γ) j
� Mt−γ . �

LEMMA 2. Assume a real function f (x) ∈ MVBVF . If

x1−γ f (x) = O(1), x ∈ (0,∞), 0 < γ < 1, (4)

then, for any a > A and t ∈ [0,∞) , we have

∣∣∣∣
∫ ∞

a
f (x)sin txdx

∣∣∣∣ = O(t−γ).

Proof. The case t = 0 is trivial. Let t ∈ (0,∞) ,
Case 1. 1/t > a .

∫ ∞

a
f (x)sin txdx =

∫ 1/t

a
f (x)sin txdx+

∫ ∞

1/t
f (x)sin txdx =: I1 + I2.

By (4), we have

|I1| � t
∫ 1/t

a
| f (x)|x1−γxγdx = O(t−γ).

Integration by parts with (4) gives

|I2| � O(t−γ)+
1
t

∫ ∞

1/t
|d f |,

by Lemma 1, we have
|I2| � Mt−γ .

Case 2. 1/t � a .
In this case, integration by parts gives

∣∣∣∣
∫ ∞

a
f (x)sin txdx

∣∣∣∣ = lim
b→∞

∣∣∣∣
∫ b

a
f (x)sin txdx

∣∣∣∣ � lim
b→∞

1
t

(
| f (a)|+ | f (b)|+

∫ b

a
|d f |

)
.

It is easy to check that

lim
b→∞

1
t

(| f (a)|+ | f (b)|) = O(t−γ )
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by utilizing condition (4). Now since f (x) ∈ MVBVF, by (3) and (4), we deduce that

1
t

∫ ∞

a
|d f | � 1

t

∞

∑
j=0

∫ 2 j+1a

2 ja
|d f | � 1

t

∞

∑
j=0

M0

2 ja

∫ 2 jaλ

2 ja/λ
| f (x)|dx

� 1
t

∞

∑
j=0

M
2 ja

∫ 2 jaλ

2 ja/λ
xγ−1dx � M

t
1

a1−γ

∞

∑
j=0

1

2(1−γ) j

� M
tγ

∞

∑
j=0

1

2(1−γ) j
� Mt−γ .

Lemma 2 is proved. �

LEMMA 3. Assume a real function f (x) ∈ MVBVF , then for any a > A,

| f (a)| � 2M0

a

∫ λa

a/λ
| f (x)|dx.

Proof. Suppose to the contrary that for some a > A we have

| f (a)| > 2M0

a

∫ λa

a/λ
| f (x)|dx =:

2M0

a
Ia,

then for all y ∈ [a,2a] ,

| f (a)|− | f (y)| �
∫ y

a
|d f | �

∫ 2a

a
|d f | � M0

a
Ia.

Therefore

| f (y)| � | f (a)|− M0

a
Ia � M0

a
Ia. (5)

Integrating both sides of (5) on [a,2a] gives
∫ 2a

a
| f (y)|dy � M0Ia � M0

∫ 2a

a
| f (y)|dy,

which is impossible since M0 > 1. �

LEMMA 4. Assume f (x) satisfies (3) , then for any a > A and x ∈ [a/λ ,λa] we
have

| f (x)| � M
a

∫ λ 2a

a/λ 2
| f (t)|dt.

Proof. According to Lemma 3, for x ∈ [a/λ ,λa] ,

| f (x)| � 2M0

x

∫ λ x

x/λ
| f (t)|dt � M

a

∫ λ 2a

a/λ 2
| f (t)|dt,

thus the conclusion follows. �
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3. Trigonometric integral inequality

Proof of Theorem 3.
Sufficiency. Similar to the proof of Lemma 2, we first assume 1/t > a , then∣∣∣∣

∫ ∞

a
f (x)sin txdx

∣∣∣∣ � t
∫ 1/t

a
|x f (x)|dx+

1
t

∫ ∞

1/t
|d f |

� M +
1
t

∞

∑
j=0

∫ 2 j+1/t

2 j/t
|d f |

� M +
∞

∑
j=0

M0λ
2 j

∫ 2 jλ/t

2 j/(tλ )
| f (x)|dx

� M +
∞

∑
j=0

Mλ
2 j

∫ 2 jλ/t

2 j/(tλ )

1
x
dx

� M.

In case 1/t � a , integration by parts gives∣∣∣∣
∫ ∞

a
f (x)sin txdx

∣∣∣∣ = lim
b→∞

∣∣∣∣
∫ b

a
f (x)sin txdx

∣∣∣∣ � lim
b→∞

1
t

(
| f (a)|+ | f (b)|+

∫ b

a
|d f |

)
.

Now we have

lim
b→∞

1
t

(| f (a)|+ | f (b)|) = O(1)

by the condition x| f (x)| = O(1) . Since f (x) ∈ MVBVF, by (3) and x| f (x)| = O(1) ,
we deduce that

1
t

∫ ∞

a
|d f | � 1

t

∞

∑
j=0

∫ 2 j+1a

2 ja
|d f | � 1

t

∞

∑
j=0

M0

2 ja

∫ 2 jaλ

2 ja/λ
| f (x)|dx

� 1
t

∞

∑
j=0

M
2 ja

∫ 2 jaλ

2 ja/λ
x−1dx � M

t
1
a

∞

∑
j=0

1
2 j � M.

Necessity. With the condition
∫ a+1

a
| f (x)|dx = O(1) for arbitrary a > A , suppose

that ∫ a+1

a
| f (x)|dx � M

and therefore

Ia =
∫ λa

a/λ
| f (x)|dx � Ma. (6)

Moreover, since

∣∣∣∣
∫ ∞

a
f (x)sin txdx

∣∣∣∣ = O(1) , for any b > a and all t ∈ [0,∞) , we have

∣∣∣∣
∫ b

a
f (x)sin txdx

∣∣∣∣ < M. (7)
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Now define a set Ea for any a/λ > A as follows:

Ea =
{

x ∈
[ a

λ
,λa

]
: | f (x)| � 1

2λa
Ia

}
.

First we need to estimate the measure of Ea , denoted by m(Ea) . Applying Lemma 4,
we see that

Ia �
∫

Ea

| f (x)|dx+
∫

[a/λ ,λa]\Ea

| f (x)|dx

� m(Ea)
M
a

∫ λ 2a

a/λ 2
| f (x)|dx+

(
a

(
λ − 1

λ

)
−m(Ea)

)
1

2λa
Ia

� m(Ea)
a

M
∫ λ 2a

a/λ 2
| f (x)|dx+

1
2
Ia.

Write I∗a :=
∫ λ 2a

a/λ 2
| f (t)|dt, we have

m(Ea) � 1
2

a
M

Ia
I∗a

. (8)

Also it is easy to see that the set Ea is not empty since m(Ea) > 0.
We select disjoint subintervals (except for endpoints) S1, . . . ,Sκa of [a/λ ,λa] as

follows. Set m1 = infEa , and select ν1 according to the following procedure:
(i) Select

ν1 = inf{x > m1 : f (m1 +0) f (x) � 0, | f (x)| < Ia/(4λa), x ∈ [a/λ ,λa]},
where f (x+0) = lim

t→x+0
f (t) .

(ii) If case (i) is not satisfied, then let

ν1 = inf{x > m1 : f (m1 +0) f (x) < 0, x ∈ [a/λ ,λa]}.
(iii) If neither (i) nor (ii) happens, then simply let ν1 = λa . Define

S1 = [m1,v1].

Next, set m2 = inf(Ea \S1) if this latter set is not empty, and using the same procedure
we select ν2 and define

S2 = [m2,v2].

We continue this procedure until we reach an Sκa for which Ea \ (S1∪·· ·∪Sκa) = /0 .
First we give an estimate for κa , i.e. for the number of these S j ’s. Note first of all

that for all 1 � j < κa we have

∫ v j

mj

|d f | =
ν j∨
mj

( f ) � Ia
4λa
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by the choice of the ν j ’s (but for j = κa this property may not be true). We check that
(3) implies ∫ λa

a/λ
|d f | � Mλ 3

a

∫ λ 2a

a/λ 2
| f (x)|dx =

Mλ 3

a
I∗a ,

from which

Mλ 3

a
I∗a �

∫ λa

a/λ
|d f | �

κa−1

∑
j=1

∫ ν j

m j

|d f | �
κa−1

∑
j=1

Ia
4λa

= (κa−1)
Ia

4λa
,

i.e.,

κa � 4Mλ 4 I∗a
Ia

+1 � 5Mλ 4 I∗a
Ia

, (9)

this also implies that κa is finite.
Note now that all x ∈ (mj,ν j) (S j excluding mj and ν j ) are of the same sign,

hence upon substituting t = π/(2aλ ) and for a/λ � x � λa we have

sin
xπ
2aλ

� 2
π

xπ
2aλ

� 1
λ 2 ,

thus by (7),
1

λ 2

∫ ν j

m j

| f (x)|dx �
∣∣∣∣
∫ ν j

m j

f (x)sin txdx

∣∣∣∣ < M

provided a/λ > A . On summing up for all 1 � j � κa and using (9) we get

∫
Ea

| f (x)|dx �
κa

∑
j=1

∫ ν j

m j

| f (x)|dx < 5Mλ 6 I∗a
Ia

.

From here, in view of the definition of Ea and (8), we deduce that

I3
a

(I∗a )2 � M. (10)

Let Λm := Iλ m , then
Λ3

m � M(Λm−1 + Λm+1)2, (11)

by taking the limsup on both sides of (11), we have

limsup
m→∞

Λ3
m � M limsup

m→∞
Λ2

m.

Then either Λm = O(1) or limsup
m→∞

Λm = ∞ .

If limsup
m→∞

Λm = ∞ , we discuss the following two cases.

(I) {Λ j} has the only accumulation point ∞ . Then lim
j→∞

Λ j = ∞. We show that in

this case, there exists a subsequence { jk} such that

Λ jk−1 + Λ jk+1

Λ jk
� M.
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Suppose to the contrary,

lim
j→∞

Λ j−1 + Λ j+1

Λ j
= ∞.

Hence there exists a J ∈ N such for all j > J that

Λ j−1 + Λ j+1

Λ j
> 2λ 4.

Since lim
j→∞

Λ j = ∞ , we may assume that for some j0 > J , it holds that Λ j0+1 > Λ j0 .

Now denoting the two roots of the equation x2 − 2λ 4x + 1 = 0 as x1 and x2 , where
0 < x1 < 1

2 < λ 4 < x2 , by Vieta’s formulas, we have

Λ j+1− x1Λ j � x2
(
Λ j − x1Λ j−1

)
� 0, j > J,

in particular,
Λ j0+1− x1Λ j0 � x2

(
Λ j0 − x1Λ j0−1

)
� 0,

therefore,
Λ j+1− x1Λ j � x j− j0+1

2

(
Λ j0 − x1Λ j0−1

)
, j > j0 > J,

hence for j > j0 ,

Λ j+1 > Mxj− j0+1
2

(
Λ j0 − x1Λ j0−1

)
> Mλ 4 j−4 j0+4.

However, it makes a contradiction since by (6) that

Λ j+1 � Mλ j+1.

Altogether, we show that when {Λ j} has the only accumulation point ∞ , (10) yields
Λ jk � M , which makes a contradiction to the assumption

lim
j→∞

Λ j = ∞.

(II) {Λ j} has at least one finite accumulation point, then, there exists a number L

and a subsequence of natural numbers { j̃(1)
k } satisfying

lim
k→∞

Λ
j̃(1)
k

= L,

hence {Λ
j̃(1)
k
} has an upper bound S . Furthermore, select a subsequence { j̃(2)

k } such

for all k ∈ N that Λ
j̃(2)
k

> S, and

lim
k→∞

Λ
j̃
(2)
k

= ∞.

Set j(1)
1 = j̃(1)

k , take

j(2)
i = min{ j̃(2)

k > j(1)
i : k ∈ N}, i = 1,2, · · · ,
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j(1)
i+1 = min{ j̃(1)

k > j(2)
i : k ∈ N}, i = 1,2, · · · ,

and define j̃2k−1 = j(1)
k , while define j̃2k as the number satisfying

Λ j̃2k
= max

j̃2k−1< j< j̃2k+1

Λ j.

It is clear that Λ j̃2k
� Λ

j
(2)
k

. Furthermore, lim
k→∞

Λ j̃2k
= ∞ since lim

k→∞
Λ

j
(2)
k

= ∞ . Setting

jk = j̃2k −1, we obtain
lim
k→∞

Λ jk+1 = lim
k→∞

Λ j̃2k
= ∞. (12)

At the same time, by noting j̃2k−1 � jk < jk + 2 � j̃2k+1 with Λ
j̃(2)
k

> S � Λ
j̃(1)
k

, we

deduce that
∫ λ jk+3

λ jk−1
| f (x)|dx = Λ jk + Λ jk+2 � 2Λ j̃2k

= 2Λ jk+1 = 2
∫ λ jk+2

λ jk
| f (x)|dx,

in other words,
I∗λ jk+1 � 2Iλ jk+1 ,

while (10) shows that
Λ jk+1 = Iλ jk+1 � 4M,

which is contradict with (12).
Combining (I) and (II), we already show that Λ j = O(1) . Then by Lemma 4 we

derive

x| f (x)| � MI∗a � M
2

∑
k=−1

Λ[loga/ logλ ]+k � M,

and the conclusion follows. �

We note that, the sufficiency of Theorem 3 does not require the condition that∫ a+1

a
| f (x)|dx is uniformly bounded for arbitrary a > A . At the same time, if f (x)

keeps sign, and ∣∣∣∣
∫ ∞

a
f (x)sin txdx

∣∣∣∣ = O(1),

then by taking t0 = π/(2a) , we see that
∫ a+1

a
| f (x)|dx =

∫ a+1

a
f (x)dx � M

∣∣∣∣
∫ a+1

a
f (x)sin t0xdx

∣∣∣∣ = O(1).

Therefore, we have the following corollary.

COROLLARY 1. Assume a nonnegative function f (x) ∈ MVBVF , then for any
a > A, t ∈ [0,∞) , ∣∣∣∣

∫ ∞

a
f (x)sin txdx

∣∣∣∣ = O(1)

holds if and only if
x| f (x)| = O(1).
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4. Weighted trigonometric integral inequality

Proof of Theorem 4. By Lemma 2, we have already proved the sufficiency. For

necessity, with the condition
∫ a+1

a
xγ | f (x)|dx = O(1) for arbitrary a > A , we have

∫ a+1

a
xγ | f (x)|dx � M. Therefore,

∫ aλ

a/λ
| f (x)|dx � Ma1−γ .

For any b > a and all t ∈ (0,∞) , we have

tγ
∣∣∣∣
∫ b

a
f (x)sin txdx

∣∣∣∣ < M. (13)

By using the same symbols as in Theorem 3, we have the following estimates:

m(Ea) � a
M

Ia
I∗a

, (14)

κa � M
I∗a
Ia

. (15)

Hence, by (15) and (13) with t = π/(2λa) , we have

∫
Ea

| f (x)|dx �
κa

∑
j=1

∫ ν j

m j

| f (x)|dx < M
I∗a
Ia

aγ ,

from which and combining (14) we derive that

I3
a � Maγ (I∗a )2. (16)

Let Λ j = Iλ j and take the limsup on both sides of (16), we have

limsup
j→∞

Λ3
j � M lim

j→∞
λ γ j limsup

j→∞
Λ2

j ,

then either Λ j = O(1) or limsup
j→∞

Λ j = ∞ .

We proceed an analogue to Theorem 3 to achieve that Λ j = O(1) . Therefore, since
by Lemma 4,

| f (x)| � Maγ

x
I∗a � M

x1−γ I∗a , x > a > A, 0 < γ < 1,

we have

x1−γ | f (x)| � MI∗a � M
2

∑
k=−1

Λ[loga/ logλ ]+k � M,

which concludes the proof. �
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COROLLARY 2. Let 0 < γ < 1 . Assume a nonnegative function f (x) ∈ MVBVF ,
then for any t ∈ (0,∞) , ∣∣∣∣

∫ ∞

a
f (x)sin txdx

∣∣∣∣ = O(t−γ)

holds if and only if
x1−γ | f (x)| = O(1).

5. Remark

One could note in the proof of the inequalities that, if let a = 0, then the case 1/t <
a in Lemma 2 and Theorem 3 could not happen. Therefore, by revising Definition 2
and copying the other parts of the proof, we have the another version of the inequalities.

DEFINITION 3. A Lebesgue measurable function f : R+ → R is said to be of
mean value bounded variation, in symbols f ∈ MVBVF∗ , if it is of locally bounded
variation and if there exist λ � 2 and a constant M0 > 0 depending only upon f such
for all a > 0 that ∫ 2a

a
|d f | � M0

a

∫ λa

a/λ
| f (x)|dx (17)

holds.

THEOREM 6. Assume a real function f (x) ∈ MVBVF∗ , if
∫ a+1

a
| f (x)|dx is uni-

formly bounded for arbitrary a > 0 , then for t ∈ [0,∞) ,∣∣∣∣
∫ ∞

0
f (x)sin txdx

∣∣∣∣ = O(1)

holds if and only if
x| f (x)| = O(1).

This includes the typical classical result that
∫ ∞

0

sin tx
x

dx = O(1)

for t ∈ [0,∞) .

THEOREM 7. Let 0 < γ < 1 . Assume a real function f (x) ∈ MVBVF∗ . If∫ a+1

a
xγ | f (x)|dx is uniformly bounded for arbitrary a > 0 , then for any t ∈ (0,∞) ,

∣∣∣∣
∫ ∞

0
f (x)sin txdx

∣∣∣∣ = O(t−γ)

holds if and only if
x1−γ | f (x)| = O(1).

This also holds for cosine integrals.
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