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TWO TRIGONOMETRIC INTEGRAL INEQUALITIES

Y1 ZHAO

(Communicated by L. Leindler)

Abstract. The present paper establishes some important trigonometric integral inequalities re-
lated to functions of mean value bounded variation in real sense.

1. Introduction

One important tool in Fourier analysis is the following well-known trigonometric
inequality (see, e.g., [8])

3 Si’}f“x —o(1), (1)
k=1

where and in the sequel, O(1) always indicates a bound independent of 7.

To generalize this inequality, a number of authors (see, for example, the references
in [2], [3], [5] and [4]) discussed various conditions to relax the monotonicity. The
following class of sequences of real numbers was defined in [1].

DEFINITION 1. A real sequence A = {a,} is said to satisfy the mean value bounded
variation condition (in real sense) if there is a A > 2 and a positive constant M depend-
ing upon the sequence A and A only such forall n=1,2,--- that

2n 2n M An
N Aar| = |lak—apii| <= Y axl, (2)
k=n k=n n k:n/l
An o
where Y  means > . We denote the set of real sequences satisfying (2) as
k=n/A n/A<k<in

MVBVS (Mean Value Bounded Variation Sequences).

Recently, Feng and Zhou proved the following Theorem in [2].
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THEOREM 1. Let a real sequence {a,} € MVBVS. Then, forall n and x € [0, |,

Y agsinkx = 0(1)
k=1

holds if and only if
na, = O(1).

In Fourier analysis, positivity and monotonicity are two most important prior fac-
tors setting on coefficients of a trigonometric (Fourier) series to guarantee various prop-
erties. Theorem 1 is a very general extension of the precedent results, especially of (1).
Indeed, the mean value bounded variation concept in real sense is not only a successful
ultimate generalization in monotonicity (it was shown in [9] that the MVBV condi-
tion generalizes decreasing monotonicity, and cannot be further weakened), but also an
efficient replacement of positivity.

Also in [2], Feng and Zhou established the following weighted trigonometric in-
equality.

THEOREM 2. Let a real sequence {a,} € MVBVS, 0 < vy < 1, then for any nat-
ural number n and x € [0, ],

= _7)

i ag sinkx| =

holds if and only if
n'Va, = 0(1).

Motivated by the definition of MVBVS, Zhao, Feng and Zhou [6] recently defined
the mean value bounded variation (in real sense) for functions:

DEFINITION 2. A Lebesgue measurable function f : Ry — R is said to be of
mean value bounded variation in real sense, in symbols f € MVBVF, if it is of locally
bounded variation and if there exist A > 2, A > 1 and a constant My > 0 depending
only upon f such for all @ > A that

2a M Aa
[ lart< = [ ireolax ©

holds, where Ry := (0,00),R := (—o0,0).

Without loss of generality we may assume My > 1 in (3).
This paper shall establish trigonometric integral inequalities corresponding to The-
orem | and Theorem 2. Exactly, we prove that
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a+1
THEOREM 3. Assume a real function f(x) € MVBVF, if / |f(x)|dx is uni-
a
Sformly bounded for arbitrary a > A, then for any a > A, t € [0,0),

/a " ) sintxdxl —o(1)

holds if and only if
x| f(x)] = 0(1),
where A > 1 is the constant appearing in Definition 2.
THEOREM 4. Let 0 < y < 1. Assume a real function f(x) € MVBVF. If
a+1
/ x| f(x)|dx is uniformly bounded for arbitrary a > A, then for any t € (0,0),
a

/a ) sintxdx‘ — o)

holds if and only if
X f = o).

This inequality also holds for cosine integrals.

THEOREM 5. Let 0 < y < 1. Assume a real function f(x) € MVBVF. If
a+1
/ X!|f(x)|dx is uniformly bounded for arbitrary a > A, then for any t € (0,),
a

/a ") costxdx‘ — 0@

holds if and only if
XY= 0().

Throughout the paper, we always use M to stand for the positive constant appear-
ing in (3), and M denotes a positive constant that may not be necessarily the same at
each occurrence.

2. Preliminaries
We need several lemmas.
LEMMA 1. Assume a real function f(x) € MVBVEF. If
ITVf(x)=0(1), x€(0,00), 0<y<l,

then for any real number t satisfying 1/t > A, we have

- [lant =06,

t )y
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Proof. By condition (3), we have

/ 4f] < /2

f| 2 /22/)L t

LEMMA 2. Assume a real function f(x) € MVBVF. If
V() =0(1), x€(0,%), 0<y<l,

then, for any a > A and t € [0,o0), we have

X) sintxdx‘ =077

Proof. The case t =0 is trivial. Let ¢ € (0,),
Casel. 1/t > a.

1/t o
/ f(x)sinzxdx = f(x)sinzxdx + /f(x)sintxdx::11+12.
1/t

By (4), we have
1/t
i< [ 1Ry = 0 ).
a

Integration by parts with (4) gives
N
Ll <O(™) 4+~ | [df]
T J1/e

|12| QMI_Y.

by Lemma 1, we have

Case?2. 1/t <a
In this case, integration by parts gives

X) sintxdx’ = }}im

It is easy to check that

Jim — (If( )I+1f()]) =00

)

1 b
Wsinsnds| < fim 7 (1@ + @)+ [ o).
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by utilizing condition (4). Now since f(x) € MVBVF, by (3) and (4), we deduce that

1= 1g (Ya 1
Z df| < - df] < =
t /a; | f| tjé)/ﬂa ‘ f‘ tjz 2761 /ZJa/l

12 M 27 al M 1 oo 1
<-) — e = —
t,% 2/a /ZJa/)L t al—YZg)zu—y)/
M & 1
< — < -Y
Sy 2 2(1-7)j S M

Lemma 2 is proved. [J

LEMMA 3. Assume a real function f(x) € MVBVF, then for any a > A,

2My (e
— @l
a/A

(@)l <

Proof. Suppose to the contrary that for some a > A we have

Aa
F@l> 20 [ olar= 20,

a Jaj/i

then for all y € [a,24],

2a M
P@I -1l < [ i< [Clan <2

Therefore
SO = @)l =—"la> — Lo (5)
Integrating both sides of (5) on [a,2a] gives

2a 2a
[Ny = ot > Mo [ 1700

which is impossible since My > 1. [0

LEMMA 4. Assume f(x) satisfies (3), then for any a > A and x € [a/A,Aa] we

have
22a
i< [ ok

/2*

Proof. According to Lemma 3, for x € [a/A,Ad],

2M, Aa
< =2 (<

x Jia

E
N

thus the conclusion follows. [
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3. Trigonometric integral inequality

Proof of Theorem 3.
Sufficiency. Similar to the proof of Lemma 2, we first assume 1/7 > a, then

1/’ 1 /=
x)sintxdx‘ <t |xf(x)|dx+—// |df|
1

20+
<M+~ 2/ |df]|

M())L 2%/1
/2!/ tA)

2%/:
<M+Z /

J/(tA)
<M.

In case 1/t < a, integration by parts gives

)sinzxdx| = 11m

mnud4 lim — Of(n44f |41/ df)

Now we have
MIOﬂH+V@D=WU

by the condition x|f(x)| = O(1). Since f(x) € MVBVF, by (3) and x|f(x)| = O(1),
we deduce that

.fa J:() !a/l

1& M 2t M1 &1
g—E—i/ i< ==Y <M

15 2/a Jaia/a rai= 27

a+1
Necessity. With the condition / |f(x)|dx = O(1) for arbitrary a > A, suppose
a
that

and therefore N
L= [ 17@ldv < Ma. (©)
[

Moreover, since

/ f(x) sintxdx' =0(1), forany b > a and all ¢ € [0,), we have

x) sintxdx‘ <M. (7)
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Now define a set E, for any a/A > A as follows:

1
E,— {xe [%,Aa} f()] = mla}'

First we need to estimate the measure of E,, denoted by m (E,). Applying Lemma 4,
we see that

I < /E QIO /WW]\Ea 1F()ldx

<miz) ¥ | ; (o)l + ( (2= 3) (e 53t

M/ x)ldv+ 3 L

A2a
Write I} := ///12 |£(2)|ds, we have

1al,

m(E,) > oML ®)

Also it is easy to see that the set E, is not empty since m (E,) > 0.

We select disjoint subintervals (except for endpoints) Si,...,S, of [a/A,Aa] as
follows. Set m; = infE,, and select v; according to the following procedure:
(i) Select

vy =inf{x >my : f(m +0)f(x) >0, |f(x)| <I.,/(4Aa), x € [a/A,Ada]},

where f(x+0) = limof(t).
t—x+
(i1) If case (i) is not satisfied, then let

=inf{x>m; : f(m; +0)f(x) <0, x € [a/A,Aa]}.
(iii) If neither (i) nor (ii) happens, then simply let v; = Aa. Define
S1 = [ml,vl].

Next, set mp = inf(E, \ S}) if this latter set is not empty, and using the same procedure
we select v, and define

Sz = [mg, v2].
We continue this procedure until we reach an Sy, for which E,\ (SjU---USy,) =0.

First we give an estimate for &, i.e. for the number of these S;’s. Note first of all
that for all 1 < j < x, we have

Vj I

[, == 7,

mj
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by the choice of the v;’s (but for j = K, this property may not be true). We check that

(3) implies
ha MA3 [APa MA?
df| < dv = ——1I,
Lt < T [ rela= =
from which
MA3 Aa ! I, I
—I > df| > d —1)—=,
iz [ lar ;»%Iﬂ = e g
ie.,
aly ala
Ka SAMATE + 1< SMATE, 9)

this also implies that x; is finite.
Note now that all x € (mj,v;) (S; excluding m; and v;) are of the same sign,
hence upon substituting # = /(2aA) and for a/A < x < Aa we have

X 2 xm 1

2aL = m2ak T A%

L v
7 [, e | [

provided a/A > A. On summing up for all 1 < j < K, and using (9) we get

sin

thus by (7),

X) sintxdx‘ <M

/Ea £ ()]dx < /m ()ldx < SMA° “.

From here, in view of the definition of E, and (8), we deduce that
13

<M. 10
@GP o

Let A, :=Ijm, then
AY <Mt + A1), (11)

by taking the limsup on both sides of (11), we have

limsup A’ < MlimsupA2,.

m-—oo m—oo

Then either A,, = O(1) or limsupA,, = co.
If limsup A, = oo, we discuss the following two cases.
(I) {A,} has the only accumulation point eo. Then lim A = eo. We show that in

J—roo

this case, there exists a subsequence {j;} such that

Ajkfl + Ajk+1

<M.
Ajk
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Suppose to the contrary,

limw:w

J—reo Jj
Hence there exists a J € N such for all j > J that

Aj1+Aj

> 224,
Aj

Since lim A = e, we may assume that for some jo > J, it holds that Aj | > Aj,.

J‘}oo
Now denoting the two roots of the equation x> —2A*x+1 =0 as x; and x,, where
0 <x; < 3 <A* < x;, by Vieta’s formulas, we have

Aj+l XlAJ >x2 (A _xlAj l) >O7 j>‘]7

in particular,
Ajor1 =x1Ajy 2 x2 (Ajy —x1Ajy-1) >0,

therefore, .
Ajer—x1A; =53 0 (A —xiAj-1) G > o>,

hence for j > jo,
+1 4j—4jo+4
Aj+l >MX, Jo (A.fo —xlAjO_l) > MAY Jo+4,
However, it makes a contradiction since by (6) that
Aji1 < MATHL

Altogether, we show that when {A;} has the only accumulation point e, (10) yields
Aj, <M, which makes a contradiction to the assumption

lim A = oo.

J—oo

(II) {Aj} has at least one finite accumulation point, then, there exists a number L

and a subsequence of natural numbers {fl({l)} satisfying

lim A{l = L7

k—soo

hence {A»{[)} has an upper bound S. Furthermore, select a subsequence { ]k } such
forall k € N that Aﬁ) > S, and

=
Set ji” :j( ) , take
ji(z) :min{j](f) >j(l) ckeN}y, i=1,2,--,

1
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j=min{ji) > jP ke N}, =120
and define jo; | = j,({l), while define jo; as the number satisfying

Afzk =, max, Aj.
J2k—1<J<J2k+1

It is clear that A; > A 3. Furthermore, lim A; = o since lim A ) = eo. Setting
2k i koo 2K oo}

Jx = Jok — 1, we obtain

lim A; = oo (12)

limAj 4+ = =
k—o0 Jit 1 k—so0 J2k

At the same time, by noting ka—l <<k +2< f2k+l with Aﬁz) >85> Aﬁl) , We
k k
deduce that

ﬂ,jk+3 ljk+2

Jo Pl = Ay + A2 <285, =280 =2 [ [7(ldr

in other words,

I;_/kﬂ < 211./’;#1 )

while (10) shows that
Njr1 =1L jn <4M,

which is contradict with (12).
Combining (I) and (II), we already show that A; = O(1). Then by Lemma 4 we

derive
2

x|f(x)‘ < MIZ <M 2 A[loga/logl]Jrk <M,
k=1

and the conclusion follows. [J]
We note that, the sufficiency of Theorem 3 does not require the condition that
a+1
/ |f(x)|dx is uniformly bounded for arbitrary a > A. At the same time, if f(x)

kgeps sign, and

/:f(x)sintxdx‘ —o(1),

then by taking 7y = m/(2a), we see that

[ relac= [ rgac<m

a+1
/ 70 sintoxdx' —o(1).
Therefore, we have the following corollary.

COROLLARY 1. Assume a nonnegative function f(x) € MVBVF, then for any
a>A, t€]0,),

/:f(x) sintxdx' — o(1)

holds if and only if
x| f(x)] = O(1).
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4. Weighted trigonometric integral inequality

Proof of Theorem 4. By Lemma 2, we have already proved the sufficiency. For

a+1
necessity, with the condition / x| f(x)|dx = O(1) for arbitrary a > A, we have

a

a+1
/ x7|f(x)|dx < M. Therefore,
a

ak
[ 17ldx < mat.
a/l
For any b > a and all 7 € (0,c0), we have

t7

/bf(x) sintxdx' <M. (13)

By using the same symbols as in Theorem 3, we have the following estimates:

1
m(Ey) >+

UL (14)

I*
Ka gMIi. 15)

a

Hence, by (15) and (13) with z = t/(24a), we have
Ka Vj I*
e < Y [ ple < Mital,
=1 mj la

from which and combining (14) we derive that
B <Md"(I')?2 (16)
Let Aj =1, and take the limsup on both sides of (16), we have

. 3 . Yit: 2
hmsuij < M}ﬂx Jhmsuij,

J—oo J—oo

then either A; = O(1) or limsupA; = .
jeo
We proceed an analogue to Theorem 3 to achieve that A; = O(1). Therefore, since
by Lemma 4,

Ma" M
|f()€)‘ < Tl;zkgmlz; x>a>A, O<Y< la

we have

2
xl_y|f(x)‘ < MIZ <M Z A[loga/log)LHk <M,
k=—1

which concludes the proof. [
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COROLLARY 2. Let 0 <y < 1. Assume a nonnegative function f(x) € MVBVF,
then for any t € (0,e0),

/a ) sintxdx‘ — 0.

holds if and only if
X0 = o).

5. Remark

One could note in the proof of the inequalities that, if let @ = 0, then the case 1/t <
a in Lemma 2 and Theorem 3 could not happen. Therefore, by revising Definition 2
and copying the other parts of the proof, we have the another version of the inequalities.

DEFINITION 3. A Lebesgue measurable function f : Ry — R is said to be of
mean value bounded variation, in symbols f € MVBVF*, if it is of locally bounded
variation and if there exist A > 2 and a constant My > 0 depending only upon f such
for all @ > 0 that

2a My Aa
[lan <2 [ rwla a7
a [

a
holds.

a+1
THEOREM 6. Assume a real function f(x) € MVBVF*, lf/ |f(x)|dx is uni-

a

formly bounded for arbitrary a > 0, then for t € [0,),

‘/wa(x) sinixdx| = O(1)

holds if and only if
x| f(x)] = 0o(1).

This includes the typical classical result that

/ Smtxdsz(l)
0 X

for 7 € [0,00).

THEOREM 7. Let 0 < y < 1. Assume a real function f(x) € MVBVF*. If
a+1
/ x!|f(x)|dx is uniformly bounded for arbitrary a > 0, then for any t € (0,),
a

/O ) sintxdx‘ — o3

holds if and only if
A f()] = 0(1).

This also holds for cosine integrals.
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