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Abstract. In this paper, we apply Jensen’s inequality and two kinds of majorization for matrices
in order to generalize some recent results on Mercer’s inequality for convex functions.

1. Introduction and summary

A. McD. Mercer [9, Theorem 1.2] proved the following variant of Jensen’s in-
equality.

THEOREM A. [9, Theorem 1.2] Let f be a real convex function on an interval
[a1,a2] , a1 < a2 , such that

a1 � xi � a2 for i = 1, . . . ,n. (1)

Then

f

(
a1 +a2−

n

∑
i=1

wixi

)
� f (a1)+ f (a2)−

n

∑
i=1

wi f (xi), (2)

where
n
∑
i=1

wi = 1 with wi > 0 .

An m-tuple b = (b1, . . . ,bm)∈R
m is said to be majorized by m-tuple a = (a1, . . . ,

am) ∈ R
m , written as b ≺ a , if

k

∑
j=1

b[ j] �
k

∑
j=1

a[ j] for k = 1, . . . ,m , and
m

∑
j=1

b j =
m

∑
j=1

a j, (3)

where a[1] � · · · � a[m] and b[1] � · · · � b[m] are the entries of a and b , respectively, in
nonincreasing order [6, p. 8].

A majorization generalization of Mercer’s inequality (2) has been shown in [10,
Theorem 2.1].
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THEOREM B. [10, Theorem 2.1] Let f : I → R be a continuous convex function
on an interval I ⊂ R . Suppose a = (a1, . . . ,am) with a j ∈ I , and X = (xi j) is a real
n×m matrix such that xi j ∈ I for all i, j .

If a majorizes each row of X , that is

xi· = (xi1, . . . ,xim) ≺ (a1, . . . ,am) = a for each i = 1, . . . ,n, (4)

then we have the inequality

f

(
m

∑
j=1

a j −
m−1

∑
j=1

n

∑
i=1

wixi j

)
�

m

∑
j=1

f (a j)−
m−1

∑
j=1

n

∑
i=1

wi f (xi j), (5)

where
n
∑
i=1

wi = 1 with wi � 0 .

Pavić [13] has recently proved the following result (with γ = −1).

THEOREM C. [13, Theorem 2.5] Let a j,xi ∈ R be points so that

{a1, . . . ,am}∩ conv{x1, . . . ,xn} = /0 or {endpoint(s)}.

Let α j,wj ∈ [0,1] be coefficients of sums
m
∑
j=1

α j −1 =
n
∑
j=1

wj = 1 .

If
1

m
∑
j=1

α j

m

∑
j=1

α ja j ∈ conv{x1, . . . ,xn},

then every convex function f : conv{a1, . . . ,an}→ R verifies the inequality

f

(
m

∑
j=1

α ja j −
n

∑
i=1

wixi

)
�

m

∑
j=1

α j f (a j)−
n

∑
i=1

wi f (xi). (6)

Some generalizations, extensions and refinements of Mercer’s inequality and The-
orem A can be found in [2, 4, 7, 8, 12].

In the present paper our aim is to demonstrate further results related to Theo-
rems A, B and C by using a majorization method.

Here is the summary of the paper. Our approach is based on two types of ma-
jorization for matrices. In Section 2 we utilize some majorization relations for rows of
matrices. We prove Theorem 2.1, which extends Theorem B. In addition, Corollary 2.2
is a generalization of Theorem A. In Section 3 we pay attention on consequences of
majorization relations for columns of matrices. In Theorem 3.1 and Corollary 3.2 we
provide inequalities with row sums of some involved column stochastic matrix induc-
ing the column majorization. This leads to results similar as in Theorem C and in [4,
Theorem 5.1].
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2. Majorization and Mercer type inequalities

An m×m real matrix S = (si j) is said to be doubly stochastic if si j � 0 for

i, j = 1,2, . . . ,m , and all row and column sums of S are equal to 1, i.e.,
m
∑
j=1

si j = 1 for

i = 1,2, . . . ,m , and
m
∑
i=1

si j = 1 for j = 1,2, . . . ,m .

It is worth noting that an m×m matrix S is doubly stochastic iff S � 0 (entrywise)
and eS = e = eST , where e = (1, . . . ,1) is the vector of ones of dimension m .

For given two real row m-tuples a = (a1, . . . ,am) and b = (b1, . . . ,bm) it is well-
known that

b ≺ a iff b = aS (7)

for some doubly stochastic m×m matrix S = (si j) (see [6, Theorem B.2., p. 33]).
Majorization and convexity are related as follows. If f : I → R is a continuous

convex function on an interval I ⊂ R then for a = (a1, . . . ,am) and b = (b1, . . . ,bm)
with a j,b j ∈ I for j = 1, . . . ,m ,

b ≺ a implies
m

∑
j=1

f (b j) �
m

∑
j=1

f (a j) (8)

(see [5, p. 75], [6, p. 156]).
The i th row and j th column of a matrix Z = (zi j) are denoted by zi· and z· j ,

respectively.
Given a function f : I ⊂R→R and an n×1 column matrix z = (z1, . . . ,zn)T such

that zi ∈ I for i = 1, . . . ,n , we define f (z) as n×1 column matrix ( f (z1), . . . , f (zn))T .
In addition, we equipp the space R

n with the standard inner product 〈·, ·〉 given
by

〈x,y〉 =
n

∑
i=1

xiyi for x = (x1, . . . ,xn)T ,y = (y1, . . . ,yn)T ∈ R
n .

THEOREM 2.1. Let f : I → R be a continuous convex function on an interval
I ⊂ R . Suppose X = (xi j) and A = (ai j) are real n×m matrices such that xi j ∈ I and
ai j ∈ I for i = 1, . . . ,n, j = 1, . . . ,m.

If for each i = 1, . . . ,n, the i th row of X is majorized by the i th row of A , that is

xi· = (xi1, . . . ,xim) ≺ (ai1, . . . ,aim) = ai· for each i = 1, . . . ,n, (9)

then we have the inequality

f

(
m

∑
j=1

n

∑
i=1

wiai j −
m−1

∑
j=1

n

∑
i=1

wixi j

)
�

m

∑
j=1

n

∑
i=1

wi f (ai j)−
m−1

∑
j=1

n

∑
i=1

wi f (xi j), (10)

where
n
∑
i=1

wi = 1 with wi � 0 .
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Proof. We begin by showing that the left-hand side of inequality (10) is well-
defined.

By a routine algebra, we have

m

∑
j=1

n

∑
i=1

wiai j −
m−1

∑
j=1

n

∑
i=1

wixi j =
m

∑
j=1

〈w,a· j〉−
m−1

∑
j=1

〈w,x· j〉

= 〈w,
m

∑
j=1

a· j −
m−1

∑
j=1

x· j〉. (11)

In light of (3) and (9) we see that

m

∑
j=1

ai j =
m

∑
j=1

xi j for each i = 1, . . . ,n ,

and therefore
m

∑
j=1

ai j −
m−1

∑
j=1

xi j = xim for each i = 1, . . . ,n ,

which means
m

∑
j=1

a· j −
m−1

∑
j=1

x· j = x·m. (12)

Because x·m ∈ In and w is a probability vector in R
n , we infer that 〈w,x·m〉 ∈ I . Hence,

by (12), we get
m
∑
j=1

n
∑
i=1

wiai j −
m−1
∑
j=1

n
∑
i=1

wixi j ∈ I , as was to be proven.

From (11) and by the Jensen’s inequality for convex function f , we can write

f

(
m

∑
j=1

n

∑
i=1

wiai j −
m−1

∑
j=1

n

∑
i=1

wixi j

)

= f

(
〈w,

m

∑
j=1

a· j −
m−1

∑
j=1

x· j〉
)

� 〈w, f

(
m

∑
j=1

a· j −
m−1

∑
j=1

x· j

)
〉. (13)

It now follows from (12) and (13) that

f

(
m

∑
j=1

n

∑
i=1

wiai j −
m−1

∑
j=1

n

∑
i=1

wixi j

)
� 〈w, f (x·m)〉. (14)

On account of (8) and (9) we obtain

f (xi1)+ . . .+ f (xim) � f (ai1)+ . . .+ f (aim) for i = 1, . . . ,n .

From this we deduce that

f (x·1)+ . . .+ f (x·m) � f (a·1)+ . . .+ f (a·m),
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where here � is the componentwise ordering on R
n induced by the cone R

n
+ . There-

fore
f (x·m) � f (a·1)+ . . .+ f (a·m)− f (x·1)− . . .− f (x·m−1).

In addition, w ∈ R
n
+ , so we get

〈w, f (x·m)〉 � 〈w,
m

∑
j=1

f (a· j)−
m−1

∑
j=1

f (x· j)〉,

which implies

〈w, f (x·m)〉 �
m

∑
j=1

〈w, f (a· j)〉−
m−1

∑
j=1

〈w, f (x· j)〉

=
m

∑
j=1

n

∑
i=1

wi f (ai j)−
m−1

∑
j=1

n

∑
i=1

wi f (xi j). (15)

Finally, by combining (14) and (15), we establish (10) completing the proof. �

In order to establish an extension of Mercer’s inequality (see Theorem A), we
employ Theorem 2.1 for m = 2. Here we relax the condition (1) from a � xi � b to
ai � xi � bi for i = 1, . . . ,n .

COROLLARY 2.2. Let f : I → R be a continuous convex function on an interval
I ⊂ R . Let ai,bi,xi ∈ I satisfy ai � xi � bi for i = 1, . . . ,n.

Then we have the inequality

f

(
n

∑
i=1

wiai +
n

∑
i=1

wibi−
n

∑
i=1

wixi

)
�

n

∑
i=1

wi f (ai)+
n

∑
i=1

wi f (bi)−
n

∑
i=1

wi f (xi),

where
n
∑
i=1

wi = 1 with wi � 0 .

Proof. We introduce n×2 matrices A = (ai j) and X = (xi j) by putting ai1 = ai ,
ai2 = bi , xi1 = xi , xi2 = yi = ai +bi− xi for i = 1, . . . ,n .

It is not hard to check that the i th row of X is majorized by the i th row of A , i.e.,

xi· = (xi1,xi2) ≺ (ai1,ai2) = ai· for each i = 1, . . . ,n .

Now, the required result is due to Theorem 2.1. �

REMARK 2.3. In Theorem 2.1, if all rows of the matrix A are identical, i.e.,

ai· = (ai1, . . . ,aim) = (a1, . . . ,am) = a for each i = 1, . . . ,n

(cf. (4)), then inequality (10) becomes inequality (5).
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In fact, since ai j = a j for i = 1, . . . ,n , from Theorem 2.1 we get

f

(
m

∑
j=1

a j −
m−1

∑
j=1

n

∑
i=1

wixi j

)
= f

(
m

∑
j=1

n

∑
i=1

wiai j −
m−1

∑
j=1

n

∑
i=1

wixi j

)

�
m

∑
j=1

n

∑
i=1

wi f (ai j)−
m−1

∑
j=1

n

∑
i=1

wi f (xi j) =
m

∑
j=1

f (a j)−
m−1

∑
j=1

n

∑
i=1

wi f (xi j),

which gives (5).
Therefore Theorem B is a special version of Theorem 2.1.

To give motivation for our further studies, notice that the majorization assumption
(9) in Theorem 2.1, i.e.,

xi· ≺ ai· for i = 1, . . . ,n (16)

is equivalent to
xi· = ai·Si for i = 1, . . . ,n (17)

with some doubly stochastic m×m matrices Si (see (7)).
If in addition all matrices Si , i = 1, . . . ,n , are identical:

S1 = . . . = Sn = S = (si j) (18)

then (17) implies
xi· = ai·S for i = 1, . . . ,n ,

which can be rewritten in the form

xi j =
m

∑
l=1

ailsl j for i = 1, . . . ,n , (19)

where X = (xi j) = (x·1, . . . ,x·m) and A = (ai j) = (a·1, . . . ,a·m) , and x· j and a· j denote
the j th columns of X and A , respectively. Hence

x· j =

⎛
⎜⎝

x1 j
...

xn j

⎞
⎟⎠=

⎛
⎜⎜⎜⎜⎝

m
∑
l=1

a1lsl j

...
m
∑
l=1

anlsl j

⎞
⎟⎟⎟⎟⎠=

m

∑
l=1

⎛
⎜⎝

a1l
...

anl

⎞
⎟⎠sl j =

m

∑
l=1

a·lsl j.

Since S is doubly stochastic, we obtain

x· j ∈ conv{a·1, . . . ,a·m} for j = 1, . . . ,m . (20)

Thus we see that (20) is a consequence of (16) with assumption (18).
In the next section, we focus on the special majorization (20) in place of (16).

This approach has the advantage that column stochastic matrices can be used instead of
doubly stochastic ones.
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3. Vector majorization and its applications

We now extend our framework by admitting m- and k -tuples with vector compo-
nents in place of scalar ones and by making use of column stochastic matrices.

An m× k real matrix S = (si j) is said to be column stochastic if si j � 0 for

i = 1,2, . . . ,m , j = 1,2, . . . ,k , and all column sums of S are equal to 1, i.e.,
m
∑
i=1

si j = 1

for j = 1,2, . . . ,k .
It is readily seen that an m×k matrix S is column stochastic iff S � 0 (entrywise)

and eS = e , where e = (1, . . . ,1) is the vector of ones of an appropriate dimension.
We say that a vector k -tuple Y = (y1,y2, . . . ,yk) with y j ∈ R

n for j = 1, . . . ,k , is
pre-majorized (resp. majorized) by a vector m-tuple X = (x1,x2, . . . ,xm) with x j ∈ R

n

for j = 1, . . . ,m , written as Y ≺p X (resp. Y ≺ X), if there exists an m× k column
stochastic matrix (resp. doubly stochastic matrix) S = (si j) so that

(y1,y2, . . . ,yk) = (x1,x2, . . . ,xm)S (21)

(see [11], cf. [3, 14]). Here and hereafter the notation (21) means

y j = s1 jx1 + s2 jx2 + . . .+ sm jxm for j = 1,2, . . . ,k . (22)

Observe that (22) is equivalent to

y j ∈ conv{x1,x2, . . . ,xm} for j = 1,2, . . . ,k

(cf. [14, Proposition 3.3]).
If (x1,x2, . . . ,xm) is identified with n×m matrix X , and (y1,y2, . . . ,yk) is iden-

tified with n× k matrix Y , then (21) can be interpreted as

Y = XS,

which is equivalent to
YT = ST XT (23)

with row stochastic k×m matrix ST .
In this situation, one sees that pre-majorization (21) means the weak matrix ma-

jorization (23) for matrices XT and YT in terminology of [14] (see also [6, pp. 616–
617]).

It is not hard to verify that if f : I → R is convex on an interval I ⊂ R then
the extended function f on In ⊂ R

n is � -convex on In (see (24)), where � is the
componentwise ordering on R

n given by

(x1, . . . ,xm)T � (y1, . . . ,ym)T iff xi � yi for i = 1, . . . ,n .

That is, the convexity of f on I implies

f (α(x1, . . . ,xm)T + β (y1, . . . ,ym)T )
� α f ((x1, . . . ,xm)T )+ β f ((y1, . . . ,ym)T ) (24)

for α,β � 0, α + β = 1, xi,yi ∈ I .
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THEOREM 3.1. Let f : I → R be a continuous convex function on an interval
I ⊂ R . Suppose X = (xi j) is a real n× k matrix such that xi j ∈ I for i = 1, . . . ,n,
j = 1, . . . ,k , and A = (ai j) is a real n×m matrix such that ai j ∈ I for i = 1, . . . ,n,
j = 1, . . . ,m.

Assume the k -tuple (x·1, . . . ,x·k) of columns of X is pre-majorized by the m-tuple
(a·1, . . . ,a·m) of columns of A , i.e.,

(x·1, . . . ,x·k) ≺p (a·1, . . . ,a·m) (25)

in the sense
(x·1, . . . ,x·k) = (a·1, . . . ,a·m)S (26)

for some column stochastic m× k matrix S = (si j) .
Then we have the inequality

f

(
m

∑
j=1

n

∑
i=1

S jwiai j −
k−1

∑
j=1

n

∑
i=1

wixi j

)
�

m

∑
j=1

n

∑
i=1

S jwi f (ai j)−
k−1

∑
j=1

n

∑
i=1

wi f (xi j), (27)

where
n
∑
i=1

wi = 1 with wi � 0 , and S j =
k
∑
l=1

s jl is the j th row sum of S , j = 1, . . . ,m.

Proof. First of all, we show that the left-hand side of inequality (27) is well-
defined. It follows that

m

∑
j=1

n

∑
i=1

S jwiai j −
k−1

∑
j=1

n

∑
i=1

wixi j =
m

∑
j=1

S j〈w,a· j〉−
k−1

∑
j=1

〈w,x· j〉

= 〈w,
m

∑
j=1

S ja· j −
k−1

∑
j=1

x· j〉. (28)

It is sufficient to show that for each i = 1, . . . ,n ,

m

∑
j=1

S jai j −
k−1

∑
j=1

xi j ∈ I. (29)

From (25) and (26) we get

x· j =
m

∑
l=1

sl j a·l for each j = 1, . . . ,k . (30)

Hence
k

∑
j=1

x· j =
k

∑
j=1

m

∑
l=1

sl j a·l =
m

∑
l=1

(
k

∑
j=1

sl j

)
a·l =

m

∑
l=1

Sla·l,

which yields

x·k =
m

∑
j=1

S ja· j −
k−1

∑
j=1

x· j. (31)
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But xi j ∈ I for all i, j , so (31) gives (29), as claimed.
On the other hand, from (28) and by the convexity of f on I (see (24)), we get

f

(
m

∑
j=1

n

∑
i=1

S jwiai j −
k−1

∑
j=1

n

∑
i=1

wixi j

)

= f

(
〈w,

m

∑
j=1

S ja· j −
k−1

∑
j=1

x· j〉
)

� 〈w, f

(
m

∑
j=1

S ja· j −
k−1

∑
j=1

x· j

)
〉. (32)

According to (31) we have

f

(
m

∑
j=1

S ja· j −
k−1

∑
j=1

x· j

)
= f (x·k)

and further

〈w, f

(
m

∑
j=1

S ja· j −
k−1

∑
j=1

x· j

)
〉 = 〈w, f (x·k)〉. (33)

Now, from (32) and (33) we find that

f

(
m

∑
j=1

n

∑
i=1

S jwiai j −
k−1

∑
j=1

n

∑
i=1

wixi j

)
� 〈w, f (x·k)〉. (34)

We shall prove that

f (x·1)+ . . .+ f (x·k) � S1 f (a·1)+ . . .+Sm f (a·m), (35)

where here � is the componentwise ordering on R
n induced by the cone R

n
+ (cf. [14,

Theorem 3.9]).
In fact, from (30) and by the column stochasticity of S and the convexity of f

(w.r.t. the componentwise � ordering on R
n (see (24))), we obtain

k

∑
j=1

f (x· j) =
k

∑
j=1

f

(
m

∑
l=1

sl j a·l

)
�

k

∑
j=1

m

∑
l=1

sl j f (a·l)

=
m

∑
l=1

(
k

∑
j=1

sl j

)
f (a·l) =

m

∑
l=1

Sl f (a·l) .

Thus (35) is proven.
In consequence,

f (x·k) �
m

∑
j=1

S j f (a· j)−
k−1

∑
j=1

f (x· j).

In addition, w ∈ R
n
+ , so we get

〈w, f (x·k)〉 � 〈w,
m

∑
j=1

S j f (a· j)−
k−1

∑
j=1

f (x· j)〉,
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which forces

〈w, f (x·k)〉 �
m

∑
j=1

S j〈w, f (a· j)〉−
k−1

∑
j=1

〈w, f (x· j)〉

=
m

∑
j=1

n

∑
i=1

S jwi f (ai j)−
k−1

∑
j=1

n

∑
i=1

wi f (xi j). (36)

It is now sufficient to combine (34) and (36) in order to see that (27) is valid. This
completes the proof. �

COROLLARY 3.2. Under the assumptions of Theorem 3.1, if all rows of the matrix
A are identical, i.e.,

ai· = (ai1, . . . ,aim) = (a1, . . . ,am) for each i = 1, . . . ,n, (37)

then we have the inequality

f

(
m

∑
j=1

S ja j −
k−1

∑
j=1

n

∑
i=1

wixi j

)
�

m

∑
j=1

S j f (a j)−
k−1

∑
j=1

n

∑
i=1

wi f (xi j), (38)

where
n
∑
i=1

wi = 1 with wi � 0 , and S j =
k
∑
l=1

s jl is the j th row sum of S , j = 1, . . . ,m.

Proof. By (37) one has ai j = a j for i = 1, . . . ,n . Therefore Theorem 3.1 gives

f

(
m

∑
j=1

S ja j −
k−1

∑
j=1

n

∑
i=1

wixi j

)
= f

(
m

∑
j=1

n

∑
i=1

S jwiai j −
k−1

∑
j=1

n

∑
i=1

wixi j

)

�
m

∑
j=1

n

∑
i=1

S jwi f (ai j)−
k−1

∑
j=1

n

∑
i=1

wi f (xi j) =
m

∑
j=1

S j f (a j)−
k−1

∑
j=1

n

∑
i=1

wi f (xi j).

This implies (38), as desired. �
The case k = 2 of Corollary 3.2 leads to a result similar to that of Pavić [13] with

γ = −1 (cf. Theorem C). See also [12, Theorem 16, (34)].
We conclude with the observation that the variant of Theorem 3.1 with doubly

stochastic matrix S is a special case of Theorem 2.1.

RE F ER EN C ES

[1] W. W. BRECKNER AND T. TRIF, Convex Functions and Related Functional Equations: Selected
Topics, Cluj University Press, Cluj, 2008.
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