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Abstract. We give several sharp numerical radius inequalities associated with the Cartesian de-
composition of a Hilbert space operator A = B + iC . Among other inequalities, it is shown
that

1
2
‖ |B|r + |C|r‖ � wr(A) � ‖ |B|r + |C|r‖

for 0 < r � 2 , where w(·) and ‖·‖ denote the numerical radius and the usual operator norm,
respectively. These inequalities generalize and extend earlier numerical radius inequalities.

1. Introduction

Let B(H) denote the C∗ -algebra of all bounded linear operators on a complex
Hilbert space H . For A ∈ B(H) , let w(A) and ||A|| denote the numerical radius norm
and the usual operator norm of A , respectively. It is well known that these two norms
are equivalent. In fact, for every A ∈ B(H) ,

1
2
||A|| � w(A) � ||A|| . (1.1)

The inequalities in (1.1) are sharp. If A2 = 0, then the first inequality in (1.1) becomes
an equality. If A is normal, then the second inequality in (1.1) becomes an equality.

Several refinements of the inequalities in (1.1) have been recently given (see, e.g.,
[1]–[4], [7], [8], and references therein).

It has been shown in [7] that for every A ∈ B(H) ,

1
4
||A∗A+AA∗|| � w2(A) � 1

2
||A∗A+AA∗|| . (1.2)

Applications of the inequalities in (1.2) to the theory of power bounded operators have
been given in [5].

If A = B+ iC is the Cartesian decomposition of A , then B and C are self-adjoint,
and A∗A+AA∗ = 2

(
B2 +C2

)
. Thus, the inequalities in (1.2) can be written as

1
2

∣∣∣∣B2 +C2
∣∣∣∣� w2(A) �

∣∣∣∣B2 +C2
∣∣∣∣ , (1.3)
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or equivalently, as

1
4

∣∣∣∣∣∣(B+C)2 +(B−C)2
∣∣∣∣∣∣� w2(A) � 1

2

∣∣∣∣∣∣(B+C)2 +(B−C)2
∣∣∣∣∣∣ . (1.4)

The second inequality in (1.3) and the inequalities in (1.4) have been generalized
in [4] as follows.

THEOREM 1.1. Let A ∈ B(H) with the Cartesian decomposition A = B + iC .
Then

wr(A) � |||B|r + |C|r|| (1.5)

for 0 < r � 2, and
wr(A) � 2r/2−1 |||B|r + |C|r|| (1.6)

for r � 2 . Here |X | = (X∗X)1/2 is the absolute value of X .

THEOREM 1.2. Let A ∈ B(H) with the Cartesian decomposition A = B + iC .
Then

2r/2−1 || |B+C|r + |B−C|r|| � wr(A) � 1
2
|| |B+C|r + |B−C|r|| (1.7)

for r � 2 .

Note that Theorem 1.1 is a generalization of the second inequality in (1.3), and
Theorem 1.2 is a generalization of the inequalities in (1.4), which deals only with the
case r � 2.

The purpose of this paper is to give a generalization of the first inequality in (1.3),
and to establish inequalities related to those in (1.7) for the values 0 < r � 2. We
will formulate our new results in a more general setting involving certain convex and
concave functions, from which our desired generalizations follow as special cases.

2. Main results

To achieve our goal, we need the following lemma involving norm inequalities for
convex and concave functions of positive operators. A more general form of this lemma
can be found in [6] and references therein. Henceforth,we assume that every function
is continuous.

LEMMA 2.1. Let X ,Y ∈ B(H) be positive. Then

(a)
∥∥ f
(

X+Y
2

)∥∥ � 1
2 ‖ f (X)+ f (Y )‖ for every non-negative convex function f on

[0,∞) .

(b) 1
2 ‖ f (X)+ f (Y )‖ �

∥∥ f
(

X+Y
2

)∥∥ for every non-negative concave function f on
[0,∞) .

(c) ‖ f (X)+ f (Y )‖ � ‖ f (X +Y )‖ for every non-negative convex function f on
[0,∞) such that f (0) = 0.
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(d) ‖ f (X +Y )‖ � ‖ f (X)+ f (Y )‖ for every non-negative concave function f on
[0,∞) .

It should be mentioned here that part (c) of Lemma 2.1 will not be used in this
paper. It has been given for the sake of completeness.

In view of the facts that f (t) = tr is convex on [0,∞) for r � 1 and that f (t) = tr

is concave on [0,∞) for 0 < r � 1, Lemma 2.1 admits an important special case. We
remark here that if X ∈ B(H), and if f is a non-negative increasing function on [0,∞) ,
then ‖ f (|X |)‖ = f (‖X‖) . In particular, ‖|X |r‖ = ‖X‖r for every r > 0. Thus, if
X ,Y ∈ B(H) are positive, then

||Xr +Yr|| � ||X +Y ||r � 2r−1 ||Xr +Yr|| (2.1)

for r � 1, and
2r−1 ||Xr +Yr|| � ||X +Y ||r � ||Xr +Yr|| (2.2)

for 0 < r � 1.
Our main numerical radius inequalities can be stated as follows.

THEOREM 2.2. Let A∈B(H) with the Cartesian decomposition A = B+ iC , and
let f (t) be a non-negative function on [0,∞) such that g(t) = f (

√
t) is concave. Then

1
2
|| f (|B|)+ f (|C|)|| � f (w(A)) � || f (|B|)+ f (|C|)|| (2.3)

and

1
2

∣∣∣∣
∣∣∣∣ f
( |B+C|√

2

)
+ f

( |B−C|√
2

)∣∣∣∣
∣∣∣∣� f (w(A)) �

∣∣∣∣
∣∣∣∣ f
( |B+C|√

2

)
+ f

( |B−C|√
2

)∣∣∣∣
∣∣∣∣ .

(2.4)

Proof. Since g is non-negative and concave on [0,∞) , it follows that g is increas-
ing, and so it follows by the second inequality in (1.3) that

g(w2(A)) � g
(∣∣∣∣B2 +C2

∣∣∣∣) .
Now,

f (w(A)) = g(w2(A))
� g

(∣∣∣∣B2 +C2
∣∣∣∣)

= g
(∣∣∣∣∣∣ |B|2 + |C|2

∣∣∣∣∣∣)
=
∣∣∣∣∣∣g(|B|2 + |C|2

)∣∣∣∣∣∣
�
∣∣∣∣∣∣g(|B|2)+g

(
|C|2

)∣∣∣∣∣∣ (by Lemma 2.1(d))

= || f (|B|)+g(|C|)|| ,
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which proves the second inequality in (2.3). The first inequality in (2.3) follows from
the triangle inequality for both norms ‖·‖ and w(·) , the equality of these norms for
self-adjoint operators, and the conclusion that f is increasing. In fact,

1
2
|| f (|B|)+ f (|C|)|| � 1

2
(|| f (|B|)||+ || f (|C|)||)

=
1
2

( f (||B||)+ f (||C||))

=
1
2

( f (w(B))+ f (w(C)))

� 1
2

( f (w(A))+ f (w(A)))

= f (w(A)) .

This completes the proof of the inequalities in (2.3).

To prove the inequalities in (2.4), observe that the second inequality in (1.4), to-
gether with the fact that g is increasing, implies that

g
(
w2(A)

)
� g

(
1
2

∣∣∣∣∣∣(B+C)2 +(B−C)2
∣∣∣∣∣∣) .

Now,

f (w(A)) = g
(
w2(A)

)
� g

(
1
2

∣∣∣∣∣∣|B+C|2 + |B−C|2
∣∣∣∣∣∣)

=

∣∣∣∣∣
∣∣∣∣∣g
(
|B+C|2

2
+

|B−C|2
2

)∣∣∣∣∣
∣∣∣∣∣

�
∣∣∣∣∣
∣∣∣∣∣g
(
|B+C|2

2

)
+g

(
|B−C|2

2

)∣∣∣∣∣
∣∣∣∣∣ (by Lemma 2.1(d))

=
∣∣∣∣
∣∣∣∣ f
( |B+C|√

2

)
+ f

( |B−C|√
2

)∣∣∣∣
∣∣∣∣ ,

which proves the second inequality in (2.4). To prove the first inequality in (2.4), first
observe that by the first inequality in (1.4), we have

g
(
w2(A)

)
� g

(
1
4

∣∣∣∣∣∣(B+C)2 +(B−C)2
∣∣∣∣∣∣) .
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Now,

f (w(A)) = g
(
w2(A)

)
� g

(
1
4

∣∣∣∣∣∣|B+C|2 + |B−C|2
∣∣∣∣∣∣)

=

∣∣∣∣∣
∣∣∣∣∣g
(
|B+C|2

4
+

|B−C|2
4

)∣∣∣∣∣
∣∣∣∣∣

=

∣∣∣∣∣∣
∣∣∣∣∣∣g
⎛
⎝ |B+C|2

2 + |B−C|2
2

2

⎞
⎠
∣∣∣∣∣∣
∣∣∣∣∣∣

� 1
2

∣∣∣∣∣
∣∣∣∣∣g
(
|B+C|2

2

)
+g

(
|B−C|2

2

)∣∣∣∣∣
∣∣∣∣∣ (by Lemma 2.1(b))

=
1
2

∣∣∣∣
∣∣∣∣ f
( |B+C|√

2

)
+ f

( |B−C|√
2

)∣∣∣∣
∣∣∣∣ ,

which proves the first inequality in (2.4). This completes the proof of the theorem. �

THEOREM 2.3. Let A∈B(H) with the Cartesian decomposition A = B+ iC , and
let f (t) be a non-negative function on [0,∞) such that g(t) = f (

√
t) is convex. Then

1
2
|| f (|B|)+ f (|C|)|| � f (w(A)) � 1

2

∣∣∣∣∣∣ f
(√

2 |B|
)

+ f
(√

2 |C|
)∣∣∣∣∣∣ (2.5)

and

1
2

∣∣∣∣
∣∣∣∣ f
( |B+C|√

2

)
+ f

( |B−C|√
2

)∣∣∣∣
∣∣∣∣� f (w(A)) � 1

2
|| f (|B+C|)+ f (|B−C|)|| . (2.6)

Proof. Since g is non-negative and convex on [0,∞) , it follows that g is increas-
ing. Now,

f (w(A)) = g
(
w2 (A)

)
� g

(∣∣∣∣∣∣|B|2 + |C|2
∣∣∣∣∣∣) (by the second inequality in (1.3))

=
∣∣∣∣∣∣g(|B|2 + |C|2

)∣∣∣∣∣∣
=

∣∣∣∣∣
∣∣∣∣∣g
(

2 |B|2 +2 |C|2
2

)∣∣∣∣∣
∣∣∣∣∣

� 1
2

∣∣∣∣∣∣g(2 |B|2)+g
(
2 |C|2

)∣∣∣∣∣∣ (by Lemma 2.1(a))

=
1
2

∣∣∣∣∣∣ f (√2 |B|
)

+ f
(√

2 |C|
)∣∣∣∣∣∣ ,

which proves the second inequality in (2.5).
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The proof of the first inequality in (2.5) is the same as that of the first inequality in
(2.3). It does not depend on the convexity or concavity of g , but it depends on the fact
that f is increasing in both theorems.

To prove the inequalities in (2.6), observe that

f (w(A)) = g
(
w2(A)

)
� g

(
1
2

∣∣∣∣∣∣|B+C|2 + |B−C|2
∣∣∣∣∣∣) (by the second inequality in (1.4))

=

∣∣∣∣∣
∣∣∣∣∣g
(
|B+C|2 + |B−C|2

2

)∣∣∣∣∣
∣∣∣∣∣

� 1
2

∣∣∣∣∣∣g(|B+C|2
)

+g
(
|B−C|2

)∣∣∣∣∣∣ (by Lemma 2.1(a))

=
1
2
|| f (|B+C|)+ f (|B−C|)|| ,

which proves the second inequality in (2.6). To prove the first inequality in (2.6), we

recall that w2(A) � 1
2

∣∣∣∣∣∣|B±C|2
∣∣∣∣∣∣ (see Theorem 1 in [7]). Since g is increasing, it

follows that g
(
w2(A)

)
� g

(
1
2

∣∣∣∣∣∣|B±C|2
∣∣∣∣∣∣) , and so by the triangle inequality for ‖·‖ ,

we have

2g
(
w2(A)

)
� g

(
1
2

∣∣∣∣∣∣|B+C|2
∣∣∣∣∣∣)+g

(
1
2

∣∣∣∣∣∣|B−C|2
∣∣∣∣∣∣)

=

∣∣∣∣∣
∣∣∣∣∣g
(
|B+C|2

2

)∣∣∣∣∣
∣∣∣∣∣+
∣∣∣∣∣
∣∣∣∣∣g
(
|B−C|2

2

)∣∣∣∣∣
∣∣∣∣∣

�
∣∣∣∣∣
∣∣∣∣∣g
(
|B+C|2

2

)
+g

(
|B−C|2

2

)∣∣∣∣∣
∣∣∣∣∣

=
∣∣∣∣
∣∣∣∣ f
( |B+C|√

2

)
+ f

( |B−C|√
2

)∣∣∣∣
∣∣∣∣ .

Hence,

f (w(A)) = g
(
w2(A)

)
� 1

2

∣∣∣∣
∣∣∣∣ f
( |B+C|√

2

)
+ f

( |B−C|√
2

)∣∣∣∣
∣∣∣∣ .

This completes the proof of the theorem. �

Specializing Theorem 2.2 to the function f (t) = tr for 0 < r � 2, and specializing
Theorem 2.3 to the function f (t) = tr for r � 2, we obtain our promised new numerical
radius inequalities associated with the Cartesian decomposition of an operator. These
inequalities include complements of the inequalities given in Theorem 1.1, and they
also include extensions of Theorem 1.2.
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COROLLARY 2.4. Let A ∈ B(H) with the Cartesian decomposition A = B+ iC.
Then

1
2
|| |B|r + |C|r|| � wr (A) � || |B|r + |C|r|| (2.7)

for 0 < r � 2, and

1
2
|| |B|r + |C|r|| � wr (A) � 2r/2−1 || |B|r + |C|r|| (2.8)

for r � 2.

COROLLARY 2.5. Let A ∈ B(H) with the Cartesian decomposition A = B+ iC.
Then

2−r/2−1 || |B+C|r + |B−C|r|| � wr (A) � 2−r/2 || |B+C|r + |B−C|r|| (2.9)

for 0 < r � 2, and

2−r/2−1 || |B+C|r + |B−C|r|| � wr (A) � 1
2
|| |B+C|r + |B−C|r|| (2.10)

for r � 2.

Finally, we remark that the inequalities in (2.7)–(2.10) are sharp as demonstrated
by two-dimensional examples. In fact, the sharpness of the first inequalities in (2.7)–

(2.10) can be verified by considering A =
[

0 2
0 0

]
. The sharpness of the second in-

equalities in (2.7) and (2.10) can be verified by considering A =
[

1 0
0 1

]
, and the

sharpness of the second inequalities in (2.8) and (2.9) can be verified by considering

A =
[

1+ i 0
0 1+ i

]
.
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