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Abstract. In this paper, we investigate the curvature radius of strictly convex domains in two-
dimensional space forms. We obtain a class of new reverse isoperimetric inequalities which
provide a measure for the deviation of a strictly convex domain from a geodesic disc, via the
maximum and the minimum of the curvature radius of its boundary.

1. Introduction

The geodesic circle is uniquely characterized by the following property: among
all simple closed curves of given perimeter L in a surface of constant curvature c ,
the geodesic circle of perimeter L bounds maximum area. This property is succinctly
expressed by the isoperimetric inequality

L2 −4πA+ cA2 � 0, (1)

where A is the area bounded by a simple closed curve Γ of perimeter L , and where
equality holds if and only if Γ is a geodesic circle [13, 14, 19].

Let X
2
c denote the two-dimensional space forms of constant curvature c , that is:

the Euclidean plane E
2 for c = 0; the sphere S

2
c of radius 1√

c
for c > 0; the hyperbolic

plane H
2
c for c < 0.

A more general isoperimetric inequality for the domain D of area A and perimeter
L in X

2
c is

L2 −4πA+ cA2 � BD,

where BD is non-negative and vanishes only when D is a geodesic disc. This inequality
is also called a Bonnesen-style isoperimetric inequality. Bonnesen-style isoperimetric
inequalities are widely investigated by many mathematicians, see for instance [1, 2, 4,
10, 11, 12, 13, 14, 18, 21, 22].
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In contrast to the Bonnesen-style isoperimetric inequality, one may wish to con-
sider the reverse Bonnesen-style isoperimetric inequality:

L2 −4πA+ cA2 � UD,

where UD is an invariant, and hopefully equality is attained if and only if D is a
geodesic circle.

Only a few reverse Bonnesen-style isoperimetric inequalities for strictly convex
domains in the Euclidean plane E

2 are given by [3, 6, 7, 9, 15, 16, 17, 18]. In this
paper, our purpose is to investigate the reverse isoperimetric inequalities for strictly
convex domains in X

2
c .

2. Preliminaries and main results

To deal simultaneously with the Euclidean plane, the sphere, and the hyperbolic
plane, we consider the functions

snc(t) :=

⎧⎪⎨
⎪⎩

1√−c
sinh(

√−ct), c < 0,

t, c = 0,
1√
c sin(

√
ct), c > 0,

and

cnc(t) :=

⎧⎪⎨
⎪⎩

cosh(
√−ct), c < 0,

1, c = 0,

cos(
√

ct), c > 0.

It is natural to define the function

tnc(t) =
snc(t)
cnc(t)

, ctnc(t) =
cnc(t)
snc(t)

.

Therefore we have the following identities:

c · sn2
c(t)+ cn2

c(t) = 1, sn′c(t) = cnc(t), cn′c(t) = −c · snc(t),

snc(t) = 2tnc( t
2 )

1+c·tn2
c(

t
2 ) , cnc(t) = 1−c· tn2

c(
t
2 )

1+c·tn2
c(

t
2 ) .

(2)

A domain D in X
2
c is a (closed) simply connected subset of X

2
c such that its

boundary is a regular, simple and closed curve. The curvature radius ρ at x ∈ ∂D is
defined by

ctnc(ρ(x)) = κ(x),

where κ(x) is the curvature of ∂D at x .
If the curvature is further restricted, then we have the following definition from

[5].
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DEFINITION 1. A domain D ⊂ X
2
c with at least C2 smooth boundary ∂D is con-

vex if the curvature at every point of ∂D is nonnegative; if the curvature at every point
of ∂D is positive, D is strictly convex.

If c > 0, a convex domain on the sphere S
2
c is always assumed to lie inside an

open hemisphere. If c < 0, we need a stronger convexity notion.

DEFINITION 2. A domain D ⊂ H
2
c with at least C2 smooth boundary ∂D is h -

convex if the curvature at every point of ∂D is greater than or equal to
√−c ; if the

curvature at every point of ∂D is greater than
√−c , D is strictly h -convex.

For example, discs of radius r in H
2
c have curvature equal to

√−ccoth(
√−cr) ,

thus they are strictly h -convex.
We also need a lemma from [5, Theorem 4.1].

LEMMA 1. Let D be a strictly convex domain of area A and perimeter L in X
2
c ,

if c � 0 , or strictly h-convex if c < 0 . Then

∫
∂D

tncρ(s)ds � A
4π − cA
2π − cA

, (3)

where s is the arc length parameter.

It follows from (3) that

THEOREM 1. Let D be a strictly h-convex domain of area A and perimeter L in
H

2
c , let ρ be the curvature radius at ∂D. Then

A <

∫
∂D

tncρ(s)ds <
L√−c

. (4)

Proof. It is obvious that

1 <
4π − cA
2π − cA

< 2 for c < 0.

We have from (3) ∫
∂D

tncρ(s)ds > A. (5)

Since

1+ tanh2
(√−cρ

2

)
> 2tanh

(√−cρ
2

)
and, for c < 0,

tncρ =
2tnc(

ρ
2 )

1− c · tn2
c(

ρ
2 )

=
2tanh(

√−cρ
2 )

1+ tanh2(
√−cρ

2 )

1√−c
<

1√−c
,
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we have ∫
∂D

tncρ(s)ds <
L√−c

. (6)

Combining (5), (6) gives the inequality (4). �
Let D be a bounded convex domain with perimeter L and area A in X

2
c . Let

N(x) ∈ TxX
2
c denote the outward unit normal vector at the point x belonging to ∂D .

For each x ∈ ∂D let γ(t) = expx(tN(x)) be the unit speed geodesic starting at x with
γ(0) = x , γ ′(0) = N(x) . For any t � 0, each point x ∈ ∂D moves the same distance
t along the geodesic through x . Then one has a convex domain Dt parallel to D at
distance t(� 0) . The area A(t) of Dt in X

2
c(c �= 0) is

A(t) =
2π
c

+Lsnc(t)−
(2π

c
−A
)
cnc(t).

This formula is called the Steiner formula of D in X
2
c ([20]; see also [18, p. 322]). By

(2), A(t) can be written as

A(t) =
(4π − cA)tn2

c(
t
2 )+2Ltnc

t
2 +A

1+ c · tn2
c(

t
2 )

.

It is worth noting that the behavior of the Steiner formula of D for negative values
of t is quite interesting. Setting

A(t) = 0,

we have

tnc

( t1
2

)
=

−L+
√

Δc(D)
4π − cA

, tnc

( t2
2

)
=

−L−√Δc(D)
4π − cA

,

where Δc(D) = L2 − 4πA+ cA2 . We notice that when c > 0 we have 4π − cA > 0
because D⊂ S

2
c is always assumed to lie in an open hemisphere. The fact that the roots

are real is equivalent to the isoperimetric inequality (1).
Let D⊂X

2
c be a convex domain (make it h -convex if c < 0). The focal set F(∂D)

of ∂D is the set

F(∂D) = {expx(−ρ(x)N(x)) : x ∈ ∂D} ⊂ X
2
c ,

where N(x) is the outward unit normal vector at x ∈ ∂D and ρ(x) is the curvature
radius at x ∈ ∂D . The definition of the focal set also can be found in [5].

LEMMA 2. Let D be a strictly convex domain of area A and perimeter L in X
2
c , if

c � 0 , or strictly h-convex if c < 0 . Let ρM and ρm be the maximum and the minimum
of the curvature radius ρ at ∂D. Then we have

tnc

(ρm

2

)
� L−√Δc(D)

4π − cA
� L+

√
Δc(D)

4π − cA
� tnc

(ρM

2

)
. (7)

Each inequality holds as equality if and only if D is a geodesic disc.
In particular,

A(−ρm) � 0, A(−ρM) � 0.
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−ρ
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−ρm

AA(t)

Figure 1: The convex domain Dt for −ρm � t � 0 and its area A(t) for t � 0 .

Proof. Let ρm be the minimum of the curvature radius ρ at x0 ∈ ∂D , that is,
ρm = ρ(x0) at x0 ∈ ∂D . Then the curvature

κ(x) � κ(x0) = ctnc(ρm) for x ∈ ∂D.

Note that the convex domain we consider is simple connected, and ρm < π
2
√

c < π√
c

when c > 0 since D is strictly convex. By applying Theorem 2.9 in [9] to X
2
c the focal

point y0 = expx0
(−ρmN(x0)) has a distance of at least ρm from ∂D , and D contains a

geodesic disc of radius ρm . Then at every boundary point the tangent disc of radius ρm

remains inside D , and the locus of centers of geodesic discs with radius ρm is a convex
curve (see Figure 1). If each point x ∈ ∂D moves inward along the geodesic γ(t) for
0 � −t � ρm , then Dt remains convex and of non-negative area. So A(−t) � 0 for
0 � −t � ρm . Further,

tnc

(ρm

2

)
� L−√Δc(D)

4π − cA
.

Equality holds if and only if A(−ρm) = 0, that is, Dρm
is a point since D is strictly

convex. Thus equality holds if and only if D is a geodesic disc. For −t � ρM , Dt

remains again convex and of non-negative area. So A(−t) � 0 for −t � ρM . It follows
that

tnc

(ρM

2

)
� L+

√
Δc(D)

4π − cA
.

Equality holds if and only if D is a geodesic disc. �

When c = 0, (7) is written as

ρm � L−√
L2−4πA
2π

� L+
√

L2−4πA
2π

� ρM,

which was proved by Green and Osher in [8, Theorem 1.10].

THEOREM 2. Let D be a strictly convex domain of area A and perimeter L in
X

2
c , if c � 0 , or strictly h-convex if c < 0 . Let ρM and ρm be, respectively, the max-

imum and the minimum of the curvature radius ρ at ∂D. Then we have the following
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inequalities:

L2 −4πA+ cA2 � A2

4

(
1

tnc(
ρm
2 )

− 1
tnc(

ρM
2 )

)2

,

L2 −4πA+ cA2 � L2

(
tnc(

ρm
2 )−tnc(

ρM
2 )

tnc(
ρm
2 )+tnc(

ρM
2 )

)2

.

Each inequality holds as equality if and only if D is a geodesic disc.

Proof. From (7) and since 4π − cA = (L2 −Δc(D))/A , we have

√
Δc(D) � A

tnc(
ρm
2 )

−L and
√

Δc(D) � L− A

tnc(
ρM
2 )

. (8)

Adding the two inequalities gives

2
√

Δc(D) � A
( 1

tnc(
ρm
2 )

− 1

tnc(
ρM
2 )

)
,

that is,

L2 −4πA+ cA2 � A2

4

( 1

tnc(
ρm
2 )

− 1

tnc(
ρM
2 )

)2
. (9)

Multiplying the first inequality in (8) by tnc(
ρm
2 ) , the second by tnc(

ρM
2 ) , we have

tnc

(ρm

2

)√
Δc(D) � A−Ltnc

(ρm

2

)
,

tnc

(ρM

2

)√
Δc(D) � Ltnc

(ρM

2

)
−A.

Adding the two inequalities above yields(
tnc(

ρm

2
)+ tnc

(ρM

2

))√
Δc(D) � L

(
tnc(

ρM

2
)− tnc

(ρm

2

))
.

Therefore,

L2 −4πA+ cA2 � L2

(
tnc(

ρm
2 )− tnc(

ρM
2 )

tnc(
ρm
2 )+ tnc(

ρM
2 )

)2

. (10)

The fact that equality holds in (9) or (10) implies that equalities hold in (8), that is,

tnc

(ρm

2

)
=

L−√Δc(D)
4π − cA

, tnc

(ρM

2

)
=

L+
√

Δc(D)
4π − cA

.

Therefore, equality in (9) or (10) holds if and only if D is a geodesic disc, by Lemma
2. The proof of Theorem 1 is complete. �

From Theorem 1 we get the following corollary.



REVERSE ISOPERIMETRIC INEQUALITIES 1031

COROLLARY 1. Let D be a strictly convex domain of area A and perimeter L in
E

2 . Let ρM and ρm be, respectively, the maximum and the minimum of the curvature
radius ρ at ∂D. Then we have the following inequalities:

L2 −4πA � A2
(

1
ρm

− 1
ρM

)2
,

L2 −4πA � L2
(

ρm−ρM
ρm+ρM

)2
.

Each inequality holds as equality if and only if D is a disc.

THEOREM 3. Let D be a strictly convex domain of area A and perimeter L in X
2
c ,

if c � 0 , or strictly h-convex if c < 0 . Let ρM and ρm be, respectively, the maximum
and the minimum of the curvature radius ρ at ∂D. Then we have

Δc(D) �
(
2π − c

2
A
)2(

tnc

(ρM

2

)
− tnc

(ρm

2

))2
. (11)

The inequality holds as equality if and only if D is a disc.

Proof. It follows from (7) that

L+
√

Δc(D)
4π − cA

− L−√Δc(D)
4π − cA

� tnc

(ρM

2

)
− tnc

(ρm

2

)
,

that is,

Δc(D) �
(
2π − c

2
A
)2(

tnc

(ρM

2

)
− tnc

(ρm

2

))2
.

The inequality holds as equality if and only if D is a disc. �
Inequality (11) was already obtained by Li and Zhou in [12]. Here we prove it

using a different method. When c = 0, this inequality becomes the classical inequality

L2 −4πA � π2(ρM −ρm)2,

attributed to Bottema [3].
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