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Abstract. Let n � 2 . For 1 � i � n , let xi , wi � 0 with w1 > 0 . Further let Wi = ∑i
k=1 wk ,

Mi,1 = ∑i
k=1 wkxk/Wk , Mi,0 = ∏i

k=1 xwk/Wk
k , Mi,1(Mi,0) = ∑i

k=1 wkMk,0/Wk , Mi,0(Mi,1) =

∏i
k=1 Mwk/Wk

k,1 . A result of Holland states that when W 2
n−1 � wn ∑n−2

i=1 Wi , then

Wn−1

(
Mn−1,0(Mn−1,1)−Mn−1,1(Mn−1,0)

)
� Wn

(
Mn,0(Mn,1)−Mn,1(Mn,0)

)
.

The above result implies a discrete weighted mixed arithmetic-geometric mean inequality. In
this paper, we extend the validity of the above inequality by considering the case W 2

n−1 <

wn ∑n−2
i=1 Wi .

1. Introduction

Let Mn,r(w,x) be the generalized weighted power means: Mn,r(w,x)=(
n
∑
i=1

wixr
i )

1
r ,

where w = (w1,w2, · · · ,wn) , x = (x1,x2, · · · ,xn) , wi > 0, 1 � i � n with
n
∑
i=1

wi = 1.

Here Mn,0(w,x) denotes the limit of Mn,r(w,x) as r → 0+ . Unless specified, we al-
ways assume xi > 0, 1 � i � n . When there is no risk of confusion, we shall write Mn,r

for Mn,r(w,x) and we also denote An,Gn for the arithmetic mean Mn,1 , geometric
mean Mn,0 , respectively.

For fixed x = (x1, · · · ,xn) , w = (w1, · · · ,wn) with w1 > 0, wi � 0, we define
xi = (x1, · · · ,xi) , wi = (w1, · · · ,wi) , Wi = ∑i

j=1 wj , Mi,r = Mi,r(wi/Wi,xi) , Mi,r =
(M1,r, · · · ,Mi,r) . The following result on mixed mean inequalities is due to Nanjun-
diah [5] (see also [1]):

THEOREM 1.1. Let r > s and n � 2 . If for 2 � k � n− 1 , Wnwk −Wkwn > 0 .
Then

Mn,s(Mn,r) � Mn,r(Mn,s),

with equality holding if and only if x1 = · · · = xn .
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It is easy to see that the case r = 1, s = 0 of Theorem 1.1 follows from the fol-
lowing Popoviciu-type inequalities established in [4] (see also [1, Theorem 9]):

THEOREM 1.2. Let n � 2 . If for 2 � k � n−1 , Wnwk −Wkwn > 0 , then

Wn−1

(
lnMn−1,0(Mn−1,1)− lnMn−1,1(Mn−1,0)

)
� Wn

(
lnMn,0(Mn,1)− lnMn,1(Mn,0)

)
with equality holding if and only if xn = Mn−1,0 = Mn−1,1(Mn−1,0) .

In [6], the following Rado-type inequalities were established:

THEOREM 1.3. Let s < 1 and n � 2 . If for 2 � k � n− 1 , Wnwk −Wkwn > 0 ,
then

Wn−1

(
Mn−1,s(Mn−1,1)−Mn−1,1(Mn−1,s)

)
� Wn

(
Mn,s(Mn,1)−Mn,1(Mn,s)

)
with equality holding if and only if x1 = · · · = xn and the above inequality reverses
when s > 1 .

The above theorem is readily seen to imply Theorem 1.1. As pointed out in [4]
(see also [3]), it is not possible to establish Theorem 1.1 without any constraint on
the weights. It follows that both Theorem 1.3 and Theorem 1.4 can not be valid for
general weights. It is therefore interesting to establish Theorem 1.4 under less stringent
conditions on the weights. In [3], Holland further improved the condition in Theorem
1.3 for the case s = 0 by proving the following(although his theorem was given in terms
of mixed-means inequality):

THEOREM 1.4. Let n � 2 . If W 2
n−1 � wn ∑n−2

i=1 Wi with the empty sum being 0 ,
then

Wn−1

(
Mn−1,0(Mn−1,1)−Mn−1,1(Mn−1,0)

)
� Wn

(
Mn,0(Mn,1)−Mn,1(Mn,0)

)
(1.1)

with equality holding if and only if x1 = · · · = xn .

It is our goal in this paper to extend the above result of Holland by considering the
validity of inequality (1.1) for the case W 2

n−1 < wn ∑n−2
i=1 Wi . Note that this only happens

when n � 3. In the next section, we apply the approach in [2] to prove the following

THEOREM 1.5. Let n � 3 . Inequality (1.1) holds when the following conditions
are satisfied:

wn ∑n−2
i=1 Wi

W 2
n−1

−1 � w1

wn
,

Wn−1

Wn

n−2

∏
i=1

(
Wi+1

Wi

) Wiwn
W2

n−1 � 1, (1.2)

(
Wn−1wn

Wnw1

(
n−2

∑
i=1

Wiwn

W 2
n−1

−1

)
+

wn

Wn

)
n−2

∏
i=1

(Wi+1

wi+1

) wi+1
Wn−1 � 1.

It is natural to ask whether there exists weights that satisfy the conditions given in
(1.2). The answer is affirmative, as we show in Section 3 that there does exist sequences
{wi}n

i=1 that satisfy the conditions of Theorem 1.5.
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2. Proof of Theorem 1.5

We may assume that xi > 0, wi > 0, 1 � i � n and the case xi = 0 or wi = 0 for
some i follows by continuity. We recast (1.1) as

Gn(An)− Wn−1

Wn
Gn−1(An−1)− wn

Wn
Gn � 0. (2.1)

Note that

Gn(An) =
(
Gn−1(An−1)

)Wn−1/Wn
Awn/Wn

n , Gn−1(An−1) = An

n−1

∏
i=1

( Ai

Ai+1

)Wi/Wn−1
.

(2.2)

Dividing Gn(An) on both sides of (2.1) and using (2.2), we can recast (2.1) as:

Wn−1

Wn

n−1

∏
i=1

( Ai

Ai+1

)Wiwn/(Wn−1Wn)
+

wn

Wn

n

∏
i=1

( xi

Ai

)wi/Wn
� 1. (2.3)

We express xi = (WiAi−Wi−1Ai−1)/wi , 1 � i � n with W0 = A0 = 0 to recast (2.3) as

Wn−1

Wn

n−1

∏
i=1

( Ai

Ai+1

)Wiwn/(Wn−1Wn)
+

wn

Wn

n

∏
i=1

(WiAi −Wi−1Ai−1

wiAi

)wi/Wn
� 1.

We set yi = Ai/Ai+1 , 1 � i � 2 to further recast the above inequality as

Wn−1

Wn

n−1

∏
i=1

yWiwn/(Wn−1Wn)
i +

wn

Wn

n−1

∏
i=1

(Wi+1

wi+1
− Wi

wi+1
yi

)wi+1/Wn
� 1. (2.4)

We now regard the right-hand side expression above as a function of yn−1 only
and define

f (yn−1) =
Wn−1

Wn
c · ywn/Wn

n−1 +
wn

Wn
c′ ·
(Wn

wn
− Wn−1

wn
yn−1

)wn/Wn
,

where

c =
n−2

∏
i=1

yWiwn/(Wn−1Wn)
i , c′ =

n−2

∏
i=1

(Wi+1

wi+1
− Wi

wi+1
yi

)wi+1/Wn
.

On setting f ′(yn−1) = 0, we find that

yn−1 =

(
Wn−1

Wn
+

wn

Wn

(
c′

c

)Wn/Wn−1
)−1

.

It is easy to see that f (yn−1) is maximized at the above value with its maximal value
being (

Wn−1

Wn
cWn/Wn−1 +

wn

Wn
(c′)Wn/Wn−1

)Wn−1/Wn

.
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Thus, in order for inequality (2.4) to hold, it suffices to have

Wn−1

Wn
cWn/Wn−1 +

wn

Wn
(c′)Wn/Wn−1 � 1.

Explicitly, the above inequality is

g(y1,y2, . . . ,yn−2) :=
Wn−1

Wn

n−2

∏
i=1

y
Wiwn/W2

n−1
i +

wn

Wn

n−2

∏
i=1

(Wi+1

wi+1
− Wi

wi+1
yi

)wi+1/Wn−1 � 1.

Let (a1,a2, . . . ,an−2)∈ [0,W2/W1]× [0,W3/W2]× . . .× [0,Wn−1/Wn−2] be the point
in which the absolute maximum of g is reached. If one of the ai equals 0 or Wi+1/Wi ,
then it is easy to see that we have

g(a1,a2, . . . ,an−2) � max

(
Wn−1

Wn

n−2

∏
i=1

(
Wi+1

Wi

)Wiwn/W 2
n−1

,
wn

Wn

n−2

∏
i=1

(
Wi+1

wi+1

)wi+1/Wn−1
)

.

(2.5)

If the point (a1,a2, . . . ,an−2) is an interior point, then we have

∇g(a1,a2, . . . ,an−2) = 0.

It follows that for every 1 � i � n−2, we have

∏n−2
i=1 a

Wiwn/W 2
n−1

i

∏n−2
i=1

(
Wi+1
wi+1

− Wi
wi+1

ai

)wi+1/Wn−1
=

ai
Wi+1
wi+1

− Wi
wi+1

ai

:=
1
d

, (2.6)

where d > 0 is a constant (depending on the wi ). In terms of d , we have

ai =
Wi+1

dwi+1 +Wi
.

We use this to recast the first equation in (2.6) as

n−2

∏
i=1

(
Wi+1

dwi+1 +Wi

)Wiwn/W 2
n−1

=
1
d

n−2

∏
i=1

(Wi+1

wi+1
· dwi+1

dwi+1 +Wi

)wi+1/Wn−1
.

We recast the above equality as

ln

(
n−2

∏
i=1

(Wi+1)
Wiwn/W2

n−1−wi+1/Wn−1

)
=

n−2

∑
i=1

(
Wiwn

W 2
n−1

− wi+1

Wn−1

)
ln(dwi+1+Wi)− w1

Wn−1
lnd

:= h(d).

Note that the above equality holds when d = 1 and we have

h′(d) =
n−2

∑
i=1

(
Wiwn

W 2
n−1

− wi+1

Wn−1

)
1

d +Wi/wi+1
− w1

Wn−1

1
d

.
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Note that

Wiwn

W 2
n−1

− wi+1

Wn−1
� 0 ⇔ Wi

wi+1
� Wn−1

wn
.

In either case

Wi

wi+1
� Wn−1

wn
or

Wi

wi+1
� Wn−1

wn
,

it follows that

h′(d) �
n−2

∑
i=1

(
Wiwn

W 2
n−1

− wi+1

Wn−1

)
1

d +Wn−1/wn
− w1

Wn−1

1
d

�

(
∑n−2

i=1
Wiwn
W 2

n−1
−1

)
d− w1

wn

d(d +Wn−1/wn)
.

Therefore, when

n−2

∑
i=1

Wiwn

W 2
n−1

−1 � 0,

the function h(d) is a decreasing function of d so that d = 1 is the only value that
satisfies (2.6) and we have ai = 1 correspondingly with g(1,1, . . . ,1) = 1 and this
allows us to recover Theorem 1.4, by combining the observation that the right-hand
side expression of (2.5) is an increasing function of wn for fixed wi , 1 � i � n−1 with
the discussion in the next section.

Suppose now

n−2

∑
i=1

Wiwn

W 2
n−1

−1 > 0, (2.7)

then the function h(d) is a decreasing function of d for

d �
w1
wn

∑n−2
i=1

Wiwn
W 2

n−1
−1

:= d0.

If follows that if d0 � 1, then d = 1 is the only value � d0 that satisfies (2.6) and
we have ai = 1 correspondingly with g(1,1, . . . ,1) = 1. We further note that for any
d � d0 satisfying (2.6), the value of g at the corresponding ai satisfies

g(a1,a2, . . . ,an−2) =
(

Wn−1

dWn
+

wn

Wn

) n−2

∏
i=1

(Wi+1

wi+1
· dwi+1

dwi+1 +Wi

)wi+1/Wn−1

�
(

Wn−1

dWn
+

wn

Wn

) n−2

∏
i=1

(Wi+1

wi+1

)wi+1/Wn−1

�
(

Wn−1

d0Wn
+

wn

Wn

) n−2

∏
i=1

(Wi+1

wi+1

)wi+1/Wn−1
.
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Combining this with (2.5), we see that inequality (2.4) holds when the conditions
in (1.2) are satisfied and this completes the proof of Theorem 1.5.

3. A further discussion

We show in this section that there does exist sequences {wi}n
i=1 satisfying the

conditions of Theorem 1.5 together with the condition given in (2.7), for otherwise we
are back to the situation of Theorem 1.4.

Now note that the left-hand side expression of (2.7) vanishes when

wn =
W 2

n−1

∑n−2
i=1 Wi

. (3.1)

It follows by continuity that such sequences {wi}n
i=1 satisfying the conditions of

Theorem 1.5 exist as long as the positive sequence {wi}n
i=1 with wi , 1 � i � n− 1

being arbitrary and wn defined by (3.1) satisfies the last two inequalities of (1.2) with
strict inequalities there. It is readily checked that these inequalities become(

∑n−2
i=1 Wi

∑n−1
i=1 Wi

)∑n−2
i=1 Wi

WWn−2
n−1 <

n−2

∏
i=1

Wwi
i , (3.2)

Wn−1

∑n−1
i=1 Wi

n−2

∏
i=1

(Wi+1

wi+1

)wi+1/Wn−1
< 1. (3.3)

Now, it is easy to see that inequality (3.2) holds when n = 3. It follows that it
holds for all n � 3 by induction as long as we have(

∑n−2
i=1 Wi

∑n−1
i=1 Wi

)∑n−2
i=1 Wi

WWn−1
n−1 �

(
∑n−1

i=1 Wi

∑n
i=1Wi

)∑n−1
i=1 Wi

WWn−1
n . (3.4)

The right-hand side expression above when regarded as a function of Wn only is maxi-
mized at

Wn =
Wn−1 ∑n−1

i=1 Wi

∑n−2
i=1 Wi

.

As the inequality in (3.4) becomes an equality with this value of Wn , we see that in-
equality (3.2) does hold for all n � 3.

Note that it follows from the arithmetic-geometric mean inequality that

Wn−1

∑n−1
i=1 Wi

n−2

∏
i=1

(Wi+1

wi+1

)wi+1/Wn−1 � Wn−1

∑n−1
i=1 Wi

(
n−2

∑
i=0

Wi+1

wi+1
· wi+1

Wn−1

)
= 1.

As one checks easily that the above inequality is strict in our case, we see that inequality
(3.3) also holds. We therefore conclude the existence of sequences {wi}n

i=1 satisfying
the conditions of Theorem 1.5.

Acknowledgement. The author is very grateful to the referee for many valuable
comments and suggestions.



ON A DISCRETE WEIGHTED MIXED ARITHMETIC-GEOMETRIC MEAN INEQUALITY 947

RE F ER EN C ES

[1] P. S. BULLEN, Inequalities due to T. S. Nanjundiah, Recent progress in inequalities, Kluwer Acad.
Publ., Dordrecht, 1998, 203–211.

[2] P. GAO, A note on mixed-mean inequalities, J. Inequal. Appl., 2010 (2010), Art. ID 509323, 8 pp.
[3] F. HOLLAND, An inequality between compositions of weighted arithmetic and geometric means, JI-

PAM. J. Inequal. Pure Appl. Math., 7 (2006), Article 159, 8 pp. (electronic).
[4] K. KEDLAYA, A weighted mixed-mean inequality, Amer. Math. Monthly, 106 (1999), 355–358.
[5] T. S. NANJUNDIAH, Sharpening of some classical inequalities, Math Student, 20 (1952), 24–25.
[6] C. TARNAVAS AND D. TARNAVAS, An inequality for mixed power means, Math. Inequal. Appl., 2

(1999), 175–181.

(Received May 28, 2013) Peng Gao
Department of Mathematics

School of Mathematics and System Sciences
Beijing University of Aeronautics and Astronautics

P. R. China
e-mail: penggao@buaa.edu.cn

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


