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Abstract. In this note we present the sharp upper bound for the ratio between the arithmetic and
the geometric mean for concave sequences. In this way the sharp reverse of the Arithmetic-
Geometric Mean Inequality is obtained.

1. Introduction

Let Xn denote the n -tuple (x1, · · · ,xn), where xi � 0 for i = 1,2, · · · ,n . We shall

make use of the notations EXn = 1
n ∑n

i=1 xi, and ΠXn = ∏n
i=1 x

1
n
i . An infinite sequence

of real numbers {xi}∞
i=0 is said to be concave if xi � 1

2 (xi−1 + xi+1), for i = 1,2, · · · .
A sequence {xi}n

i=0 (with n � 2) is said to be concave if xi � 1
2 (xi−1 + xi+1), for

i = 1,2, · · · ,n−1.

Some results related to the problems of the difference and the ratio between the
arithmetic and the geometric mean are given in [1, 3, 9].

In this note we present the sharp upper bound for the ratio between the arithmetic
and the geometric mean for concave sequences. In this way the sharp reverse of the
Arithmetic-Geometric Mean Inequality is obtained. Our main result is the following
theorem.

THEOREM 1. Suppose n � 2. Let {xi}n
i=0 be a concave sequence with 0 = x0 <

x1 � x2 � · · · � xn , and let Xn = (x1, · · ·xn) . Then, we have

EXn

ΠXn
� n+1

2(n!)
1
n

. (1)

Equality holds in (1) if and only if xi = c0i , i = 1,2, · · · ,n, for some constant c0 > 0.
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The preceding theorem is motivated by the results of the papers by Aldaz [1, 3],
which state some interesting inequalities for the difference and the ratio between the
arithmetic and the geometric mean (see also [2, 4, 7, 9] for additional refinements and
references).

Note that each infinite non-negative concave sequence must be monotone increas-
ing (Lemma 3). Then, for an infinite concave sequence, we have the following corol-
lary:

COROLLARY 1. Let {xi}∞
i=0 be a concave sequence with x0 = 0 and xi > 0, ∀i ∈

N. For any n ∈ N, let Xn = (x1, · · ·xn). Then, we have

EXn

ΠXn
<

e
2
. (2)

The constant e
2 is the best possible.

Note that a continuous result which is closely related to (2) is contained in the
Berwald inequality [8]. It states that for a non-negative concave function f on [a,b]
and 0 � r � 1, it holds

1
b−a

∫ b

a
f (x)dx � (1+ r)

1
r

2

[ 1
b−a

∫ b

a
f r(x)dx

] 1
r
.

Letting r → 0 the estimation analogous to (1) follows.
Theorem 1 establishes the ratio relationship between arithmetic and geometric

mean of finite concave sequences, and it can be considered as a sharp version of the
reverse of the Arithmetic-Geometric Mean Inequality.

2. Proofs

To prove Theorem 1, we need the following lemma.

LEMMA 1. Let k be a positive integer, then

(k+1)k

k!
� 22k.

Proof. We prove this lemma by induction on k . For k = 1, it holds trivially.

Assume the lemma holds for k , namely, k! � (k+1)k

22k . Now consider the case of k +1.

Noticing the known inequality
(
1+ 1

n

)n
< 4, ∀n ∈ N, we have

(k+2)k+1

(k+1)!
� (k+2)k+1

(k+1) (k+1)k

22k

= 22k
(

1+
1

k+1

)k+1

< 22k ·4 = 22k+2,

as desired. �
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Proof of Theorem 1. Set yi = xi
i , i = 1,2, · · · ,n. Since {xi}n

i=0 is concave and
x0 = 0, it follows that

y1 � y2 � · · · � yn. (3)

It is easily seen that (1) is equivalent to

n

∑
i=1

iyi � n(n+1)
2

n

∏
i=1

y
1
n
i . (4)

Now we use induction on n to prove (4) under the condition (3). Note: although
we have assumed n � 2 in Theorem 1, we can still prove (4) for all n � 1 under the
condition (3).

If n = 1, (4) is trivial. Assume that (4) is true for n = k . For the case of n = k+1,
we need to prove that

k+1

∑
i=1

iyi � (k+1)(k+2)
2

k+1

∏
i=1

y
1

k+1
i . (5)

By the induction hypothesis, we have

k

∑
i=1

iyi � k(k+1)
2

k

∏
i=1

y
1
k
i .

Hence, to prove (5), we only need to prove that

(k+1)yk+1 +
k(k+1)

2

k

∏
i=1

y
1
k
i � (k+1)(k+2)

2

k+1

∏
i=1

y
1

k+1
i . (6)

Setting A = ∏k
i=1 y

1
k
i , we can rewrite (6) as

(k+2)A
k

k+1 y
1

k+1
k+1−2yk+1− kA � 0. (7)

Consider the function f (x) = (k+2)A
k

k+1 x
1

k+1 −2x−kA, x ∈ (0,∞). Then (7) is equiv-
alent to

f (yk+1) � 0. (8)

Now we prove (8). Since

f ′′(x) = −k(k+2)
(k+1)2 A

k
k+1 x−

2k+1
k+1 < 0,

the function f (x) is strictly concave on (0,∞) . Hence, for any 0 < a < b and x∈ [a,b] ,
we have

f (x) � min{ f (a), f (b)}. (9)

On the other hand, we claim that

mA � yk+1 � A, (10)
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where m = (k!)
1
k

k+1 .

In fact, from (3), it follows that yk+1 � A . Since xk+1 � xk � · · · � x1 > 0, we
have

(k+1)yk+1 � kyk � · · · � 2y2 � y1 > 0.

Therefore,

yk+1 � (k!)
1
k

k+1
A.

So (10) is true, and it follows from (9) that

f (yk+1) � min{ f (A), f (mA)} = min{0, f (mA)}. (11)

Therefore, to prove the desired inequality, it is sufficient to prove

f (mA) � 0. (12)

By a direct computation, we infer that (12) is equivalent to

k

∑
i=1

m
i

k+1 � k
2
. (13)

In fact, applying the Arithmetic-Geometric Mean Inequality and Lemma 1, we
obtain

k

∑
i=1

m
i

k+1 � km
1
2 >

k
2
.

So (13) is true, and then (1) is established.
If xi = c0i for some constant c0 > 0, then it is easy to see that equality holds in

(1).
Now suppose that equality holds in (4), that is,

n

∑
i=1

iyi =
n(n+1)

2

n

∏
i=1

y
1
n
i . (14)

From the proof above it follows that

k

∑
i=1

iyi � k(k+1)
2

k

∏
i=1

y
1
k
i , (15)

for k = 1, ...,n−1. Using (14) and (15) for k = n−1 we conclude that

n(n−1)
2

n−1

∏
i=1

y
1

n−1
i +nyn � n(n+1)

2

n

∏
i=1

y
1
n
i . (16)

For k = n−1, recall that

f (x) = (n+1)A
n−1
n x

1
n −2x− (n−1)A,
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where A = ∏n−1
i=1 y1/(n−1)

i . Inequality (16) is equivalent to f (yn) � 0. On the other
hand, from our proof above it follows that mA � yn � A, m = ((n−1)!)1/(n−1)/n and
f (yn) � 0, so f (yn) = 0. Since f is strictly concave, f (A) = 0, f (mA) > 0, we obtain

yn = A =
n−1

∏
i=1

y1/(n−1)
i

and equality in (16), which implies equality in (15) for k = n−1 i.e.

n−1

∑
i=1

iyi =
n(n−1)

2

n−1

∏
i=1

y
1

n−1
i . (17)

Proceeding in this way it follows that

k

∑
i=1

iyi =
k(k+1)

2

k

∏
i=1

y
1
k
i

for every k = 1, ...,n, which easily gives

y1 = y2 = · · · = yn. �

To prove Corollary 1, we need the following two lemmas.

LEMMA 2. For any n ∈ N , we have

n+1

(n!)
1
n

� e, lim
n−→∞

n+1

(n!)
1
n

= e.

The proof of this lemma is known, so we omit it here. For a more sophisticated
results, see [5].

LEMMA 3. Let {xi}∞
i=0 be a non-negative concave sequence, then {xi}∞

i=0 is in-
creasing.

Proof. To prove this lemma, we suppose the contrary, i.e., there exists a k ∈ N

such that xk+1−xk < 0. Set xk+1−xk = c < 0. Since {xi}∞
i=0 is concave, we know that

x j+1−x j � xk+1−xk = c for all j � k , j ∈ N . Hence, for sufficiently large m ∈ N , we
have

xm = xk +
m−1

∑
j=k

(x j+1− x j) < xk +(m− k)c < 0,

a contradiction! �

Proof of Corollary 1. By Lemma 3, we know that {xi}∞
i=0 is increasing. Thus, for

each n ∈ N, we have
EXn

ΠXn
� n+1

2(n!)
1
n

.
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Then, the inequality (2) follows immediately from Lemma 2.
Finally, we show that the constant e

2 is best possible. Suppose that there is a
universal constant c such that

EXk � cΠXk,

for each k∈N. Taking xi = i in the above inequality, we get c � k+1

2(k!)
1
k
, for each k∈N.

By Lemma 2, we obtain c � limk→∞
k+1

2(k!)
1
k

= e
2 . �
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