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Abstract. Ultramodular functions defined on a subset of a finite dimensional Euclidean space
is a class of functions that generalizes the scalar convexity. On the other hand, M � -convex
functions defined on a subset of integer lattice form a class of integrally convex functions. In
this paper, we reveals a relationship between ultramodularity and M � -convexity on the integer
lattice. We show that each M � -convex set (function) is an ultramodular set (function). The
converse, however, may not be true.

1. Introduction

The real-valued convex functions in one variable are important in solving opti-
mization problems. Let R be the set of reals and I ⊆ R be an interval. A function
f : I → R is said to be convex if

f (λx+(1−λ )y) � λ f (x)+ (1−λ ) f (y) (1)

for all x,y ∈ I and for all λ ∈ (0,1) . Equivalently, we say that a function f : I → R is
convex if and only if

f (x+ ε)− f (x) � f (y+ ε)− f (y) (2)

for all x,y ∈ I and for all ε > 0 with x < y and y+ ε ∈ I . This equivalence, however,
may not be true if the function is defined on a subset of Rn , n > 1. Marinacci and
Montrucchio [5] extended the concept of this one-dimensional convex functions to the
functions defined on a subset of Rn and called them ultramodular functions or the
directionally convex functions. Formally, we say that a function f : A ⊆ Rn → R is
ultramodular if

f (x+h)− f (x) � f (y+h)− f (y) (3)

for all x,y ∈ A and for all h � 0 with x � y and x+h , y+h∈ A . From (2) and (3), we
see that the concept of convexity and ultramodularity coincides when n = 1. However,
these two concepts are different from each other in higher dimension.

A non-decreasing function f : [0,1]n → [0,1] satisfying f (0,0 . . . ,0) = 0 and
f (1,1 . . . ,1) = 1 is called an n -ary aggregation function. The reader is referred to
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[1, 2] for a detailed study on n -ary aggregation functions. Klement et al [3] intro-
duced the concept of ultramodular aggregation functions which is an extension of one-
dimensional convexity. An n -ary aggregation function f : [0,1]n → [0,1] is called
ultramodular if

f (x+ y+ z)− f (x+ y) � f (x+ z)− f (x) (4)

for all x,y,z ∈ [0,1]n with x+ y+ z ∈ [0,1]n . Again, the concepts of one-dimensional
convex functions and ultramodular aggregation functions coincide on the real line.
However, in higher dimension the two concepts are quite different.

On the other hand, there is a class of integrally convex functions, called the M � -
convex functions introduced by Murota and Shioura [7]. M � -convex functions play a
central role in the theory of discrete convex analysis and have close relations to nice
properties in mathematical economics, called the gross substitutability and the single
improvement property. The reader is referred to Murota [6] for a detailed study on
M � -convex functions.

Ultramodular functions and M � -convex functions apparently seem very different
from each other. However, there is a relationship between these two types of functions
when defined on a subset of integer lattice. Our main contribution in this paper is to
show that each M � -convex set (function) is an ultramodular set (function). We give an
example to show that an ultramodualr (set) function may not be an M � -convex (set)
function.

This paper is organized as follows. In Section two, we introduce ultramodular sets
and functions. Section three is devoted to M � -convex sets and functions. The relation-
ship between ultramodular sets (functions) and M � -convex sets (functions) appears in
Section four. In Section five, we define a new class of functions, called the component-
wise ultramodular functions.

2. Ultramodular sets and functions

In this section, we present ultramodular sets and functions introduced by Mari-
nacci and Montrucchio [5].

A collection (x,y,z,w) of vectors in Rn is called a test quadruple if x � y � w
and x+w = y+ z .

A set A ⊆ Rn is ultramodular if, given any triple x,y,w ∈ A with x � y � w , we
have the following:

x+w = y+ z =⇒ z ∈ A. (5)

This means that A is closed under the formation of test quadruples. The following
result gives a good description of ultramodular sets under certain conditions.

PROPOSITION 1. ([5, Proposition 3.1]) Let A ⊆ Rn . Then A is ultramodular
whenever the following condition holds:

x,y ∈ A and y � x =⇒ [y,x] ⊆ A. (6)

Conversely, suppose that A is ultramodular and atleast one of the following properties
holds:
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(i) A is open,

(ii) int(A) �= /0 and A has a smallest and largest element.

Then (6) holds.

Next, we present ultramodular functions defined on n -dimensional Euclidean space
Rn .

A function f : A ⊆ Rn → R is said to be ultramodular if

f (y)+ f (z) � f (x)+ f (w) (7)

for all test quadruples (x,y,z,w) in A . By setting h = z− x = w− y , we can restate the
definition of an ultramodular function as follows:

A function f : A ⊆ Rn → R is said to be ultramodular if

f (x+h)− f (x) � f (y+h)− f (y) (8)

for all h � 0 and x � y such that x+h , y+h ∈ A . It is noteworthy to mention that no
condition on the domain of an ultramodular function is required.

The following lemma gives an equivalent condition for a function to be ultramod-
ular.

LEMMA 1. A function f : A ⊆ Rn → R is ultramodular if and only if

f (x)+ f (y) � f (x+h)+ f (y−h) (9)

for all x,y ∈ A and h � 0 with x+h, y−h∈ A and x � y−h � y.

Proof. Suppose that f is ultramodular. For any x,y∈A and h � 0 such that x+h ,
y−h∈ A and x � y−h , we have

f (y)− f (y−h) � f (x+h)− f (x).

The above inequality can be written as

f (x)+ f (y) � f (x+h)+ f (y−h).

Conversely, suppose that (9) holds. We show that f is ultramodular function. Let
x,y ∈ A , x � y and h � 0 with x+ h , y+ h ∈ A . Since x � y � y+ h , the inequality
(9) gives

f (y)+ f (x+h) � f (y+h)+ f (x).

The above inequality is equivalent to

f (y+h)− f (y) � f (x+h)− f (x).

Thus, f is ultramodular. �
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3. M � -convex sets and functions

In this section, we present basic definitions of M � -convex sets and functions in-
troduced by Murota and Shioura [7].

Let V be a nonempty finite set and let 0 be an element which is not in V . The set
of integers is denoted by Z . We denote by ZV the set of integral vectors of the form
x = (x(v) ∈ Z | v∈V ) , where x(v) denotes the v-component of the vector x . Similarly,
the set of real vectors of the form x = (x(v) ∈ R | v ∈V ) is denoted by RV . We define
the positive support supp+(x) and the negative support supp−(x) of a vector x ∈ ZV

by

supp+(x) = {v ∈V | x(v) > 0},
supp−(x) = {v ∈V | x(v) < 0},

respectively. The characteristic vector χS of a set S ⊆V is defined by

χS(v) =
{

1 if v ∈ S
0 if v ∈V \ S,

where χv is used instead of χ{v} for each v ∈ V . Moreover, we define χ0 as the zero
vector in ZV .

The effective domain dom f of a function f : ZV → R∪{+∞} is defined by:

dom f = {x ∈ ZV | f (x) < +∞}.

A function f : ZV → R∪{+∞} with dom f �= /0 is called M � -convex if it satisfies
the following condition:

(M � -EXC) For all x,y ∈ dom f and all u ∈ supp+(x− y) , there exists v ∈ supp−(x−
y)∪{0} such that

f (x)+ f (y) � f (x− χu + χv)+ f (y+ χu− χv).

A nonempty set B⊆ZV is called M � -convex if the following condition is satisfied:

(B � -EXC) For all x,y∈B and all u∈ supp+(x−y) , there exists v∈ supp−(x−y)∪{0}
such that

x− χu + χv ∈ B and y+ χu− χv ∈ B.

PROPOSITION 2. (Murota [6]) The effective domain of an M � -convex function is
an M � -convex set.
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4. Relationship

In this section, we construct a relationship between M � -convexity and Ultramod-
ularity on the integer lattice ZV . We show that each M � -convex set is an ultramodular
set. Similarly, we show that each M � -convex function is an ultramodular function. We
give examples to show that an ultramodular set (function) may not be an M � -convex
set (function).

The following result gives a sufficient condition for a subset of integer lattice to
be an ultramodular set. The proof is omitted since it is an easy consequence of Propo-
sition 1 considering the discrete analogue.

PROPOSITION 3. Let A ⊆ ZV . Then A is ultramodular whenever the following
condition holds:

x,y ∈ A and y � x =⇒ [y,x]Z ⊆ A. (10)

The Proposition 3 is used to prove the following lemma.

LEMMA 2. If a set A ⊆ ZV is M � -convex then it is ultramodular.

Proof. Assume that A ⊆ ZV is an M � -convex set. Let x,y ∈ A with y � x and
z ∈ [y,x]Z .1 We show that z ∈ A . If z = x then obviously z ∈ A . Suppose that z �= x .
Then supp+(x−z) �= /0 and let u1 ∈ supp+(x−z) , that is, u1 ∈ supp+(x−y) . Then (B � -
EXC) implies x1 = x− χu1 ∈ A . Clearly, z � x1. If z �= x1 then take u2 ∈ supp+(x1 −
z) ⊆ supp+(x− z) , that is, u2 ∈ supp+(x1 − y) . Again by virtue of (B � -EXC), x2 =
x1 − χu2 ∈ A . In other words, for u1,u2 ∈ supp+(x− z) we have x− χu1 − χu2 ∈ A .
Continuing this process, we get x−∑u∈supp+(x−z)

(
x(u)− z(u)

)
χu ∈ A . But

z = x− ∑
u∈supp+(x−z)

(
x(u)− z(u)

)
χu.

Thus z ∈ A . This shows that [y,x]Z ⊆ A . By Proposition 3, A is ultramodular. �

REMARK 1. Lemma 3.1 [4] states that if f : ZV → R∪{−∞} is an M � -concave
function then [y,x]Z ⊆ dom f for each x,y ∈ dom f with y � x .2 The proofs of Lemma
3.1 [4] and Lemma 2 are essentially same. Thus, we do not claim the originality on
Lemma 2.

The following examples show that the converse of the above lemma does not hold
in general.

EXAMPLE 1. Let a,h ∈ ZV such that h � 0 . Define a set

A = {a+nh | n ∈ Z+},
where Z+ is the set of non-negative integers. Then A is ultramodular but not an M � -
convex set.

1 [y,x]Z = {z ∈ ZV | y(u) � z(u) � x(u)∀u ∈V} .
2A function f : ZV → R∪{−∞} is M � -concave if − f : ZV → R∪{+∞} is M � -convex.
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EXAMPLE 2. Let |V | = 3 and define a set A ⊆ ZV by:

A = {(0,0,0),(0,1,0),(1,0,1),(1,1,1)}.

Clearly, A is ultramodular. However, it is not an M � -convex set.

COROLLARY 1. If a function f : ZV →R∪{+∞} is M � -convex then dom f is an
ultramodular set.

Proof. By Proposition 2, dom f is an M � -convex set. Thus the assertion follows
from Lemma 2. �

Now, we give a relationship between M � -convex functions and ultramodular func-
tions on the integer lattice ZV .

LEMMA 3. If a function f : ZV →R∪{+∞} is M � -convex then it is ultramodular
on dom f .

Proof. Let x,y ∈ dom f such that x � y and h � 0 with x + h , y + h ∈ dom f .
Take u1 ∈ supp+(x− y) . Then by Proposition 2, we have x1 = x− χu1 ∈ dom f . Since
u1 ∈ supp+(x+h− x1) and f is M � -convex, we have

f (x+h)+ f (x1) � f (x+h− χu1)+ f (x).

This is equivalent to

f (x+h)− f (x) � f (x1 +h)− f (x1). (11)

Clearly y � x1 . If x1 = y then (11) implies that f is ultramodular. If x1 �= y then we
take u2 ∈ supp+(x1 − y) ⊆ supp+(x− y) . Proposition 2 gives x2 = x1 − χu2 ∈ dom f
and (11) implies x1 +h ∈ dom f . As u2 ∈ supp+(x1 +h− x2) and f is M � -convex, we
obtain

f (x1 +h)+ f (x2) � f (x1 +h− χu2)+ f (x1).

This is equivalent to

f (x1 +h)− f (x1) � f (x2 +h)− f (x2). (12)

The inequalities (11) and (12) give

f (x+h)− f (x) � f (x+h− χu1 − χu2)− f (x− χu1 − χu2),

where u1,u2 ∈ supp+(x− y) . By applying this argument repeatedly, we get

f (x+h)− f (x) � f (x+h− ∑
u∈supp+(x−y)

λuχu)− f (x− ∑
u∈supp+(x−y)

λuχu), (13)
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where λu = x(u)− y(u) for each u ∈ supp+(x− y) . But x−∑u∈supp+(x−y) λuχu = y .
Therefore (13) implies

f (x+h)− f (x) � f (y+h)− f (y).

Thus f is ultramodular. �

The following example shows that the converse of above lemma is not true, that
is, an ultramodular function needs not to be an M � -convex function.

EXAMPLE 3. Let ai and b be non-negative real numbers, where i ∈ V . Define
f : A ⊆ RV −→ R by

f (x) = ∑
i∈V

aix(i)2 +b∑
i< j

x(i)x( j).

Let (x,y,z,w) be a test quadruple in A . Then by using the fact that x+w = y+ z , we
get

f (x)+ f (w)− f (y)− f (z) = ∑
i∈V

ai(x(i)2 +w(i)2− y(i)2− z(i)2)

+b∑
i< j

(x(i)x( j)+w(i)w( j)− y(i)y( j)− z(i)z( j))

= 2 ∑
i∈V

ai(x(i)− y(i))(y(i)−w(i))

+b∑
i< j

((y(i)− x(i))(z( j)− x( j))

+b∑
i< j

(z(i)− x(i))(y( j)− x( j)).

Since x � y � w and x � z � w , it holds that f (x)+ f (w)− f (y)− f (z) � 0. Thus, f
is an ultramodular function. Generally, f is not an M � -convex function on ZV . It is
M � -convex if 0 � b � 2min

i∈V
ai (see Murota [6]).

5. Component-wise ultramodular functions

In this section, we define a new class of functions, called the component-wise
ultramodular functions. This class of functions is contained in the class of ultramod-
ular functions. Moreover, on integer lattice we will show that each component-wise
ultramodular function is an M � -convex function. We give examples to show that an
M � -convex function may not be a component-wise ultramodular function.

Before defining component-wise ultramodular functions, we define component-
wise ultramodular sets and their relationship with ultramodular sets and M � -convex
sets.

A collection (x,y,z,w) of vectors in Rn is said to be a component-wise test quadru-
ple (denoted by CW-test quadruple) if it satisfies the following:
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(i) x+w = y+ z ,

(ii) for each i ∈ {1, . . . ,n} , either x(i) � y(i) � w(i) or x(i) � y(i) � w(i) .

A set A ⊆ Rn is CW-ultramodular if given any elements x,y,w ∈ A with x(i) �
y(i) � w(i) or x(i) � y(i) � w(i) for each i ∈ {1, . . . ,n} , the following holds:

x+w = y+ z implies z ∈ A. (14)

EXAMPLE 4. The hyperplane {x ∈ Rn |
n
∑
i=1

x(i) = r} , where r ∈ R , is a CW-

ultramodular set.

A function f : A ⊆ Rn −→ R is said to be component-wise ultramodular (denoted
by CW-ultramodular) function if

f (x)+ f (w) � f (y)+ f (z)

holds for all CW-test quadruples (x,y,z,w) .
Next, we give few examples to illustrate the CW-ultramodular functions.

EXAMPLE 5. Let ai be a non-negative real number, i ∈ {1, . . . ,n} . Define f :
A ⊆ Rn −→ R by

f (x) =
n

∑
i=1

aix(i)2.

Let (x,y,z,w) be a CW-test quadruple in A . Then

f (x)+ f (w)− f (y)− f (z) =
n

∑
i=1

ai(x(i)2 +w(i)2 − y(i)2− z(i)2)

= 2
n

∑
i=1

ai(x(i)− y(i))(y(i)−w(i)),

where the last equality is due to the fact that x+w = y+ z . For each i ∈ {1, . . . ,n} , ei-
ther x(i) � y(i) � w(i) or x(i) � y(i) � w(i) . In either case, we have (x(i)−y(i))(y(i)−
w(i)) � 0. Thus f (x)+ f (w)− f (y)− f (z) � 0, that is, f is CW-ultramodular.

REMARK 2. If A = {0,1}n in Example 5 then one can easily show that f (x)+
f (w)− f (y)− f (z) = 0 for each CW-test quadruple (x,y,z,w) in A .

EXAMPLE 6. For each i ∈ {1, . . . ,n} , let fi : R −→ R be a CW-ultramodular
function. Define f : A ⊆ Rn −→ R by

f (x) =
n

∑
i=1

fi(x(i)),

where x = (x(i) | i ∈ {i, . . . ,n}) ∈ A . Then f is a CW-ultramodular function.
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LEMMA 4. If a function f : ZV → R is CW-ultramodular, then it is M � -convex.

Proof. Let x,y ∈ ZV and u ∈ supp+(x− y) . For each w ∈ supp−(x− y) , define
λw = y(w)− x(w) . Take

h1 = − ∑
w∈supp−(x−y)

λwχw

and set x1 = x−h1 . Then (x1 +h1,y+h1,x1,y) is a CW-test quadruple and since f is
CW-ultramodular, we have

f (y+h1)− f (y) � f (x1 +h1)− f (x1).

The above inequality is equivalent to

f (y+h1)+ f (x1) � f (x)+ f (y). (15)

Next, define

y2 = y+h1, x2 = x− χu, h2 = −(h1− χu).

Then (x2 +h2,y2 +h2,x2,y2) is a CW-test quadruple. By CW-ultramodularity, we get

f (y2 +h2)− f (y2) � f (x2 +h2)− f (x2).

The above inequality can further be written as:

f (y+ χu)+ f (x− χu) � f (y+h1)+ f (x1). (16)

Combining (15) and (16), we get

f (x)+ f (y) � f (x− χu)+ f (y+ χu)

which is (M � -EXC) for v = 0. Thus, f is M � -convex function. �

The following examples show that the converse of the above lemma is not true.

EXAMPLE 7. Let ai be a positive real number, i ∈ V , and b ∈ R satisfying 0 <
b � 2min

i∈V
ai . Define f : ZV −→ R by

f (x) = ∑
i∈V

aix(i)2 +b∑
i< j

x(i)x( j).

Take x,y,z,y∈ZV and i, j ∈V such that i �= j and x( j) = y(i) = y( j) = w(i) = 1 and all
other coordinates of x,y,z and w are zero. Then (x,y,z,w) is a CW-test quadruple. We
see that f (x)+ f (w)− f (y)− f (z) < 0, that is, f is not a CW-ultramodular function.
However, f is an M � -convex function (see Murota [6]).
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EXAMPLE 8. Let |V | = 3 and define f : {0,1}V ⊆ ZV → R as follows:

f (x) =
{

2 if x = (1,1,1)
1 otherwise.

Consider the CW-test quadruple (x,y,z,w) , where

x = (0,1,1), y = (1,1,1), z = (0,0,0), w = (1,0,0).

Then f (x) + f (w)− f (y)− f (z) < 0, that is, f is not a CW-ultramodular function.
However, one can easily see that f is an M � -convex function.

Conclusion

We have seen that, on the integer lattice, the class of M � -convex functions is con-
tained in the class of ultramodular functions. We observe that if f : A ⊆ Rn → R is a
function and any two elements of A are incomparable, that is, x �� y and y �� x for each
x,y∈ A then f is vacuously ultramodular. This characteristic of ultramodular functions
creates a gap between the class of ultramodular functions and the class of M � -convex
functions.
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