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Abstract. We have introduced a new sequence space l(r,s,t, p;Δ(m) ) combining by using gen-
eralized means and difference operator of order m . Some topological properties as well as geo-
metric properties namely Banach-Saks property of type p and uniform Opial property have been
studied. Furthermore, the α -, β -, γ - duals of this space are computed and also obtained nec-
essary and sufficient conditions for some matrix transformations from l(r,s,t, p;Δ(m) ) to l∞, l1 .
Finally, we obtained some identities or estimates for operator norms and measure of noncom-
pactness of some matrix operators on the BK space lp(r,s,t;Δ(m)) by applying the Hausdorff
measure of noncompactness.

1. Introduction

Let w be the space of all real or complex sequences x = (xn) , n ∈ N0 . For an
infinite matrix A and a sequence space X , the matrix domain of A , denoted by XA , is
defined as XA = {x ∈ w : Ax ∈ X} [37].

Let (pk) be a bounded sequence of strictly positive real numbers such that H =
sup

k
pk and M = max{1,H} . The linear spaces c(p),c0(p) , l∞(p) and l(p) are intro-

duced and studied by Maddox [23], where

c(p) =
{

x = (xk) ∈ w : lim
k→∞

|xk − l|pk = 0 for some scalar l
}
,

c0(p) =
{

x = (xk) ∈ w : lim
k→∞

|xk|pk = 0
}
,

l∞(p) =
{

x = (xk) ∈ w : sup
k
|xk|pk < ∞

}
and

l(p) =
{

x = (xk) ∈ w :
∞

∑
k=0

|xk|pk < ∞
}
.

The linear spaces c(p),c0(p) , l∞(p) are complete with the paranorm g(x) = sup
k
|xk|

pk
M

if and only if inf pk > 0 for all k while l(p) is complete with the paranorm g̃(x) =
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(
∑
k

|xk|pk

) 1
M

. Recently, several authors introduced sequence spaces by using matrix

domain; for example, Başar et al. [4] studied the space bs(p) = [l∞(p)]S , where S is the
summation matrix. Altay and Başar [1] studied the sequence spaces rt(p) and rt

∞(p) ,
which consist of all sequences whose Riesz transforms are in the spaces l(p) and l∞(p)
respectively, i.e., rt(p) = [l(p)]Rt and rt

∞(p) = [l∞(p)]Rt .
Kızmaz [22] first introduced and studied the difference sequence space. Later on,

several authors including Çolak and Et [10], Polat and Başar [33], Başar and Altay
[5], Altay and Başar [2], Aydın and Başar [3] and others have studied sequence spaces
defined by using difference operator.

On the other hand, sequence spaces are also defined by using generalized weighted
mean (see [1], [27]). Mursaleen and Noman [30] also introduced a sequence space of
generalized means, which includes most of the known sequence spaces. In 2011, Polat
et al. [34] introduced and studied a sequence space which is generated by combining
both the weighted mean and the difference operator. Later on Başarır and Kara (see
[7], [8]) generalized the sequence spaces of Polat et al. [34] to an m th-order difference
sequence.

Recently, mathematicians are interested to study the geometric properties of Ba-
nach sequence spaces as these have various applications in the several areas of math-
ematics. In literature, a lot of papers about the geometric properties can be found; for
example one can see the papers of Cui and Hudzik ([11], [12]). Cui and Meng [13], Ng
and Lee [31] investigated the geometric properties of Cesàro sequence spaces. Başar et
al. [6] studied rotundity property of generalized space of the space bvp of p -bounded
variation sequences. Quite recently, Hudzik et al. [21], Şimşek and Karakaya [36], Et
et al. [18] pursued the geometric properties of sequence spaces.

The aim of this paper is to introduce a new sequence space l(r,s,t, p;Δ(m)) defined
by using both the generalized means and the difference operator of order m . We inves-
tigate some topological properties as well as geometric properties namely Banach-Saks
property of type p , uniform Opial property etc. We also compute α -, β -, γ -duals
and characterize some matrix mappings on the new sequence space. Finally, we ob-
tain some identities or estimates for operator norms and measure of noncompactness of
some matrix operators on the BK space lp(r,s,t;Δ(m)) by using the Hausdorff measure
of noncompactness.

2. Preliminaries

Let l∞,c and c0 be the spaces of all bounded, convergent and null sequences
x = (xn) respectively with norm ‖x‖∞ = sup

n
|xn| . Let bs , cs and lp be the sequence

spaces of all bounded, convergent series and p -absolutely summable series respectively
and bv be the space of bounded variation sequences. We denote by e = (1,1, · · ·) and
en for the sequence whose n -th term is 1 and others are zero and N0 = N∪{0} , where
N is the set of all natural numbers. For any subsets U and V of w , the multiplier space
M(U,V ) of U and V is defined as

M(U,V ) = {a = (an) ∈ w : au = (anun) ∈V for all u = (un) ∈U} .
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In particular,

Uα = M(U, l1) , Uβ = M(U,cs) and U γ = M(U,bs)

are called the α -, β - and γ - duals of U respectively [26].
Let A = (ank)n,k be an infinite matrix with real or complex entries ank . We write

An as the sequence of the n -th row of A , i.e., An = (ank)k for every n . For x =(xn)∈w ,
the A-transform of x is defined as the sequence Ax = ((Ax)n) , where

An(x) = (Ax)n =
∞

∑
k=0

ankxk ,

provided the series on the right side converges for each n . For any two sequence spaces
U and V , we denote by (U,V ) , the class of all infinite matrices A that map from U
into V . Therefore A ∈ (U,V ) if and only if Ax ∈ V for all x ∈ U . In other words,
A ∈ (U,V ) if and only if An ∈Uβ for all n [37].

A sequence space X is called a BK space if it is a Banach space with continuous
coordinates pn : X → K , where K denotes the real or complex field and pn(x) = xn for
all x = (xn) ∈ X and each n ∈ N0 . An infinite matrix T = (tnk)n,k is called a triangle if
tnn �= 0 and tnk = 0 for all k > n . Let T be a triangle and X be a BK space. Then XT

is also a BK space with the norm given by ‖x‖XT = ‖Tx‖X for all x ∈ XT [37].
A functional ρ on w is called a convex modular if the following conditions satisfy:

i) ρ(x) = 0 if and only if x = θ

ii) ρ(αx) = ρ(x) for all scalar α with |α| = 1 and for all x ∈ w

iii) ρ(αx+ βy) � αρ(x)+ β ρ(y) for all scalar α,β � 0 with α + β = 1 and for all
x,y ∈ w .

If the functional ρ satisfies i) , ii) and

ρ(αx+βy) � ρ(x)+ρ(y) for all scalar α,β � 0 with α +β = 1 and for all x,y ∈ w ,

then ρ is called a modular. It is obvious that every convex modular is a modular but
the converse is not so.

For any modular ρ on a vector space X , the modular space is defined as

Xρ = {x ∈ X : ρ(λx) → 0 as λ → 0+}.
If ρ is a convex modular on X , then the functionals

‖x‖L = inf
{

λ > 0 : ρ
( x

λ

)
� 1

}
and

‖x‖A = inf
1
k

(
1+ ρ(kx)

)
become norms on Xρ which are called Luxemburg norm and Amemiya norm respec-
tively. In fact, these norms are equivalent and ‖x‖L � ‖x‖A � 2‖x‖L for all x ∈ Xρ .
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A modular ρ is said to satisfy the Δ2 condition (ρ ∈ Δ2 in short) if for any ε > 0
there exist constants K � 2 and a > 0 such that

ρ(2x) � Kρ(x)+ ε

for all x ∈ Xρ with ρ(x) � a . If ρ satisfies Δ2 -condition for all a > 0 with K � 2
dependent on a , then ρ is said to satisfy strong Δ2 -condition (ρ ∈ Δs

2 in short).

LEMMA 1. [32] Convergence in norm and in modular are equivalent in Xρ if
ρ ∈ Δ2 .

LEMMA 2. [32] If ρ ∈ Δs
2 , then for any L > 0 and ε > 0 there exists δ > 0 such

that
|ρ(u+ v)−ρ(u)|< ε

whenever u,v ∈ Xρ with ρ(u) � L and ρ(v) � δ .

LEMMA 3. [32] If ρ ∈ Δs
2 , then for any ε > 0 there exists δ = δ (ε) > 0 such

that ‖x‖ � 1+ δ whenever ρ(x) � 1+ ε .

Given any p ∈ (1,∞) , we say that a Banach space X has the Banach-Saks prop-
erty of type p (see [21]) if there exists a constant C > 0 such that every weakly null
sequence (xk) there exists a subsequence (xkr) such that

∥∥∥ n

∑
r=1

xkr

∥∥∥ � Cn
1
p for all n ∈ N.

A Banach space X is said to have Opial property if for every weakly null sequence (xn)
and for every x �= θ in X , we have

liminf
n→∞

‖xn‖ < liminf
n→∞

‖xn + x‖.

A Banach space X is said to have the uniform Opial property if for every ε > 0 there
exists μ > 0 such that

1+ μ � liminf
n→∞

‖xn + x‖

for any weakly null sequence (xn) ∈ S(X) and x ∈ X with ‖x‖ � ε (see [35]).

3. Difference sequence space l(r,s,t, p;Δ(m))

We first begin with the notion of generalized means given by Mursaleen et al. [30].
Consider the sets U and U0 as

U =
{

u = (un) ∈ w : un �= 0 for all n
}

and U0 =
{

u = (un) ∈ w : u0 �= 0
}
.
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Let r = (rn), t = (tn) ∈ U and s = (sn) ∈ U0 . The sequence y = (yn) of generalized
means of a sequence x = (xn) is defined by

yn =
1
rn

n

∑
k=0

sn−ktkxk (n ∈ N0).

The infinite matrix A(r,s,t) of generalized means is defined by

(A(r,s,t))nk =
{ sn−ktk

rn
0 � k � n,

0 k > n.

Since A(r,s, t) is a triangle, it has a unique inverse and the inverse is also a triangle

[20]. Take D(s)
0 = 1

s0
and

D(s)
n =

1

sn+1
0

∣∣∣∣∣∣∣∣∣∣∣

s1 s0 0 0 · · · 0
s2 s1 s0 0 · · · 0
...

...
...

...
sn−1 sn−2 sn−3 sn−4 · · · s0

sn sn−1 sn−2 sn−3 · · · s1

∣∣∣∣∣∣∣∣∣∣∣
for n = 1,2,3, · · ·

Then the inverse of A(r,s,t) is the triangle B = (bnk)n,k , which is defined as

bnk =

{
(−1)n−k D(s)

n−k
tn

rk 0 � k � n,

0 k > n.

Combining both the generalized means and the difference operator of order m , we
now introduce a sequence space l(r,s,t, p;Δ(m)) defined as

l(r,s, t, p;Δ(m)) =
{

x = (xn) ∈ w : [A(r,s,t).Δ(m)]x ∈ l(p)
}
,

where p = (pk) is a bounded sequence of strictly positive real numbers. The sequence
y = (yn) is A(r,s, t).Δ(m) -transform of a sequence x = (xn) , i.e.,

yn =
1
rn

n

∑
j=0

[ n

∑
i= j

(−1)i− j
(

m
i− j

)
sn−iti

]
x j. (1)

Since A(r,s, t).Δ(m) is a triangle, it has a unique inverse and the inverse transform is

xn =
n

∑
j=0

n

∑
k= j

(−1)k− j
(

m+n− k−1
n− k

)D(s)
k− j

tk
r jy j, n ∈ N0. (2)

In particular if pk = p (1 � p < ∞) then we write the space as lp(r,s,t;Δ(m)) instead
of l(r,s, t, p;Δ(m)) . This sequence space includes many earlier known sequence spaces
studied by several authors with the particular choices of the parameters. One can see
some recent developments in this direction by the authors (see [24], [28]).
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Using modular, we can define the sequence space l(r,s,t, p;Δ(m)) as

l(r,s, t, p;Δ(m)) = {x ∈ w : ρΔ(m)(σx) < ∞ for some σ > 0},
where

ρΔ(m)(x) =
∞

∑
n=0

∣∣∣ 1
rn

n

∑
j=0

[ n

∑
i= j

(−1)i− j
(

m
i− j

)
sn−iti

]
x j

∣∣∣pn
.

Clearly ρΔ(m) is a convexmodular and ρΔ(m) ∈Δs
2 if sup

k�1
pk < ∞ . The space l(r,s, t, p;Δ(m))

is complete equipped with the Luxemburg norm

‖x‖ = inf
{

σ > 0 : ρΔ(m)(
x
σ

) � 1
}
.

The rest of this paper we assume that p = (pk) is bounded with pk > 1 for all k and
M = sup

k�1
pk . We also denote x|i = (x1,x2, . . . ,xi,0,0, . . .) and x|N−i = (0,0, . . . ,xi+1,

xi+2, . . .) for i ∈ N and x ∈ w .

4. Main results

In this section, we begin with some topological results of the newly defined se-
quence space.

THEOREM 1. (a) The sequence space l(r,s,t, p;Δ(m)) is a complete linear metric
space paranormed by h̃ defined as

h̃(x) =
( ∞

∑
n=0

∣∣∣ 1
rn

n

∑
j=0

[ n

∑
i= j

(−1)i− j
(

m
i− j

)
sn−iti

]
x j

∣∣∣pn
) 1

M
.

(b) The sequence space lp(r,s,t;Δ(m)) , 1 � p < ∞ is a BK space with the norm
given by

‖x‖lp(r,s,t;Δ(m)) = ‖y‖lp ,

where y = (yn) is defined in (1).

Proof. We leave the proof as it is a routine verification. �

THEOREM 2. The sequence space l(r,s,t, p;Δ(m)) is linearly isomorphic to the
space l(p) , i.e., l(r,s,t, p;Δ(m)) ∼= l(p) .

Proof. We omit the proof as it is trivial. �

PROPOSITION 1. Let p = (pk) be a bounded sequence with pk > 1 for all k and
M = sup

k�1
pk . Then

1). if 0 < λ < 1 then λ MρΔ(m)( x
λ ) � ρΔ(m)(x) and ρΔ(m) (λx) � λ ρΔ(m)(x) .

2). if λ � 1 , then ρΔ(m)(x) � λ ρΔ(m)( x
λ ) and ρΔ(m)(x) � λ MρΔ(m)( x

λ ) .
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Proof. We leave the proof as it follows from the definition of ρΔ(m) . �

PROPOSITION 2. Let p = (pk) be a bounded sequence with pk > 1 for all k and
M = sup

k�1
pk . Then

1). if ‖x‖ < 1 then ρΔ(m)(x) � ‖x‖ .
2). if ‖x‖ > 1 then ρΔ(m)(x) � ‖x‖ .
3). if ‖x‖ = 1 then ρΔ(m)(x) = ‖x‖ .
4). if 0 < λ < 1 and ‖x‖ > λ then ρΔ(m)(x) > λ M .
5). if λ � 1 and ‖x‖ � λ then ρΔ(m)(x) < λ M .

Proof. The proof follows from Proposition 1. �

THEOREM 3. Let p = (pk) be a bounded sequence with pk > 1 for all k . Then
the sequence space l(r,s,t, p;Δ(m)) equipped with the Luxemburg norm has the uniform
Opial property.

Proof. Let X = l(r,s,t, p;Δ(m)) and S(X) be the unit sphere of X . Let (xk) be
any weakly null sequence in S(X) . We will show that for any ε > 0 there exists μ > 0
such that

liminf
l→∞

‖xk + x‖ � 1+ μ ,

where x∈X satisfying ‖x‖� ε . Since sup
k�1

pk < ∞ , so ρΔ(m) ∈Δs
2 and hence the conver-

gence in norm and the convergence in modular are equivalent by Lemma 1. Therefore
there exists δ ∈ (0,1) such that ρΔ(m)(x) � δ as ‖x‖ � ε . Again from Lemma 2, we
can find δ1 ∈ (0,δ ) such that ρΔ(m)(y) � 1, ρΔ(m)(z) � δ1 implies

∣∣∣ρΔ(m)(y+ z)−ρΔ(m)(y)
∣∣∣ <

δ
6

. (3)

Since x ∈ X , there exists n0 ∈ N such that

∞

∑
n=n0+1

∣∣∣ 1
rn

n

∑
j=0

[ n

∑
i= j

(−1)i− j
(

m
i− j

)
sn−iti

]
x j

∣∣∣pn
<

δ1

6
.

Now

δ � ρΔ(m) (x) =
n0

∑
n=0

∣∣∣ 1
rn

n

∑
j=0

[ n

∑
i= j

(−1)i− j
(

m
i− j

)
sn−iti

]
x j

∣∣∣pn

+
∞

∑
n=n0+1

∣∣∣ 1
rn

n

∑
j=0

[ n

∑
i= j

(−1)i− j
(

m
i− j

)
sn−iti

]
x j

∣∣∣pn

�
n0

∑
n=0

∣∣∣ 1
rn

n

∑
j=0

[ n

∑
i= j

(−1)i− j
(

m
i− j

)
sn−iti

]
x j

∣∣∣pn
+

δ1

6
,



1062 A. MAJI AND P. D. SRIVASTAVA

which implies

n0

∑
n=0

∣∣∣ 1
rn

n

∑
j=0

[ n

∑
i= j

(−1)i− j
(

m
i− j

)
sn−iti

]
x j

∣∣∣pn
� δ − δ

6
=

5δ
6

.

Since weak convergence implies coordinate wise convergence, so we have

n0

∑
n=0

∣∣∣ 1
rn

n

∑
j=0

[ n

∑
i= j

(−1)i− j
(

m
i− j

)
sn−iti

]
(xk

j + x j)
∣∣∣pn

� 5δ
6

for all k � k0 . Since xk → 0 weakly as k → ∞ , so there exists n0 ∈N and k1 > k0 such
that

ρΔ(m) (xk|n0) � δ1 for all k � k1.

Since (xk) ⊂ S(X) , by Proposition 2, we have ρΔ(m)(xk) = 1. Therefore for n0 ∈ N ,
we have ρΔ(m)(xk|N−n0) � 1. Let us set u = xk|N−n0 and v = xk|n0 . Then u,v ∈ X and
ρΔ(m)(u) � 1, ρΔ(m)(v) � δ1 . Using (3), we have∣∣ρΔ(m)(xk|N−n0 + xk|n0)−ρΔ(m)(xk|N−n0)

∣∣ < δ
6 ,

for all k � k1 . Thus ρΔ(m)(xk)− δ
6 < ρΔ(m)(xk|N−n0) for all k � k1 , i.e.,

∞

∑
n=n0+1

∣∣∣ 1
rn

n

∑
j=0

[ n

∑
i= j

(−1)i− j
(

m
i− j

)
sn−iti

]
xk

j

∣∣∣pn
> 1− δ

6

for all k � k1 . Again ρΔ(m)(xk|N−n0

)
� 1 and ρΔ(m)(x|N−n0) � δ1

6 < δ1 , from the in-
equality (3), we have ∣∣∣ρΔ(m)(xk + x|N−n0

)−ρΔ(m)(xk|N−n0)
∣∣∣ <

δ
6

.

We have for k � k1

ρΔ(m)(xk + x) =
n0

∑
n=0

∣∣∣ 1
rn

n

∑
j=0

[ n

∑
i= j

(−1)i− j
(

m
i− j

)
sn−iti

]
(xk

j + x j)
∣∣∣pn

+
∞

∑
n=n0+1

∣∣∣ 1
rn

n

∑
j=0

[ n

∑
i= j

(−1)i− j
(

m
i− j

)
sn−iti

]
(xk

j + x j)
∣∣∣pn

>
n0

∑
n=0

∣∣∣ 1
rn

n

∑
j=0

[ n

∑
i= j

(−1)i− j
(

m
i− j

)
sn−iti

]
(xk

j + x j)
∣∣∣pn

+
n0

∑
n=0

∣∣∣ 1
rn

n

∑
j=0

[ n

∑
i= j

(−1)i− j
(

m
i− j

)
sn−iti

]
xk

j

∣∣∣pn − δ
6

>
5δ
6

+
(
1− δ

6

)
− δ

6
= 1+

δ
2

.

Using Lemma 3 there exists μ > 0 depending only on δ such that ‖xk + x‖ > 1+ μ
for k � k1 . Hence liminf

l→∞
‖xk + x‖ � 1+ μ . This completes the proof. �
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COROLLARY 1. Let p = (pk) be a bounded sequence with pk > 1 for all k . Then
the sequence space l(r,s,t, p;Δ(m)) equipped with the Amemiya norm has the uniform
Opial property.

THEOREM 4. The sequence space lp(r,s,t;Δ(m)) , 1 < p < ∞ has the Banach-
Saks property of type p.

Proof. Let (εn) be a sequence of positive real numbers such that
∞

∑
n=1

εn � 1
4

. Let

(xk) be any weakly null sequence in the unit ball of lp(r,s,t;Δ(m)) , i.e., ‖x‖p � 1 (for
the simplification of notation we here write ‖x‖p instead of ‖x‖lp(r,s,t;Δ(m)) ). Set x0 = 0,

y1 = xn1 . Then there exists η1 ∈ N such that

∥∥∥ ∞

∑
i=η1+1

y1
i ei

∥∥∥
p
< ε1 .

Since weak convergence implies coordinate wise converges, so xn → 0 coordinate wise.
Hence there exists n2 ∈ N such that

∥∥∥ η1

∑
i=1

xn
i ei

∥∥∥
p
< ε1 for all n � n2 .

Set y2 = xn2 . Then there exists η2 ∈ N , η2 > η1 such that

∥∥∥ ∞

∑
i=η2+1

y2
i ei

∥∥∥
p
< ε2 .

Using the coordinate wise converges of xn → 0, we can find n3 ∈ N , n3 > n2 such that

∥∥∥ η2

∑
i=1

xn
i ei

∥∥∥
p
< ε2 for all n � n3 .

By repeating this process, we can find two increasing sequences (n j) and (η j) such
that

∥∥∥η j−1

∑
i=1

xn
i ei

∥∥∥
p
< ε j−1 for all n � n j , and

∥∥∥ ∞

∑
i=η j+1

y j
i ei

∥∥∥
p
< ε j , where y j = xn j .
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Now

∥∥∥ n

∑
j=1

y j
∥∥∥

p
=

∥∥∥ n

∑
j=1

(η j−1

∑
i=1

y j
i ei +

η j

∑
i=η j−1+1

y j
i ei +

∞

∑
i=η j+1

y j
i ei

)∥∥∥
p

�
∥∥∥ n

∑
j=1

η j−1

∑
i=1

y j
i ei

∥∥∥
p
+

∥∥∥ n

∑
j=1

η j

∑
i=η j−1+1

y j
i ei

∥∥∥
p
+

∥∥∥ n

∑
j=1

∞

∑
i=η j+1

y j
i ei

)∥∥∥
p

�
∥∥∥ n

∑
j=1

η j

∑
i=η j−1+1

y j
i ei

∥∥∥
p
+

n

∑
j=1

(ε j−1 + ε j). (4)

Now ‖xn j‖p =
( ∞

∑
n=0

∣∣∣ 1
rn

n

∑
k=0

[ n

∑
i=k

(−1)i−k
(

m
i− k

)
sn−iti

]
x
n j
k

∣∣∣p) 1
p

and ‖xn j‖p � 1. There-

fore ‖xn j‖p
p � 1 and

∥∥∥ n

∑
j=1

η j

∑
i=η j−1+1

y j
i ei

∥∥∥p

p
� n. Since

∞

∑
n=1

εn � 1
4

and 1
2 � n

1
p for all

n � 1, we have from the relation (4)

∥∥∥ n

∑
j=1

y j
∥∥∥

p
� 2n

1
p .

Hence the space lp(r,s,t;Δ(m)) , 1 < p < ∞ has the Banach-Saks property of type
p . �

4.1. The α -, β -, γ -dual of l(r,s,t, p;Δ(m))

In 1999, K. G. Grosse-Erdmann [19] characterized the matrix transformations
between the sequence spaces of Maddox, namely, l(p) , c(p),c0(p) and l∞(p) . We list
the following conditions:

Let L be any natural number, F denotes finite subset of N0 and α,αk are complex
numbers. Let p = (pk) be bounded sequence of strictly positive real numbers with
pk > 1 for all k , A = (ank)n,k be an infinite matrix and p′k = pk

pk−1 for all k .

∃L sup
F

∑
k

∣∣∣ ∑
n∈F

ankL
−1

∣∣∣p′k
< ∞ (5)

lim
n

ank = 0 for all k (6)

∀L sup
n

∑
k

∣∣∣ankL
∣∣∣p′k

< ∞ (7)

∃Lsup
n

∑
k

∣∣∣ankL
−1

∣∣∣p′k
< ∞ (8)

∃(αk) lim
n
|ank −αk| = 0 for all k (9)

∃(αk) ∀L sup
n

∑
k

(|ank −αk|L
)p′k < ∞ (10)
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∃L sup
n

∑
k

∣∣∣ankL
−1

∣∣∣p′k
< ∞ (11)

LEMMA 4. [19]
(i) A ∈ (l(p), l1) if and only if (5) hold.
(ii) A ∈ (l(p),c0) if and only if (6) and (7) hold.
(iii) A ∈ (l(p),c) if and only if (8), (9) and (10) hold.
(iv) A ∈ (l(p), l∞) if and only if (11) hold.

Now we compute the α -, γ -dual of l(r,s,t, p;Δ(m)) . Consider the set

H(p)=
⋃
L∈N

{
a=(an) ∈ w : sup

F

∞

∑
j=0

∣∣∣ ∑
n∈F

n

∑
k= j

(−1)k− j
(

m+n−k−1
n−k

)D(s)
k− j

tk
r janL

−1
∣∣∣p′j

< ∞
}
.

THEOREM 5. (a) Let p = (pk) be a bounded sequence with pk > 1 for all k .
Then [l(r,s, t, p;Δ(m))]α = H(p) .

Proof. (a) Let pk > 1 for all k , a = (an) ∈ w , x ∈ l(r,s,t, p;Δ(m)) and y ∈ l(p) .
Then for each n , we have

anxn =
n

∑
j=0

n

∑
k= j

(−1)k− j
(

m+n− k−1
n− k

)D(s)
k− j

tk
r jany j = (Cy)n,

where the matrix C = (cn j)n, j is defined as

cn j =

⎧⎪⎨
⎪⎩

n

∑
k= j

(−1)k− j
(

m+n− k−1
n− k

)D(s)
k− j

tk
r jan if 0 � j � n

0 if j > n

and xn is given in (2). Thus for each x ∈ l(r,s,t, p;Δ(m)) , (anxn)n ∈ l1 if and only
if Cy ∈ l1 , where y ∈ l(p) . Therefore a = (an) ∈ [l(r,s,t, p;Δ(m))]α if and only if
C ∈ (l(p), l1) . By using Lemma 4 (i) , there exists L ∈ N such that

sup
F

∞

∑
j=0

∣∣∣ ∑
n∈F

n

∑
k= j

(−1)k− j
(

m+n− k−1
n− k

)D(s)
k− j

tk
r janL

−1
∣∣∣p′j

< ∞.

Hence [l(r,s, t, p;Δ(m))]α = H(p). This finishes the proof. �

We consider

Γ(p) =
⋃
L∈N

{
a = (ak) ∈ w : sup

l∈N0

∞

∑
n=0

|elnL
−1|p′n < ∞

}
,



1066 A. MAJI AND P. D. SRIVASTAVA

where the matrix E = (eln) is defined by

eln =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

rn

[
an

s0tn
+

n+1

∑
k=n

(−1)k−n D(s)
k−n

tk

l

∑
j=n+1

(
m+ j− k−1

j− k

)
a j

+
l

∑
k=n+2

(−1)k−n D(s)
k−n

tk

l

∑
j=k

(
m+ j− k−1

j− k

)
a j

]
0 � n � l,

0 n > l.

(12)

Note we mean
l
∑
j=n

= 0 if n > l .

THEOREM 6. Let p = (pk) be a bounded sequence with pk > 1 for all k . Then
[l(r,s, t, p;Δ(m))]γ = Γ(p) .

Proof. (a) Let pk > 1 for all k , a = (ak) ∈ w , x ∈ l(r,s,t, p;Δ(m)) and y ∈ l(p) .
Then by using (2), we have

l

∑
n=0

anxn =
l

∑
n=0

n

∑
j=0

n

∑
k= j

(−1)k− j
(

m+n− k−1
n− k

)D(s)
k− j

tk
r jany j

=
l−1

∑
n=0

n

∑
j=0

n

∑
k= j

(−1)k− j
(

m+n− k−1
n− k

)D(s)
k− j

tk
r jy jan

+
l

∑
j=0

l

∑
k= j

(−1)k− j
(

m+ l− k−1
l− k

)D(s)
k− j

tk
r jy jal + . . .+

D(s)
0

tl
alrlyl

=
l

∑
n=0

rn

[
an

s0tn
+

n+1

∑
k=n

(−1)k−n D(s)
k−n

tk

l

∑
j=n+1

(
m+ j− k−1

j− k

)
a j

+
l

∑
k=n+2

(−1)k−n D(s)
k−n

tk

l

∑
j=k

(
m+ j− k−1

j− k

)
a j

]
yn

= (Ey)l, (13)

where the matrix E is defined in (12). Thus a ∈ [
l(r,s, t, p;Δ(m))

]γ
if and only if ax =

(anxn) ∈ bs , where x ∈ l(r,s,t, p;Δ(m)) if and only if
( l

∑
n=0

anxn

)
l
∈ l∞ , i.e., Ey ∈ l∞ ,

where y ∈ l(p) . Hence by using Lemma 4(iv) ,

sup
l∈N0

∞

∑
n=0

|elnL
−1|p′n < ∞,

for some L ∈ N . Hence
[
l(r,s,t, p;Δ(m))

]γ = Γ(p). This completes the proof. �
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To find the β -dual of l(r,s,t, p;Δ(m)) , we define the following sets:

B1 =
{

a = (an) ∈ w :
∞

∑
j=n+1

(
m+ j− k−1

j− k

)
a j exists for all k

}
,

B2 =
{

a = (an) ∈ w :
∞

∑
k=n+2

(−1)k−n D(s)
k−n

tk

∞

∑
j=k

(
m+ j− k−1

j− k

)
a j exists for all k

}
,

B3 =
{

a = (an) ∈ w :
(rnan

tn

)
∈ l∞(p)

}
,

B4 =
⋃
L∈N

{
a = (an) ∈ w : sup

l∈N0

∞

∑
n=0

∣∣∣elnL
−1

∣∣∣p′n
< ∞

}
,

B5 =
{

a = (an) ∈ w : ∃(αn) lim
l→∞

eln = αn ∀ n
}
,

B6 =
⋂
L∈N

{
a = (an) ∈ w : ∃(αn) sup

l∈N0

∞

∑
n=0

(
|eln −αn|L

)p′n
< ∞

}
,

THEOREM 7. (a) Let p = (pk) be a bounded sequence with pk > 1 for all k .

Then [l(r,s, t, p;Δ(m))]β =
6⋂

k=1

Bk .

Proof. (a) Let pk > 1 for all k . We have from (13)

l

∑
n=0

anxn = (Ey)l ,

where the matrix E is defined in (12). Thus a ∈ [
l(r,s,t, p;Δ(m))

]β
if and only if

ax = (anxn) ∈ cs , where x ∈ l(r,s,t, p;Δ(m)) if and only if Ey ∈ c , where y ∈ l(p) , i.e.,
E ∈ (l(p),c) . Hence by Lemma 4(iii) ,

∃L ∈ N, sup
l∈N0

∞

∑
n=0

∣∣∣elnL
−1

∣∣∣p′n
< ∞,

∃(αn) lim
l→∞

eln = αn for all n,

∃(αn) and ∀L ∈ N sup
l∈N0

∞

∑
n=0

(
|eln −αn|L

)p′n
< ∞.

Therefore [l(r,s, t, p;Δ(m))]β =
6⋂

k=1

Bk �

4.2. Matrix mappings

THEOREM 8. Let Ẽ = (ẽln) be the matrix which is same as the matrix E = (eln)
defined in (12), where an and a j are replaced by aln and al j respectively. Let pn > 1
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for all n . Then A ∈ (l(r,s,t, p;Δ(m)), l∞) if and only if there exists L ∈ N such that

sup
l

∑
n

∣∣∣ẽlnL
−1

∣∣∣p′n
< ∞ and (aln)n ∈

6⋂
k=1

Bk.

Proof. Let pn > 1 for all n and A∈ (l(r,s,t, p;Δ(m)), l∞) . Then (aln)n ∈
[
l(r,s,t, p;

Δ(m))
]β

for each fixed l . Thus Ax exists for all x ∈ l(r,s, t, p;Δ(m)) . Now for each l ,
we have

q

∑
n=0

alnxn =
q

∑
n=0

rn

[
an

s0tn
+

n+1

∑
k=n

(−1)k−n D(s)
k−n

tk

l

∑
j=n+1

(
m+ j− k−1

j− k

)
a j

+
l

∑
k=n+2

(−1)k−n D(s)
k−n

tk

l

∑
j=k

(
m+ j− k−1

j− k

)
a j

]
yn

= (Ey)l,

Taking q → ∞ , we have

∞

∑
n=0

alnxn =
∞

∑
l=0

ẽlnyn for all l.

We know that for any T > 0 and any complex numbers a,b

|ab|� T (|aT−1|γ ′ + |b|γ) (14)

where γ > 1 and 1
γ + 1

γ ′ = 1. From (14), we get

sup
l

∣∣∣∣ ∞

∑
n=0

alnxn

∣∣∣∣ � sup
l

∞

∑
n=0

∣∣∣ẽln

∣∣∣∣∣∣yn

∣∣∣ � T

[
sup

l

∞

∑
n=0

|ẽlnT
−1|p′n +

∞

∑
n=0

|yn|pn

]
< ∞.

Thus Ax ∈ l∞ . This proves that A ∈ (l(r,s,t, p;Δ(m)), l∞) .
Conversely, assume that A ∈ (l(r,s,t, p;Δ(m)), l∞) and pn > 1 for all n . Then Ax

exists for each x ∈ l(r,s,t, p;Δ(m)) , which implies that (aln)n ∈ [l(r,s, t, p;Δ(m))]β for

each l . Thus (aln)n ∈
6⋂

k=1

Bk . Also from
∞
∑

n=0
alnxn =

∞
∑

n=0
ẽlnyn , we have Ẽ = (ẽln) ∈

(l(p), l∞) . Therefore there exists some L ∈ N , such that sup
l

∑
n

∣∣∣ẽlnL
−1

∣∣∣p′n
< ∞ . This

completes the proof. �

THEOREM 9. Let pn > 1 for all n . Then A ∈ (l(r,s,t, p;Δ(m)), l1) if and only if

sup
F

∞

∑
n=0

∣∣∣ ∑
l∈F

ẽlnL
−1

∣∣∣p′n
< ∞ for some L ∈ N and (aln)n∈N0 ∈

6⋂
k=1

Bk

Proof. We omit the proof as it follows as routine. �



SOME GEOMETRIC PROPERTIES OF DIFFERENCE SEQUENCE SPACES... 1069

5. Compact operators on the space lp(r,s, t;Δ(m)) , 1 � p < ∞

As the matrix transformations between BK spaces are continuous, it is natural to
find necessary and sufficient conditions for a matrix mapping between BK spaces to
be a compact operator. This can be achieved with the help of Hausdorff measure of
noncompactness. Here, we give necessary and sufficient conditions for matrix operator
to be a compact from the space lp(r,s,t;Δ(m)) into c,c0 and sufficient conditions in
case of l∞ .

Recently several authors, namely, Malkowsky and Rakočević [25], Djolović et al.
[15], Djolović [17], Mursaleen and Noman [29] Başarır et al. [9] have established some
identities or estimates for the operator norms and the Hausdorff measure of noncom-
pactness of matrix operators from an arbitrary BK space to arbitrary BK space. Let us
recall some definitions and well-known results.

Let X , Y be two Banach spaces and SX denotes the unit sphere in X . We denote
by B(X ,Y ) , the set of all bounded (continuous) linear operators L : X →Y , which is a
Banach space with the operator norm ‖L‖= sup

x∈SX

‖L(x)‖Y for all L∈B(X ,Y ) . A linear

operator L : X → Y is said to be compact if for every bounded sequence (xn) ∈ X , the
sequence (L(xn)) has a convergent subsequence in Y . We denote by C (X ,Y ) , the class
of all compact operators in B(X ,Y ) . If X is a BK space and a = (ak) ∈ w , then we
consider

‖a‖∗X = sup
x∈SX

∣∣∣ ∞

∑
k=0

akxk

∣∣∣, (15)

provided the expression on the right side exists and is finite which is the case whenever
a ∈ Xβ [29].

Let (X ,d) be a metric space and MX be the class of all bounded subsets of X .
Let B(x,r) = {y ∈ X : d(x,y) < r} denotes the open ball of radius r > 0 with centre at
x . The Hausdorff measure of noncompactness of a set Q ∈ MX , denoted by χ(Q) , is
defined as

χ(Q) = inf
{

ε > 0 : Q ⊂
n⋃

i=0

B(xi,ri),xi ∈ X ,ri < ε,n ∈ N

}
.

The function χ : MX → [0,∞) is called the Hausdorff measure of noncompactness.
The basic properties of the Hausdorff measure of noncompactness can be found in
([16], [25], [15]).

Let φ denotes the set of all finite sequences. Throughout we denote p′ as the
conjugate of p for 1 � p < ∞ , i.e., p′ = p

p−1 for p > 1 and p′ = ∞ for p = 1. The
following known results are fundamental for our investigation.

LEMMA 5. [29] Let X denotes any of the sequence spaces c0 or l∞ . If A∈ (X ,c) ,
then we have

(i) αk = lim
n→∞

ank exists for all k ∈ N0,

(ii) α = (αk) ∈ l1,
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(iii) sup
n

∞

∑
k=0

|ank −αk| < ∞,

(iv) lim
n→∞

An(x) =
∞

∑
k=0

αkxk for all x = (xk) ∈ X .

LEMMA 6. ([25], Theorem 1.29) Let 1 � p < ∞ . Then we have lβ
p = lp′ and

‖a‖∗lp = ‖a‖lp′ for all a ∈ lp′ .

LEMMA 7. [29] Let X ⊃ φ and Y be BK spaces. Then we have (X ,Y ) ⊂
B(X ,Y ) , i.e., every matrix A ∈ (X ,Y ) defines an operator LA ∈ B(X ,Y ) , where
LA(x) = Ax for all x ∈ X .

LEMMA 8. [17] Let X ⊃ φ be a BK space and Y be any of the spaces c0 , c or
l∞ . If A ∈ (X ,Y ) , then we have

‖LA‖ = ‖A‖(X ,l∞) = sup
n
‖An‖∗X < ∞.

LEMMA 9. [25] Let Q be a bounded subset of the normed space X , where
X = lp for 1 � p < ∞ and X = c0 for p = ∞ . Let Pl : X → X be the operator defined
by Pl(x) = (x0,x1, · · · ,xl,0,0, · · ·) for all x = (xk) ∈ X . Then

χ(Q) = lim
l→∞

(
sup
x∈Q

‖(I−Pl)(x)‖
)
,

where I is the identity operator on X .

Let z = (zn)∈ c . Then z has a unique representation z = �̂e+
∞

∑
n=0

(zn− �̂)en , where

�̂ = lim
n→∞

zn . We now define the projections Pc
l (l ∈ N0) from c onto the linear span of

{e,e0,e1, · · · ,el} as

Pc
l (z) = �̂e+

l

∑
n=0

(zn − �̂)en,

for all z ∈ c and �̂ = lim
n→∞

zn .

Then the following result gives an estimate for the Hausdorff measure of noncom-
pactness in the BK space c .

LEMMA 10. [25] Let Q ∈ Mc and Pc
l : c → c be the projector from c onto the

linear span of {e,e0,e1, . . .el} . Then we have

1
2

lim
l→∞

(
sup
x∈Q

‖(I−Pc
l )(x)‖∞

)
� χ(Q) � lim

l→∞

(
sup
x∈Q

‖(I−Pc
l )(x)‖∞

)
,

where I is the identity operator on c.
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LEMMA 11. [25] Let X ,Y be two Banach spaces and L ∈ B(X ,Y ) . Then

‖L‖χ = χ(L(SX ))

and
L ∈ C (X ,Y ) if and only if ‖L‖χ = 0.

THEOREM 10. [14] (Pitt’s compactness theorem) Let 1 � q < p � ∞ and put
Xp = lp for 1 < p < ∞ and X∞ = c0 . Then every bounded linear operator from Xp into
lq is compact.

We establish the following lemmas which are required to characterize the classes
of compact operators with the help of Hausdorff measure of noncompactness.

LEMMA 12. If a = (ak) ∈ [lp(r,s,t;Δ(m))]β then ã = (ãk) ∈ lβ
p = lp′ and the

equality
∞

∑
k=0

akxk =
∞

∑
k=0

ãkyk

holds for every x = (xk)∈ lp(r,s,t;Δ(m)) and y = (yk)∈ lp , where y = (A(r,s,t).Δ(m))x .
In addition

ãk = rk

[
ak

s0tk
+

k+1

∑
i=k

(−1)i−k D(s)
i−k

ti

∞

∑
j=k+1

(
m+ j− i−1

j− i

)
a j

+
∞

∑
l=2

(−1)l D
(s)
l

tl+k

∞

∑
j=k+l

(
m+ j− k− l−1

j− k− l

)
a j

]
. (16)

Proof. Let a = (ak) ∈ [lp(r,s,t;Δ(m))]β . Then by ([26], Theorem 3.2), we have

R(a) = (Rk(a)) ∈ lβ
p = lp′ and also

∞

∑
k=0

akxk =
∞

∑
k=0

Rk(a)Tk(x) for all x ∈ lp(r,s,t;Δ(m)),

where

Rk(a) =
∞

∑
j=k

j

∑
i=k

(−1)i−k
(

m+ j− i−1
j− i

)
D(s)

i−k

ti
rka j

=
D(s)

0

tk
rkak +

∞

∑
j=k+1

j

∑
i=k

(−1)i−k
(

m+ j− i−1
j− i

)
D(s)

i−k

ti
rka j

= rk

[
ak

s0tk
+

k+1

∑
i=k

(−1)i−k D(s)
i−k

ti

∞

∑
j=k+1

(
m+ j− i−1

j− i

)
a j

+
∞

∑
l=2

(−1)l D
(s)
l

tl+k

∞

∑
j=k+l

(
m+ j− k− l−1

j− k− l

)
a j

]
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and y = T (x) = (A(r,s,t).Δ(m))x . This completes the proof. �

LEMMA 13. Let 1 � p < ∞ . Then we have

‖a‖∗
lp(r,s,t;Δ(m)) = ‖ã‖lp′ =

⎧⎪⎨
⎪⎩

( ∞

∑
k=0

|ãk|p′
) 1

p′ 1 < p < ∞

sup
k
|ãk| p = 1

for all a = (ak) ∈ [lp(r,s,t;Δ(m))]β , where ã = (ãk) is defined in (16).

Proof. Let a = (ak) ∈ [lp(r,s,t;Δ(m))]β . Then from Lemma 12, we have ã =
(ãk) ∈ lp′ . Since lp(r,s,t;Δ(m)) is isomorphic to lp , we have x ∈ Slp(r,s,t;Δ(m)) if and

only if y = T (x) ∈ Slp as ‖x‖lp(r,s,t;Δ(m)) = ‖y‖lp . From (15), we have

‖a‖∗
lp(r,s,t;Δ(m)) = sup

x∈S
lp(r,s,t;Δ(m))

∣∣∣ ∞

∑
k=0

akxk

∣∣∣ = sup
y∈Slp

∣∣∣ ∞

∑
k=0

ãkyk

∣∣∣ = ‖ã‖∗lp .

Using Lemma 6, we have ‖a‖∗
lp(r,s,t;Δ(m))

= ‖ã‖∗lp = ‖ã‖lp′ , which is finite as ã ∈ lp′ .

This completes the proof. �

LEMMA 14. Let Y be any sequence space, A = (ank)n,k be an infinite matrix
and 1 � p < ∞ . If A ∈ (lp(r,s,t;Δ(m)),Y ) then Ã ∈ (lp,Y ) such that Ax = Ãy for
all x ∈ lp(r,s, t;Δ(m)) and y ∈ lp , which are connected by y = (A(r,s,t).Δ(m))x and
Ã = (ãnk)n,k is given by

ãnk = rk

[
ank

s0tk
+

k+1

∑
i=k

(−1)i−k D(s)
i−k

ti

∞

∑
j=k+1

(
m+ j− i−1

j− i

)
an j

+
∞

∑
l=2

(−1)l D
(s)
l

tl+k

∞

∑
j=k+l

(
m+ j− k− l−1

j− k− l

)
an j

]
, (17)

provided the series on the right side converges for all n,k .

Proof. We assume that A ∈ (lp(r,s,t;Δ(m)),Y ) , then An ∈ [lp(r,s, t;Δ(m))]β for all

n . Thus it follows from Lemma 12, we have Ãn ∈ lβ
p = lp′ for all n and Ax = Ãy

holds for every x ∈ lp(r,s,t;Δ(m)) , y ∈ lp , which are connected by the relation y =
(A(r,s, t).Δ(m))x . Hence Ãy ∈ Y . Since x = (Δ(m))−1(A(r,s,t))−1y , for every y ∈ lp ,
we get some x ∈ lp(r,s,t;Δ(m)) and hence Ã ∈ (lp,Y ) . This completes the proof. �

LEMMA 15. Let 1 < p < ∞ , A = (ank)n,k be an infinite matrix and Ã = (ãnk)n,k

be the associate matrix defined in (17). If A∈ (lp(r,s,t;Δ(m)),Y ) , where Y ∈ {c0,c, l∞} ,
then

‖LA‖ = ‖A‖(lp(r,s,t;Δ(m),l∞) = sup
n

( ∞

∑
k=0

|ãnk|p′
) 1

p′
< ∞.
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Proof. We write X = lp(r,s,t;Δ(m)) . Since X is a BK space, by using Lemma 8,
we have

‖LA‖ = ‖A‖(X ,l∞) = sup
n
‖An‖∗X < ∞.

Now from Lemma 13, we have

‖An‖∗X = ‖Ãn‖lp′ =
( ∞

∑
k=0

|ãnk|p′
) 1

p′
,

which is finite as Ãn ∈ lp′ for all n . This completes the proof. �
Now we prove the main results.

THEOREM 11. Let 1 < p < ∞ , A = (ank)n,k be an infinite matrix and Ã = (ãnk)n,k

be the associate matrix defined in (17). We have
(a) if A ∈ (lp(r,s,t;Δ(m)),c0) then

‖LA‖χ = limsup
n→∞

( ∞

∑
k=0

|ãnk|p′
) 1

p′
. (18)

(b) if A ∈ (lp(r,s,t;Δ(m)),c) then

1
2

limsup
n→∞

( ∞

∑
k=0

|ãnk − α̃k|p′
) 1

p′ � ‖LA‖χ � limsup
n→∞

( ∞

∑
k=0

|ãnk − α̃k|p′
) 1

p′
, (19)

where α̃k = lim
n→∞

ãnk for all k .

(c) if A ∈ (lp(r,s,t;Δ(m)), l∞) then

0 � ‖LA‖χ � limsup
n→∞

( ∞

∑
k=0

|ãnk|p′
) 1

p′
. (20)

Proof. (a) Let us first observe that the expressions in (18) and in (20) exist by
Lemma 15. Also by using Lemma 14 and Lemma 5, we can deduce that the expressions
in (19) exists.

We write S = Slp(r,s,t;Δ(m)) in short. Then by Lemma 11, we have ‖LA‖χ = χ(AS) .

Since lp(r,s, t;Δ(m)) and c0 are BK spaces, A induces a continuous map LA from
lp(r,s, t;Δ(m)) to c0 by Lemma 7. Thus AS is bounded in c0 , i.e., AS ∈ Mc0 . Now by
Lemma 9,

χ(AS) = lim
l→∞

(
sup
x∈S

‖(I−Pl)(Ax)‖∞

)
,

where the projection Pl : c0 → c0 is defined by Pl(x) = (x0,x1, · · · ,xl ,0,0, · · ·) for
all x = (xk) ∈ c0 and l ∈ N0 . Therefore ‖(I − Pl)(Ax)‖∞ = sup

n>l
|An(x)| for all x ∈

lp(r,s, t;Δ(m)) . Using (15) and Lemma 13, we have

sup
x∈S

‖(I−Pl)(Ax)‖∞ = sup
n>l

‖An‖∗lp(r,s,t;Δ(m))

= sup
n>l

‖Ãn‖lp′



1074 A. MAJI AND P. D. SRIVASTAVA

Therefore χ(AS)= lim
l→∞

(
sup
n>l

‖Ãn‖lp′

)
= limsup

n→∞
‖Ãn‖lp′ = limsup

n→∞

( ∞

∑
k=0

|ãnk|p′
) 1

p′ . This

completes the proof.
(b) We have AS ∈ Mc . Let Pc

l : c → c be the projection from c onto the span of
{e,e0,e1, · · · ,el} defined as

Pc
l (z) = �̂e+

l

∑
k=0

(zk − �̂)ek,

where �̂ = lim
k→∞

zk . Thus for every l ∈ N0 , we have

(I−Pc
l )(z) =

∞

∑
k=l+1

(zk − �̂)ek.

Therefore ‖(I−Pc
l )(z)‖∞ = sup

k>l
|zk − �̂| for all z = (zk) ∈ c . Applying Lemma 10, we

have

1
2

lim
l→∞

(
sup
x∈S

‖(I−Pc
l )(Ax)‖∞

)
� ‖LA‖χ � lim

l→∞

(
sup
x∈S

‖(I−Pc
l )(Ax)‖∞

)
. (21)

Since A∈ (lp(r,s, t;Δ(m)),c), we have by Lemma 14, Ã∈ (lp,c) and Ax = Ãy for every
x ∈ lp(r,s, t;Δ(m)) and y ∈ lp , which are connected by y = (A(r,s,t).Δ(m))x . Using

Lemma 5, we have α̃k = lim
n→∞

ãnk exists for all k , α̃ = (α̃k) ∈ lβ
p = lp′ and lim

n→∞
Ãn(y) =

∞

∑
k=0

α̃kyk. Since ‖(I−Pc
l )(z)‖∞ = sup

k>l
|zk − �̂| , we have

‖(I−Pc
l )(Ax)‖∞ = ‖(I−Pc

l )(Ãy)‖∞

= sup
n>l

∣∣∣Ãn(y)−
∞

∑
k=0

α̃kyk

∣∣∣
= sup

n>l

∣∣∣ ∞

∑
k=0

(ãnk − α̃k)yk

∣∣∣.
Also we know that x ∈ S = Slp(r,s,t;Δ(m)) if and only if y ∈ Slp . From (15) and

Lemma 6, we deduce

sup
x∈S

‖(I−Pc
l )(Ax)‖∞ = sup

n>l

(
sup
y∈SX

∣∣∣ ∞

∑
k=0

(ãnk − α̃k)yk

∣∣∣) = sup
n>l

‖Ãn− α̃‖∗lp = sup
n>l

‖Ãn− α̃‖lp′ .

Hence from (21), we have

1
2 limsup

n→∞

( ∞

∑
k=0

|ãnk − α̃k|p′
) 1

p′ � ‖LA‖χ � limsup
n→∞

( ∞

∑
k=0

|ãnk − α̃k|p′
) 1

p′ .

(c) Since the proof is trivial, we omit the proof. �
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COROLLARY 2. Let 1 < p < ∞ .
(a) If A ∈ (lp(r,s,t;Δ(m)),c0) , then LA is compact if and only if

lim
n→∞

( ∞

∑
k=0

|ãnk|p′
) 1

p′ = 0.

(b) If A ∈ (lp(r,s,t,Δ(m)),c) then LA is compact if and only if

lim
n→∞

( ∞

∑
k=0

|ãnk − α̃k|p′
) 1

p′ = 0 , where α̃k = lim
n→∞

ãnk for all k .

(c) If A ∈ (lp(r,s,t,Δ(m)), l∞) then LA is compact if lim
n→∞

( ∞

∑
k=0

|ãnk|p′
) 1

p′ = 0 .

Proof. The proof is immediate from Theorem 11. �

REMARK 1. The condition on the matrix Ã = (ãnk) in Corollary 2 (c) is only
the sufficient condition for the operator LA to be compact. For example, define a ma-
trix A = (ank) by an0 = s0t0

r0
and ank = 0 for k � 1. Then for every x = (xk)∞

k=0 ∈
lp(r,s, t;Δ(m)) , Ax = s0t0

r0
x0e . Therefore A ∈ (lp(r,s,t,Δ(m)), l∞) . Clearly the operator

LA induced by the matrix A is a finite rank operator and hence LA is compact. But
for the choice of the matrix A = (ank) , we have from (17) (ãnk)∞

k=0 = e0 and hence

lim
n→∞

( ∞

∑
k=0

|ãnk|p′
) 1

p′ = 1.

THEOREM 12. Let 1 � q < p < ∞ . If A ∈ (lp(r,s,t;Δ(m)), lq) then ‖LA‖χ = 0 .

Proof. Let 1 � q < p < ∞ . Suppose that A∈ (lp(r,s, t;Δ(m)), lq) . Then by Lemma
14, we have Ã ∈ (lp, lq) , where Ax = Ãy for all x ∈ lp(r,s,t;Δ(m)) and y ∈ lp and
Ã = (ãnk) is defined in (17) . Since lp, lq are BK spaces, so Ã induces a bounded linear
operator LÃ : lp → lq , 1 � q < p < ∞ . Now by Theorem 10, we have LÃ is compact.
Again lp(r,s, t;Δ(m)) ∼= lp . Let T : lp(r,s,t;Δ(m)) → lp be a linear isomorphism. Then
the operator LA induced by the matrix A is nothing but LÃ ◦ T , i.e., LA = LÃ ◦ T :
lp(r,s, t;Δ(m)) → lq which is a compact operator as LÃ is so. Hence by Lemma 11,
‖LA‖χ = 0. This completes the proof. �

THEOREM 13. Let 1 � p < ∞ . If A ∈ (l1(r,s,t;Δ(m)), lp) , then

‖LA‖χ = lim
l→∞

(
sup

k

( ∞

∑
n=l+1

|ãnk|p
) 1

p
)
.

and

LA is compact if and only if lim
l→∞

(
sup

k

( ∞

∑
n=l+1

|ãnk|p
) 1

p
)

= 0.
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Proof. We write S = Sl1(r,s,t;Δ(m) ) . Since LA is a bounded linear operator from

l1(r,s, t;Δ(m)) to lp , AS ∈ Mlp . By Lemma 11 and Lemma 9, we have

‖LA‖χ = χ(AS) = lim
l→∞

(
sup

k

( ∞

∑
n=l+1

|ãnk|p
) 1

p
)
.

Now

‖(I−Pl)(Ax)‖lp = ‖(I−Pl)(Ãy)‖lp =
( ∞

∑
n=l+1

|Ãn(y)|p
) 1

p

�
∞

∑
k=0

( ∞

∑
n=l+1

|ãnkyk|p
) 1

p

� sup
k

( ∞

∑
n=l+1

|ãnk|p
) 1

p ‖y‖1

� sup
k

( ∞

∑
n=l+1

|ãnk|p
) 1

p ‖x‖l1(r,s,t;Δ(m)).

Thus

‖LA‖χ � lim
l→∞

(
sup

k

( ∞

∑
n=l+1

|ãnk|p
) 1

p
)
.

Conversely let b(k),k = 0,1,2, . . . be a basis of l1(r,s,t;Δ(m)) such that A(r,s,t;Δ(m))b(k)

= ek for all k and Ab(k) = Ãek . Let E = {b(k) : k ∈ N} . Then E ⊂ S and hence
AE ⊂ AS . Therefore χ(AE) � χ(AS) = ‖LA‖χ . Again

χ(AE) = lim
l→∞

(
sup

k
‖(I−Pl)Ab(k)‖p

)
= lim

l→∞

(
sup

k
‖(I−Pl)Ãe(k)‖p

)

= lim
l→∞

(
sup

k

( ∞

∑
n=l+1

|ãnk|p
) 1

p
)

� ‖LA‖χ .

Hence

‖LA‖χ = lim
l→∞

(
sup

k

( ∞

∑
n=l+1

|ãnk|p
) 1

p
)
.

The second part of this theorem is immediate from the first part. �
EXAMPLE. Let A = (ank)= A(r,s,t).Δ(m) be an infinite matrix. Since l1(r,s, t;Δ(m))

is the matrix domain of A(r,s,t;Δ(m)) in l1 , we have A ∈ (l1(r,s,t;Δ(m)), l1) and hence
A ∈ (l1(r,s, t;Δ(m)), lp) , 1 � p < ∞ . With this choice of the matrix A = (ank) , the asso-
ciate matrix Ã = (ãnk) becomes the identity matrix, i.e., ãnn = 1 and ãnk = 0 for n �= k .
Therefore for each k ∈ N0 , we have

∞

∑
n=l

|ãnk|p =
{

1 k � n,
0 k < n.
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Thus sup
k

( ∞

∑
n=l

|ãnk|p
) 1

p
= 1 and hence ‖LA‖χ = 1. So by Theorem 13, the bounded

linear operator LA : l1(r,s,t;Δ(m)) → lp for 1 � p < ∞ is not compact.
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[4] F. BAŞAR, B. ALTAY, Matrix mappings on the space bs(p) and its α -, β -, γ -duals, Aligarh Bull.
Math. 21, 1 (2002), 79–91.
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