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ON WEIGHTED BERNSTEIN TYPE INEQUALITY IN

GRAND VARIABLE EXPONENT LEBESGUE SPACES

VAKHTANG KOKILASHVILI AND ALEXANDER MESKHI

(Communicated by L. Maligranda)

Abstract. In this paper a weighted Bernstein type inequality on derivatives of trigonometric poly-
nomials is established in new function spaces unifying two nonstandard Banach function spaces,
in particular, grand and variable exponent Lebegue spaces.

1. Introduction

The paper deals with the Bernstein type inequality in grand variable Lebesgue
spaces Lp(·),θ with weight (for Lp(·),θ spaces see Definition 1). Namely, we show that
for any r ∈ N and trigonometric polynomial Tn of degree less than or equal to n , the
inequality

‖sinr t T ′
n(t)‖Lp(·),θ (T) � cn‖sinr t Tn(t)‖Lp(·),θ (T) (1)

holds with a constant c independent of Tn .
The latter inequality in the classical Lebesgue spaces Lp (0 < p < ∞), was proved

by Z. Ditzian and V. Totik [4], Section 8.4 (we refer also to [2], Theorem 7.5).
An improvedBernstein inequality in variable exponent Lebesgue spaces with Muck-

enhoupt type weights, suited to this spaces, was proved in [1]. It should be emphasized
that even for constant p , the special weights inside of norms in inequality (1) are more
general than the Muckenhoupt weights of the same type.

Let s(·) be continuous, 2π -periodic function defined on R . It is said that s sat-
isfies the log-Hölder continuity condition if there exists a positive constant A such that
for all x,y ∈ R , |x− y|< 1/2, the inequality

|s(x)− s(y)| � A
− log |x− y| (2)

holds. In the sequel we denote the class of 2π -periodic functions satisfying the log-
Hölder continuity condition by P log . Further, we say that s ∈ P if

1 < s− � s+ < ∞,

Mathematics subject classification (2010): 26A33, 41A10, 41A25, 42A10.
Keywords and phrases: Bernstein inequality, trigonometric polynomial, grand variable exponent

Lebesgue spaces.

c© � � , Zagreb
Paper MIA-18-75

991

http://dx.doi.org/10.7153/mia-18-75


992 V. KOKILASHVILI AND A. MESKHI

where
s− := inf

T

s(x); s+ := sup
T

s(x), T := [−π ,π ].

Recently, the authors of this paper in [10] (see also [11]) introduced a new func-
tions space being the mixture of two well-known spaces: variable exponent Lebesgue
space and grand Lebesgue space. Let us recall the definition of that space.

DEFINITION 1. Let p∈P and let θ > 0. Denote by Lp(·),θ (T) the class of those
measurable functions for which

‖ f‖Lp(·),θ (T) := sup
0<ε<p−−1

ε
θ

p−−ε ‖ f‖Lp(·)−ε (T) < ∞,

where

‖ f‖Ls(·)(T) = inf
λ>0

{
λ :

∫
T

∣∣∣ f (x)
λ

∣∣∣s(x)dx � 1
}
.

In the same paper [10] (see also [11]) the authors showed that the space Lp(·),θ (T)
is a Banach space. It is worth mentioning that the space Lp(·),θ is non-reflective and
non-separable. Different from the constant exponent case this space is also non-rearran-
gement invariant.

For constant p and θ = 1, the space Lp(·),θ , is the Iwaniec-Sbordone space Lp)

introduced in [9] in their studies related with the integrability properties of the Jacobian
in a bounded open set Ω . The generalized version of that space, Lp),θ appeared in L.
Greco, T. Iwaniec and C. Sbordone [8]. For structural properties of Lp),θ spaces we

refer to [6]. The boundedness of the Hardy–Littlewood maximal operator in Lp)
w (Ω)

spaces, 1 < p < ∞ , for bounded open Ω , under the Muckenhoupt Ap condition was
proved in [7].

Let J be a bounded interval in R . It follows from the celebrated paper by L.
Diening [3] that the Hardy–Littlewood maximal operator defined on J is bounded in
Lr(·)(J) provided that r belongs to the classes P(J) and P log(J) defined on J . The
key point of the proof of the latter result is the following lemma:

LEMMA 1. [3] Let J be a bounded interval. A positive function s belongs to
P log(J) if and only if there is a positive constant C such that for all subintervals I ⊆ J
the inequality

|I|s−(I)−s+(I) � C (3)

holds. Moreover, if s ∈ P log(J) with the constant A (see (2)), then the constant C in
(3) can be taken equal to max{eA,2(s+−s−)} . Further, inequality (3) holds for I ⊆ J
satisfying |I| � 1/2 with the constant C = eA .

Since for us it is interesting the constant C , let us see that C = max{eA,2(s+−s−)}
in (3). Let I be a subinterval of J . Suppose that x,y ∈ I . Let |I| � 1/2. Then

|I|s−(I)−s+(I) � |I| A
ln I = eA.
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Let |I| � 1
2 . Then

|I|s−(I)−s+(I) � 2s+−s− .

Finally we mention that in the sequel constants (often different constants in one
and the same lines of inequalities) will be denoted by c or C . The symbol r′ stands for
the conjugate number of r ; under the symbol s′(·) we mean the function s(·)/(s(·)−
1) ; the set of natural numbers will be denoted by N ; by the symbol T we denote
the interval [−π ,π ] ; the symbol C(T) means the space of all continuous functions on
T ; f ′ is a derivative of a function f ; fI := 1

|I|
∫
I
| f (t)|dt ; s− := infT s , s+ := supT s ;

s−(J) := infJ s ; s+(J) := supJ s , where J is an interval.

2. Preliminaries

Let Tn be any polynomial with degree less than or equal to n . Suppose that M :=
‖Tn‖L∞(T) and let t0 be a point at which |Tn(t0)| = M . Let us introduce the notation:

I :=
[
t0− 1

2n
, t0 +

1
2n

]
, B :=

{
t ∈T : |sin t|� sin

1
8n

}
, B1 := T\B, B2 := B1∩I. (4)

Observe that

|B| = 1
2n

,
1
n

� |B2| � 1
n
− 1

2n
=

1
2n

= |B|. (5)

In the sequel for an exponent p ∈ P , we denote

p(ε)(·) :=
1

p(·)− ε
.

REMARK 1. It is easy to see that if p ∈ P log(T) with constant A , then p(ε) ∈
P log(T) with the constant A(p) := A

p2−
, i.e., for all x,y ∈ T with |x− y|� 1/2,

|p(ε)(x)− p(ε)(y)| � A(p)

− log |x− y| . (6)

Now we prove some auxiliary statements.

LEMMA 2. Let p ∈ P ∩P log and let p be π -periodic. Suppose that 0 < ε <
p− − 1 . Then there is a positive constant c independent of n and ε such that for all
natural n,

|B|p(ε)
− (B)−p(ε)

+ (B) � c. (7)

Proof. Let us observe that B = I1∪ I2∪ I3 , where

I1 := [−π ,−π +1/(8n)], I2 := [−1/(8n),1/(8n)], I3 := [π −1/(8n),π ].
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Suppose that x′ and x′′ be points in B such that

p(ε)
− (B) = p(ε)(x′), p(ε)

+ (B) = p(ε)(x′′),

It is obvious that x′,x′′ ∈ B since the set B is compact. Consider the following cases
(i) x′ ∈ I1 and x′′ ∈ I3 , or x′′ ∈ I1 and x′ ∈ I3 ;
(ii) x′ ∈ I1 and x′′ ∈ I2 , or x′′ ∈ I1 and x′ ∈ I2 ;
(iii) x′ ∈ I2 and x′′ ∈ I3 , or x′′ ∈ I2 and x′ ∈ I3 ;
(iv) x′,x′′ ∈ I1 , or x′,x′′ ∈ I2 , or x′,x′′ ∈ I3 .
Let the case (i) hold. Then by the fact that p(ε) is 2π -periodic, it is clear that

p(ε)(x′) = p(ε)(x ′) , where x ′ ∈ I 1 , x ′ = x′ +2π and I 1 = I1 +2π . Then I3∪ I 1 is an
interval of length 1

4n containing x ′ and x′′ . Then by Remark 1 we have that

|B|p(ε)
− (B)−p

(ε)
+ (B) � 2p+ n|p

(ε)(x′)−p(ε)(x′′)| = 2p+ n|p
(ε)(x′)−p(ε)(x′′)|

� 2p+ n
A(p)

− log |x ′−x′′| � 2p+ n
A(p)
log4n � cp,

where cp = 2p+eA(p)
and A(p) is the constant arisen in (6).

The case when x′′ ∈ I1 and x′ ∈ I3 is proved analogously.
(ii), (iii): These cases are analogous to (i) but here it is used π -periodicity of

p(ε) instead of 2π -periodicity. For example, in the case (ii) when x′ ∈ I1 and x′′ ∈ I2 ,
denoting I 1 := π + I1 and x ′ = π + x′ , then we have that I 1 ⊂ I2 and x ′,x′′ ∈ I2 .

(iv) This case is easier to prove because in this case we deal with an interval.
For example, if x′,x′′ ∈ I1 , then by Lemma 1 we have that (7) holds with constant
c = max{eA,21−1/p+} , where A is from (2). �

LEMMA 3. Let p ∈ P ∩P log and let p be π -periodic. Then there is a positive
constant c depending only on p such that

|B|p(ε)
− (B) � c |B2|p

(ε)
+ (B2) (8)

provided that I∩B 	= /0 .

Proof. Since B2 ⊂ I and |I|= 1
n , therefore by the condition p(ε) ∈ P log , Lemma

1, Remark 1, Lemma 2 and (5) we have that

|B2|p
(ε)
+ (B2) � |B2|p

(ε)
+ (I) � 2−p

(ε)
+ (I)|I|p(ε)

+ (I)

� 2−1|I|p(ε)
+ (I) � 2−1e−A|I|p(ε)

− (I) � 2−1e−A|I|p(ε)
− (I∩B)

� 2−1e−A|I|p(ε)
+ (I∩B) � 2−1e−A|I|p(ε)

+ (B) � 4−1e−A|B|p(ε)
− (B),

where A is the constant of the condition p ∈ P log . We also have that c = 4−1eA . �

LEMMA 4. Let p ∈ P ∩P log and let p be π -periodic. Suppose also that p− =
p(0) . Then there is constant c> 0 such that for all n∈N and ε ∈ (0, p−−1) inequality
(8) holds provided that I∩B = /0 .
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Proof. Since 0 belongs to B we have

p(ε)
+ (B) = p(ε)(0) = p(ε)

+ � p(ε)
+ (B2).

Then by using Lemma 2 we find that

|B|p(ε)
− (B) � c|B|p(ε)

+ (B) = c|B|p(ε)
+ � c|B2|p

(ε)
+ (B2),

where the constant c depends only on p . �

Summarizing Lemmas 2–4 we see that the following lemma is true.

LEMMA 5. Let p ∈ P ∩P log and let p be π -periodic. Suppose also that p− =
p(0) . Then there is a constant c depending only on p such that for all n ∈ N and
ε ∈ (0, p−−1) inequality (8) holds.

The next lemma will be also useful for us.

LEMMA 6. Let p ∈ P ∩P log and let θ > 0 . Suppose that p is π -periodic and
that p− = p(0) . Then there is a positive constant c depending only on p such that for
any polynomial Tn with degree less than or equal to n, the inequality

‖Tn‖Lp(·),θ (T) � cn‖sint Tn‖Lp(·),θ (T)

holds.

Proof. Using notation (4) we have

‖Tn‖Lp(·),θ (T) � c‖Tn‖Lp(·),θ )(B1)
+ c‖Tn‖Lp(·),θ (B) =: A1 +A2, (9)

where the constant c depends only on p . We estimate A1 and A2 separately. To
estimate A1 , observe that

B1 ⊂
{
t : n|sin t| � 1

4π

}
. (10)

Hence,
‖Tn‖Lp(·),θ (B1)

� 4πn‖sintTn(t)‖Lp(·),θ (B1)
. (11)

Now we estimate A2 . Recall that t0 is a point at which |Tn(t0)| = M := ‖Tn‖L∞(T)
and I := [t0 − 1/(2n),t0 + 1/(2n)] . Applying the Bernstein inequality for the space
C(T) we have that for t ∈ I ,

|Tn(t)−Tn(t0)| � 1
2n

|T ′(ξ )| � 1
2n

‖T ′(t)‖L∞(I) � 1
2
|Tn(t)|L∞(T) � 1

2
M.

Consequently,

|Tn(t)| > M
2

, t ∈ I. (12)
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Further,

‖Tn‖Lp(·),θ (B) � M‖χB‖Lp(·),θ = M sup
ε∈(0,p−−1)

ε
θ

p−−ε ‖χB‖Lp(·)−ε

� M sup
ε∈(0,p−−1)

ε
θ

p−−ε max
{
|B|

1
(p(·)−ε)+(B) , |B|

1
(p(·)−ε)−(B)

}

� cM sup
ε∈(0,p−−1)

ε
θ

p−−ε |B|
1

(p(·)−ε)+(B) .

In the latter inequality we used the estimate

|B|
1

(p(·)−ε)−(B) � (2π)1−1/p+|B|
1

(p(·)−ε)+(B) .

Further, notice that inequality (12) holds for all t ∈ B2 , because B2 ⊂ I . Hence,
applying (10), (12), the inclusion B2 ⊂ B1 and obvious inequality

n‖sint Tn(t)‖Lp(·),θ (T) � n‖sint Tn(t)‖Lp(·),θ (B1)

we find that

n‖sint Tn(t)‖Lp(·),θ (T) � 1
4π

‖Tn(t)‖Lp(·),θ (B1)
� 1

4π
‖Tn(t)‖Lp(·),θ (B2)

� M
8π

‖χB2‖Lp(·),θ

� M
8π

sup
ε∈(0,p−−1)

ε
θ

p−−ε min

{
|B2|

1
(p(·)−ε)+(B2) , |B2|

1
(p(·)−ε)−(B2)

}

� M
16π

(2π)p−−p+ sup
ε∈(0,p−−1)

ε
θ

p−−ε |B2|
1

(p(·)−ε)−(B2) .

Taking into account these estimates and Lemma 5 we conclude that

‖Tn‖Lp(·),θ (B) � cn ‖sint Tn(t)‖Lp(·),θ (T) (13)

with the constant c depending only on p .
Finally, inequalities (9), (13) and (11) yield that

‖Tn‖Lp(·),θ )(T) � cn ‖sin t Tn(t)‖Lp(·),θ (T)

with the positive constant c is independent of Tn . �
For 2π -periodic f , it is defined its Hardy–Littlewood maximal operator as

M f (x) = sup
|t|�π

1
2t

t∫
−t

| f (x+u)|du.

It is easy to see that M f is also 2π -periodic.
To prove the main result of this paper we to prove the boundedness of M in

Lp(·),θ (T) .
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PROPOSITION 1. Let p ∈ P ∩P log . Then for 2π -periodic f ∈ Lp(·)(T) ,

‖M f‖Lp(·),θ (T) � c‖ f‖Lp(·),θ (T). (14)

To prove Proposition 1 we need some auxiliary statements.
Let J be a bounded interval in R and let s be a positive function on J . We denote

by MJ the Hardy–Littlewood maximal function defined on J :

MJ f (x) = sup
I
x
I⊆J

1
|I|

∫
I

| f (t)|dt,

where the supremum is taken over all subintervals I ⊂ J containing x .

LEMMA 7. Let s be an exponent defined on a bounded interval J such that 1 �
s−(J) � s+(J) < ∞ . Suppose that s ∈ P log(J) . Then

(a) there is a positive constant c p such that for all f , ‖ f‖Ls(·)(J) � 1 , f � 0 , I ⊂ J ,
x ∈ J , (

fI
)s(x) � c p

[(
f s(·)(·))I +1

]
,

where
cs = max{4s+−1,2s+−1C},

and C is defined in Lemma 1 (see (3)).
(b) (

MJ f (x)
)s(x) � cs

[
MJ( f s(·))(x)+1

]
, x ∈ J, f � 0.

Proof. We prove (a). Part (b) is a direct consequence of (a). Let |I| � 1/2. Let us
denote

ρs( f ) :=
∫
J

f s(x)(x)dx.

Observe that since |I| � 1/2 and ρs( f ) � 1 we have that
(

f s(·)
2

)
I
� 1. Then

(
fI
)s(x) �

[
1
|I|

( ∫
I∩{ f�1}

f (y)dy+
∫

I∩{ f<1}
f (y)dy

)]s(x)

�
[

1
|I|

∫
I

(
f s(y)(y)+1

)
dy

]s(x)

� 2s(x)−1
[(

f s(·))s(x)
I +1

]

= 22s(x)−1
( f s(·)

2

)s(x)

I
+2s(x)−1 � 4s(x)−1

(
f s(·)(·)

)
I
+2s(x)−1

� 4s+−1
[(

f s(·)(·))I +1

]
.
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Let now |I| < 1/2. By Hölder’s inequality and Lemma 1 we find that

(
fI
)s(x) �

(
1
|I|

∫
I

f s−(I)(y)dy

)s(x)/s−(I)

� 2s(x)/s−(I)|I|−s(x)/s−(I)
[
1
2

∫
I

(
f (y)

)s(y)
dy+

1
2
|I|

]s(x)/s−(I)

� 2s(x)/s−(I)|I|−s(x)/s−(I)
[
1
2

∫
I

(
f (y)

)s(y)
dy+

|I|
2

]

� 2s(x)/s−(I)−1|I|1−s(x)/s−(I)[
(
f s(·)(·))I +1

]

� 2s(x)/s−(I)−1|I|(s−(I)−s(x))/s−(I)
[(

f s(·)(·))I +1

]

� 2s(x)/s−(I)−1C1/s−(I)
[(

f s(·)(·))I +1

]
,

where C is defined in (3). Finally we conclude that

cs = max{44s+−1,2s+−1C}. �

REMARK 2. It is well-known that MJ is bounded in Lp0(J) for 1 < p0 < ∞ .
Moreover, by Marcinkiewicz interpolation theorem the norm of MJ can be estimated
by C0(p0)′1/p0 , where the constant C0 does not depend on p0 . We refer to e.g. [5], pp.
29–30.

PROPOSITION 2. Let J be a bounded interval and let p∈P(J)∩P log(J) . Then

‖MJ‖Lp(·)(J)→Lp(·)(J) �
[
2p−−1c̃p−

p

[
C0(p−)′ + |J|]]1/p−

,

where
c̃p = max{4p+/p−−1,2p+/p−−1C},

C is the constant (3) replacing s by p/p− and the constant C0 does not depend on p.

Proof. First we show that

(
MJ f (x)

)p(x)/p− � c(p)
(
MJ

(
f p(·)/p−)

(x)+1
)
, x ∈ J, f � 0,

where

c(p) =
[
2p−−1(c̃p)p− [(p−)′ + |J|]

]1/p−
.
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Indeed, by Lemma 7 (taking s(x) = p(x)
p− ) we have

(
MJ f (x)

)p(x)/p− � max{4p+/p−−1,2p+/p−−1C}
[(

MJ f p(·)/p−)
(x)+1

]

= c̃p

[(
MJ f p(·)/p−)

(x)+1

]
.

Let ‖ f‖Lp(·)(X) � 1. Let us estimate ρp(MJ f ) =
∫
J
(MJ f (x))p(x)dx . By using

Remark 2 we find that

ρp(MJ f ) = ‖(MJ f
)p(·)/p−‖p−

Lp− (J)

� 2p−−1(c̃p)p−(‖(MJ f p(·)/p−)‖p−
Lp− (J) +‖1‖p−

Lp−(J)

)
� 2p−−1(c̃p)p−

(
C0(p−)′‖ f p(·)/p−‖p−

Lp− (J) + |J|
)

= 2p−−1(c̃p)p−
(

C0(p−)′
∫
J

( f (x))p(x)dx+ |J|
)

� 2p−−1(c̃p)p−
[
C0(p−)′ + |J|

]
.

Thus,

ρp(MJ f ) � 2p−−1(c̃p)p−
[
C0(p−)′ + |J|

]
=: Cp.

Hence
ρp

(
(MJ f )/C

1/(p(·))
p

)
� 1.

Consequently,

‖(MJ f )/C
1/(p(·))
p ‖p+

Lp(·)(J) � 1.

Finally,
‖MJ‖Lp(·)(J)→Lp(·)(J) � (Cp)1/p− . �

COROLLARY 1. Let J be a bounded interval and let p ∈ P(J)∩P log(J) . Then
for 0 < ε < p−−1 ,

‖MJ f‖Lp(·)−ε (J)→Lp(·)−ε (J) � Cp,ε ,

where Cp,ε is the constant depending only on p and ε such that

sup
0<ε�δ

Cp,ε < ∞,

for some small positive number δ .

PROPOSITION 3. Let J be a bounded interval and let p∈P(J)∩P log(J) . Then
for f ∈ Lp(·),θ (J) ,

‖MJ f‖Lp(·),θ (J) � c‖ f‖Lp(·),θ (J). (15)
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Proof. First recall that (see e.g. [12])

Lq(·)(J) ↪→ Lp(·)(J) (16)

holds if and only if q(x) � p(x) .
By using (16) and Corollary 1 we see that

sup
0<ε<p−−1

ε
θ

p−−ε ‖MJ f‖Lp(·)−ε (J)

= max{ sup
0<ε<σ

(· · ·), sup
σ�ε<p−−1

(· · ·)}

� max{ sup
0<ε<σ

(· · ·),(1+ |J|) sup
σ�ε<p−−1

ε
θ

p−−ε ‖MJ f‖Lp(·)−σ (J)}

� C(σ , |J|,θ , p) sup
0<ε<σ

ε
θ

p−−ε ‖MJ f‖Lp(·)−ε (J)

� C(σ , |J|,θ , p) sup
0<ε<σ

ε
θ

p−−ε ‖ f‖Lp(·)−ε (J)

� C(σ , |J|,θ , p)‖ f‖Lp(·),θ (J). �

Proof of Proposition 1. Following, for example, the arguments from [13], p. 244,
let g be a function equal to f in (−2π ,2π) and to 0 otherwise. Then

(M f )(x) � (M(−2π ,2π)g)(x), x ∈ T.

Now taking into account the fact that p and f are periodic, and Proposition 3, we are
done. �

3. The main result

The main result of this paper reads as follows:

THEOREM 1. Suppose that p is π -periodic and that p− = p(0) . Let p ∈ P ∩
P log and let θ > 0 . Then for any r ∈ N and arbitrary trigonometric polynomials Tn

of degree less than or equal to n, inequality (1) holds with a constant c independent of
Tn .

To prove this theorem we need the next statement.

PROPOSITION 4. Let p be 2π -periodic, p ∈ P ∩P log and let θ > 0 . Then for
arbitrary trigonometric polynomials Tn of degree less than or equal to n, the inequality

‖T ′
n(t)‖Lp(·),θ (T) � cn ‖Tn(t)‖Lp(·),θ (T) (17)

holds, where the constant c does not depend on Tn .
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Proof. It is well-known (see e.g., [13], Ch.12) that for the Cesáro means of f ,

sup
n
|σn( f ,x)| � c(M f )(x). (18)

Further, by using the representation

Tn(x) =
1
π

∫
T

Tn(t)Dn(t − x)dt,

where

Dn(t) =
1
2

+
n

∑
k=1

coskt,

we have that

T ′
n(x) = − 1

π

∫
T

Tn(t)D′
n(t− x)dt = − 1

π

∫
T

Tn(x+ t)D′
n(t)dt

=
1
π

∫
T

Tn(x+ t)
{ n

∑
k=1

k sinkt
}

dt

=
1
π

∫
T

Tn(x+ t)2nsinnt
{1

2
+

n−1

∑
k=1

n− k
n

coskt
}

dt

= 2n
1
π

∫
T

Tn(x+ t)sinntKn−1(t)dt = 2n
1
π

∫
T

Tn(t)sinn(t− x)Kn−1(t− x)dt.

Hence, taking estimate (18) and Proposition 1 into account we find that

‖T ′
n(t)‖Lp(·),θ (T) � 2n‖σn−1(|Tn|, ·)‖Lp(·),θ (T) � cn‖Tn(t)‖Lp(·),θ (T). �

Proof of Theorem 1. For n ∈ N , we have

sinr T ′
n(t) = (sinr tTn(t))′ − r sinr−1 t costTn(t).

Therefore,

‖sinr t T ′
n(t)‖Lp(·),θ (T) � ‖(sinr t Tn(t))′‖Lp(·),θ (T) + r‖sinr−1 t Tn(t)‖Lp(·),θ (T).

Now applying Proposition 4 and Lemma 6 we obtain

‖sinr t T ′
n(t)‖Lp(·),θ (T) � c1n‖sinr t Tn(t)‖Lp(·),θ (T) + c2n‖sinr t Tn(t)‖Lp(·),θ (T).

Finally we have (1) with a constant c independent of Tn . �
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