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ON A DISCRETE WEIGHTED MIXED

ARITHMETIC–GEOMETRIC MEAN INEQUALITY

PENG GAO

Abstract. Let n � 2 . For 1 � i � n , let xi , wi � 0 with w1 > 0 . Further let Wi = ∑i
k=1 wk ,

Mi,1 = ∑i
k=1 wkxk/Wk , Mi,0 = ∏i

k=1 xwk/Wk
k , Mi,1(Mi,0) = ∑i

k=1 wkMk,0/Wk , Mi,0(Mi,1) =

∏i
k=1 Mwk/Wk

k,1 . A result of Holland states that when W 2
n−1 � wn ∑n−2

i=1 Wi , then

Wn−1

(
Mn−1,0(Mn−1,1)−Mn−1,1(Mn−1,0)

)
� Wn

(
Mn,0(Mn,1)−Mn,1(Mn,0)

)
.

The above result implies a discrete weighted mixed arithmetic-geometric mean inequality. In
this paper, we extend the validity of the above inequality by considering the case W 2

n−1 <

wn ∑n−2
i=1 Wi .
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