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SOME GEOMETRIC PROPERTIES OF DIFFERENCE
SEQUENCE SPACES OF ORDER m DERIVED BY
GENERALIZED MEANS AND COMPACT OPERATORS
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(Communicated by J. Pecaric)

Abstract. We have introduced a new sequence space I(r,s,1, p;A(’”)) combining by using gen-
eralized means and difference operator of order m. Some topological properties as well as geo-
metric properties namely Banach-Saks property of type p and uniform Opial property have been
studied. Furthermore, the o -, -, y- duals of this space are computed and also obtained nec-
essary and sufficient conditions for some matrix transformations from [(r, sz, p;A(’”)) 0 o,y .
Finally, we obtained some identities or estimates for operator norms and measure of noncom-
pactness of some matrix operators on the BK space lp(ns,t;A('")) by applying the Hausdorff
measure of noncompactness.

1. Introduction

Let w be the space of all real or complex sequences x = (x,), n € Ny. For an
infinite matrix A and a sequence space X, the matrix domain of A, denoted by Xy, is
defined as Xy = {xew:Ax € X} [37].

Let (px) be a bounded sequence of strictly positive real numbers such that H =
suppr and M = max{1,H}. The linear spaces c(p),co(p), l-(p) and I(p) are intro-

k

duced and studied by Maddox [23], where
c(p) = {x = (x) ew: Jim |x; — [Pk =0 for some scalar l},
co(p) = {XZ (xx) Ew: klim i [Pk = 0}’

be(p) = {¥= (u) € w sup | < o=} and

I(p) = {xz (xx) Ew: i |xe|P* < 00}.

k=0

The linear spaces c¢(p),co(p), l-(p) are complete with the paranorm g(x) = sup |xx| ot
if and only if infp; > 0 for all k& while [(p) is complete with the paranorm g(x) =
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M . . .
(2 i |75 ) . Recently, several authors introduced sequence spaces by using matrix
k

domain; for example, Bagar et al. [4] studied the space bs(p) = [l(p)]s, where S is the
summation matrix. Altay and Basar [1] studied the sequence spaces ¥ (p) and ., (p),
which consist of all sequences whose Riesz transforms are in the spaces [(p) and l.(p)
respectively, i.e., ¥ (p) = [[(p)|g and 7, (p) = [l(p)]r: -

Kizmaz [22] first introduced and studied the difference sequence space. Later on,
several authors including Colak and Et [10], Polat and Bagar [33], Basar and Altay
[5], Altay and Bagar [2], Aydin and Basar [3] and others have studied sequence spaces
defined by using difference operator.

On the other hand, sequence spaces are also defined by using generalized weighted
mean (see [1], [27]). Mursaleen and Noman [30] also introduced a sequence space of
generalized means, which includes most of the known sequence spaces. In 2011, Polat
et al. [34] introduced and studied a sequence space which is generated by combining
both the weighted mean and the difference operator. Later on Bagarir and Kara (see
[71, [8]) generalized the sequence spaces of Polat et al. [34] to an mth-order difference
sequence.

Recently, mathematicians are interested to study the geometric properties of Ba-
nach sequence spaces as these have various applications in the several areas of math-
ematics. In literature, a lot of papers about the geometric properties can be found; for
example one can see the papers of Cui and Hudzik ([11], [12]). Cui and Meng [13], Ng
and Lee [31] investigated the geometric properties of Cesaro sequence spaces. Basar et
al. [6] studied rotundity property of generalized space of the space bv, of p-bounded
variation sequences. Quite recently, Hudzik et al. [21], Simsek and Karakaya [36], Et
et al. [18] pursued the geometric properties of sequence spaces.

The aim of this paper is to introduce a new sequence space (7, s,1, p;A(’")) defined
by using both the generalized means and the difference operator of order m. We inves-
tigate some topological properties as well as geometric properties namely Banach-Saks
property of type p, uniform Opial property etc. We also compute o-, -, y-duals
and characterize some matrix mappings on the new sequence space. Finally, we ob-
tain some identities or estimates for operator norms and measure of noncompactness of
some matrix operators on the BK space I,(r, s,t;A(’")) by using the Hausdorff measure
of noncompactness.

2. Preliminaries

Let l.,c and cp be the spaces of all bounded, convergent and null sequences
x = (x,) respectively with norm ||x||.. = sup|x,|. Let bs, cs and [, be the sequence
n

spaces of all bounded, convergentseries and p-absolutely summable series respectively
and bv be the space of bounded variation sequences. We denote by ¢ = (1, 1,---) and
e, for the sequence whose n-th termis 1 and others are zero and No = NU{0}, where
N is the set of all natural numbers. For any subsets U and V of w, the multiplier space
M(U,V) of U and V is defined as

MU,V)={a=(ay) ew:au= (ayu,) €V forallu = (u,) €U}.
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In particular,
U*=M(U,1I,), UP =M(U,cs) and UY = M(U, bs)

are called the o-, B - and y- duals of U respectively [26].

Let A = (ak)nx be an infinite matrix with real or complex entries a,;. We write
Ay as the sequence of the n-throw of A, i.e., A, = (au)r forevery n. For x= (x,) € w,
the A-transform of x is defined as the sequence Ax = ((Ax),), where

An(x) = (Ax), = 2 kX »
k=0

provided the series on the right side converges for each n. For any two sequence spaces
U and V, we denote by (U,V), the class of all infinite matrices A that map from U
into V. Therefore A € (U,V) if and only if Ax € V for all x € U. In other words,
A (U,V) if and only if A, € UP forall n [37].

A sequence space X is called a BK space if it is a Banach space with continuous
coordinates p, : X — K, where K denotes the real or complex field and p,(x) = x, for
all x= (x,) € X and each n € Ny. An infinite matrix 7 = (f,x),« is called a triangle if
tan 70 and t,; =0 forall k > n. Let T be a triangle and X be a BK space. Then Xr
is also a BK space with the norm given by ||x||x, = ||Tx||x forall x € X7 [37].

A functional p on w is called a convex modular if the following conditions satisfy:

i) p(x)=0ifand only if x=0
ii) p(oax)=p(x) for all scalar or with |or| =1 and forall x € w

iii) p(ox+By) < ap(x)+ Bp(y) forall scalar o, f > 0 with ot + 8 = 1 and for all
X,y Ew.

If the functional p satisfies i), ii) and
p(ox+ By) < p(x)+p(y) forall scalar ¢, > 0 with o+ =1 and for all x,y € w,

then p is called a modular. It is obvious that every convex modular is a modular but
the converse is not so.
For any modular p on a vector space X , the modular space is defined as

Xp={xeX:p(Ax) > 0asA — 0"}

If p is a convex modular on X, then the functionals

Hﬂh:hﬁ{l>0:p<%><l}

and

szm%@+mm»

become norms on X, which are called Luxemburg norm and Amemiya norm respec-
tively. In fact, these norms are equivalent and ||x||; < ||x[|4 < 2||x[|; forall x € X, .
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A modular p is said to satisfy the Ay condition (p € A, in short) if for any € >0
there exist constants K > 2 and a > 0 such that

p(2x) <Kp(x)+e

for all x € X, with p(x) < a. If p satisfies A,-condition for all a > 0 with K > 2
dependent on a, then p is said to satisfy strong A, -condition (p € Aj in short).

LEMMA 1. [32] Convergence in norm and in modular are equivalent in X, if
pEN;.

LEMMA 2. [32] If p € A}, then for any L > 0 and € > O there exists 6 > 0 such
that

p(utv)—p(u)| <e
whenever u,v € X, with p(u) <L and p(v) < 6.

LEMMA 3. [32] If p € A}, then for any € > O there exists & = 6(€) > 0 such
that ||x|| > 14 6 whenever p(x) > 1 +¢.

Given any p € (1,e0), we say that a Banach space X has the Banach-Saks prop-

erty of type p (see [21]) if there exists a constant C > O such that every weakly null
sequence (xy) there exists a subsequence (x,) such that

n
| 2
r=1

A Banach space X is said to have Opial property if for every weakly null sequence (x;,)
and for every x # 6 in X, we have

<Cnr forall neN.

liminf||x, || < liminf||x, +x]|.
n—oo n—oo

A Banach space X is said to have the uniform Opial property if for every € > O there
exists i > 0 such that

1+ p < liminf ||x, + x|
Nn—oo

for any weakly null sequence (x,) € S(X) and x € X with ||x|| > & (see [35]).

3. Difference sequence space [(r,s,, p; A"™)

We first begin with the notion of generalized means given by Mursaleen et al. [30].
Consider the sets % and % as

%:{u:(un)ew:un;éo for all n} and?/o:{u:(un)Ew:uoyéO}.
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Let r = (rp),t = (tn) € % and s = (s,) € % . The sequence y = (y,) of generalized
means of a sequence x = (x,) is defined by

= — Z Sp—klikXk (n S N())

'n —
The infinite matrix A(r,s,?) of generalized means is defined by

Sn—klk

btk 0 < k< n,
A 1 = n
(A(r5,1))nk {0 k> n.

Since A(r,s,t) is a triangle, it has a unique inverse and the inverse is also a triangle
[20]. Take D’ = L and

S

o

s1 s O O---
52 S1 S50 0--- 0
1
n+1
S0

DY = for n=1,2,3,---

Sp—1 Sn—2 Sn—3 Sn—4°"* 50

Sn Sp—1 Sp—2 Sn—-3 " S1

Then the inverse of A(7,s,t) is the triangle B = (b,), «, Which is defined as

n—k D(Szk
b= ()" = 0<k<n,
0 k> n.

Combining both the generalized means and the difference operator of order m, we
now introduce a sequence space [(r,s,1, p;A(m)) defined as

I(r,s,t, p; AU = {x: (x2) €w: [A(rs,1).AM]x € l(p)},

where p = (px) is a bounded sequence of strictly positive real numbers. The sequence
y=(y) is A(r,s,1).A" _transform of a sequence x = (x,), i.e.,

Afer(t)

n =0
Since A(r,s,1).A") is a triangle, it has a unique inverse and the inverse transform is

p)

noz m-+n—k—1\D;_
Xp= Y Z(—l) ( - ) ; Jrjyj7 n € Ny. ()
J=0k=j k

In particular if py = p (1 < p < ) then we write the space as [,(r,s,;A")) instead
of I(r,s,t, p;A(’”)). This sequence space includes many earlier known sequence spaces
studied by several authors with the particular choices of the parameters. One can see
some recent developments in this direction by the authors (see [24], [28]).
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Using modular, we can define the sequence space /(r,s,1, p;A(’")) as

I(rys,t,p; A™) = {x e w: P (0x) < oo for some o >0},

ri g [Z (f j) S”"'t’} Y

=J

where
Pn

Clearly p,m) is aconvex modular and p ) € A3 if sup py < eoo. The space l(r,s,t,p;A(m))
k=1

=

is complete equipped with the Luxemburg norm
. X
|x]| =inf{c >0: pA(m)(E) <1}
The rest of this paper we assume that p = (py) is bounded with py > 1 for all £ and
M = supp;. We also denote x|; = (x1,x2,...,%;,0,0,...) and x|y_; = (0,0,...,xi11,

k=1
Xit2,...) for i€ N and x € w.

4. Main results

In this section, we begin with some topological results of the newly defined se-
quence space.

THEOREM 1. (a) The sequence space 1(r,s,t, p;A™)) is a complete linear metric

space paranormed by h defined as
n €1
2(—1)1./("’ _)Snl‘tl‘:lxj‘ " )M
i=j t=J

(b) The sequence space 1,(r,s,t;A"™), 1 < p < oo is a BK space with the norm
given by

|| Hl’, I’StAm) Hy”lp’
where y = (y,) is defined in (1).

Proof. We leave the proof as it is a routine verification. []

THEOREM 2. The sequence space l(r,s,t,p;A(m)) is linearly isomorphic to the
space 1(p), i.e., 1(r,s,1,p; A) = 1(p).

Proof. We omit the proof as it is trivial. [

PROPOSITION 1. Let p = (py) be a bounded sequence with py > 1 for all k and

M = sup py. Then
k=1

1. if 0 <A <1 then AMp, ) (%) < P (X) and Py (Ax) < APy (x).
2).0f 2 =1, then Py (x) = Appen () and pym (x) < AMpyin ().
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Proof. We leave the proof as it follows from the definition of p,(m). U

PROPOSITION 2. Let p = (py) be a bounded sequence with py > 1 for all k and

M = sup py. Then
k=1

1) 4f [l < 1 then py () < [
2). if ||| > 1 then pyum)(x) =
3).4f |l = 1 then pym () = lx].

4).if 0<A <1and x| > A then pum)(x) >
5).if A =1 and ||x|| <A then pyum(x) < AM

Proof. The proof follows from Proposition 1. [

THEOREM 3. Let p = (pi) be a bounded sequence with p; > 1 for all k. Then
the sequence space 1(r,s,t, p; A(m)) equipped with the Luxemburg norm has the uniform
Opial property.

Proof. Let X =I(r,s,t,p;A") and S(X) be the unit sphere of X. Let (x*) be
any weakly null sequence in S(X). We will show that for any € > 0 there exists y >0
such that

lilminf||xk+xH >14pu,

where x € X satisfying ||x|| > €. Since sup py < o0, 50 p,() € A} and hence the conver-

gence in norm and the convergence in modular are equivalent by Lemma 1. Therefore
there exists 6 € (0,1) such that p,.,(x) > & as ||x|| > €. Again from Lemma 2, we
can find &; € (0,8) such that p,u) (y) <1, ppm (z) < 8 implies

)

‘PA('H) (y + Z) — Pplm) (y)‘ < g 3)

Since x € X, there exists ny € N such that

s |5 § [Z (f j) s"”"] i

n=np+1 """ j=0 Li=j

17,1<ﬁ
"

Now

=3

1 n o "

+ X —Z{Z —1)1_’<.m.)snifi}xfp
n=np+1 "n Jj=0 Li=j 1=J ’

1A TE o m oS

< _ —1)/ ot x —,

SREEC
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which implies

1o n n . 5 55
2626[2 Yol > 8- 5=

Since weak convergence implies coordinate wise convergence, so we have

Il TSR] (R R R

> =
nOrJO 6

forall k> k. Since x** — 0 weakly as k — oo, so there exists np € N and k| > ky such
that
Paon) (F[ng) < 81 forall k > ky.

Since (x*) C S(X), by Proposition 2, we have p,(m (x*) = 1. Therefore for ng € N,
we have p, ) (¥|n_n,) < 1. Let us set u = x*|n_,, and v =x*|,;. Then u,v € X and
P (@) < 1, pyom (v) < 8;. Using (3), we have

|PA xk|N ny TX |no) pA(m)(xk‘anoﬂ < %7
for all k > k. Thus pym (¥) — & < pyom (F|ny,) forall k> ki, ie.,

hnd 1 & n s m Pn 6
2 — 2 (—l)l J . | Sn—iti xlj‘ >1——=
n=no+1'"n j=o Li=j 1=J 6

for all k > ki. Again P, (X |N_ny) <1 and Py (X|n_n,) < 56—1 < 01, from the in-

equality (3), we have

Ng

<

N>

’Pm) (X 4 XN ) — P (F )

We have for k > k

P (xk—i-x) = Z rl Z [Z(—l)i_j (lr_n .)sniti] (x]; +x;) "
n=0'"n ;=0 Li=; J

Pn

- L R (g ()l

n=np+1 "'n j=0

NS [ - m »
s 2 — 2 {2(_”](. .)sn—ili] (x]j(-—I—Xj)
n=0'"n j=o Li=; i—j
noy 1 n n o " o 6
— _1\—J » k _ o
+y§6 rn,ga[,zj( b (i—j)sn’t’}xl 6

>g+(1—§>—§:1+§.

Using Lemma 3 there exists u > 0 depending only on § such that |[x* 4 x|| > 1+ u
for k > ki . Hence lilm inf||x* + x| > 1 + u. This completes the proof. [J
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COROLLARY 1. Let p = (py) be a bounded sequence with py > 1 forall k. Then
the sequence space 1(r,s,t, p;A(’")) equipped with the Amemiya norm has the uniform
Opial property.

THEOREM 4. The sequence space lp(r,s,t;A(m)), 1 < p < e has the Banach-
Saks property of type p.

oo

Proof. Let (&,) be a sequence of positive real numbers such that Z & < —. Let

Bl

n=1
(x*) be any weakly null sequence in the unit ball of 1,(r,s,1;A"), i.e., |x], <1 (for

the simplification of notation we here write ||x||,, instead of || x| Iy (rs.:A0M) ). Set x°=0,

y! = x™ . Then there exists 17; € N such that

| 3 st

i=n;+1 p

<é€.

Since weak convergence implies coordinate wise converges, so x;,, — 0 coordinate wise.
Hence there exists n, € N such that

< g forall n >ny.
p

m
| 2e
i=1
Set y? = x™2. Then there exists 1> € N, 17, > 1; such that

| 5 2l <

i=mnp+1 P

Using the coordinate wise converges of x* — 0, we can find n3 € N, n3 > n, such that

2
H le'-'e,-
i=1

< & forall n > nj.
p

By repeating this process, we can find two increasing sequences (n;) and (1;) such
that

nj-1

|2

2 x?e,-’
i=1

< gj_y forall n>nj, and
p

, < &j, where y/ =x"/.

Y, vl

I=Mjt1
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Now
n . n 71, 1
‘ZyJH — Z(Zyle,+ Z yiei+ Z yle )
j=1 P j=1"i=1 i=nj_1+1 i=n;+1
n Mj-1
<[ 3 X, el +[2 Z o),
j=1i=1 =li=n;_ j=li=n;+1
n
<Xz Z viei +Z(8j71+8j)~ )
J=li=n;—1+1 j=1
= 1
. m ni|P\ p
Now ||x"J||p:<2 —2 [Z ( )snitl}xk” ) and [[x"/]|, < 1. There-
n=0 ’"nk 0 Li= k i~k
- 1 1
fore ||x"||h < Z y! e,’ < n. Since Y & < 7 and 1 <nv forall

Jj= ll nj-1+1
n > 1, we have from the relation (4)

n
‘ j
j=1

Hence the space lp(r,s,t;A(’")), 1 < p < e has the Banach-Saks property of type
p. O

1
< 2nr.

4.1. The a-, B-, y-dual of [(r,s,z, p;Al™)

In 1999, K. G. Grosse-Erdmann [19] characterized the matrix transformations
between the sequence spaces of Maddox, namely, /(p), ¢(p),co(p) and l.(p). We list
the following conditions:

Let L be any natural number, F' denotes finite subset of Ny and o, 0y are complex
numbers. Let p = (p) be bounded sequence of strictly positive real numbers with

pr > 1 forall k, A= (@)n be an infinite matrix and pj = -5 forall k.
L supz 2 ankL (5)
neF
lima,; = 0 for all k (6)
n
Py

VL sup ¥ ankL‘ <oo %

ng
_p|Pk

EILsupE an L ‘ < oo (8)
nog

I(og) lim |, — oy | = 0 for all k 9
n

How) VL sup Y, (Jane — o L)% < o0 (10)
nor
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auLl " < oo (11)

=/ supz
nok

LEMMA 4. [19]

(i) A€ (I(p),l1) if and only if (5) hold.

(it) A € (I(p),co) if and only if (6) and (7) hold.
(iii) A € (I(p),c) if and only if (8), (9) and (10) hold.
(iv) A€ (l(p),lw) if and only if (11) hold.

Now we compute the -, y-dual of I(r,s,t, p; A"™) . Consider the set
D .

k-1 .
H(p):U{ (an) Ew: supz ZZ (m Z—k ) fk rianL 0 <

LeN j=0 ne€Fk=j

THEOREM 5. (a) Let p = (px) be a bounded sequence with p; > 1 for all k.
Then [I(r,s,t, p;AV")]* = H(p).

Proof. (a) Let py > 1 forall k, a = (a,) €w, x € [(r,5,t,p;A") and y € [(p).
Then for each n, we have

( )
U m+n—k—1
= —1) —k=J C
anXy jgf)kg}( ( n—k ) . rianyj = (Cy)n,
where the matrix C = (cpj)n,; is defined as

()
1 —1
2(—1) (m—!—n k ) jran if 0<j<n
py n—k I
0

if j>n

Cnj =

and x, is given in (2). Thus for each x € l(r,s,t,p;A(m)), (anxn)n € 1y if and only
if Cy €1;, where y € I(p). Therefore a = (a,) € [I(r,s,t,p;A")]* if and only if
C e (I(p),l1). By using Lemma 4 (i), there exists L € N such that

< d kj(m+n—k—1 ;(c) L
sup > | Y D (1) - o LrianL < oo,

Fj=0"neFk=j

Hence [I(r,s,1, p;AU")]* = H(p). This finishes the proof. [

We consider

p) = U {a: (ax) € w: sup Z \elnL_l\p’,l < w},

LeN 1eNy n=0
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where the matrix E = (e;,,) is defined by

a, " L D,({S) Lomtj—k—1
p [ N e Picn ( j )a,
w5 &3@ -k )
ein = . El DY 1 <m+j—k—l>a} oeney 2
. j xnx
k=2 e % J—k
0 n>l

l
Note wemean Y =0ifn>1.

j=n

THEOREM 6. Let p = (py) be a bounded sequence with py > 1 for all k. Then
(11,52, p: A™))” = T(p).

Proof. (a) Let py > 1 forall k, a= (a) € w, x € [(r,5,1,p;A) and y € [(p).
Then by using (2), we have

1 Il n n (s)
m+n—k—1\ D
Sam =3 3 ¥ 0 (") A
n=0 n=0j=0k=j n—
-1 n n D(S
_ 2 2(_1)]{7 (m"’n ) k— jrjy,an
=0 j=0k—j Tk
1o (5) (S)
+1—k-1\D
+2 Z(—l) (m I—k ) k= ’rJyJaH— —l——alrlyl
j=0k=j - ]
l ntl pB 1 k-1
Zrn[ + D (—1yf == > (m—f—] )aj
n=0 Soln k=n I j=n+1 J —k
! pB 1 k1
ol (A 1
k=nt2 [ =k
= (Ey)1 (13)

where the matrix E is defined in (12). Thus a € [I(r,s,¢, p;A™)]” if and only if ax =
!
(anxn) € bs, where x € I(r,s,t, p; A"™) if and only if ( Y a"x">z €lw,ie, Ey€l,

n=0
where y € [(p). Hence by using Lemma 4 (iv),

sup Y e |Ph < oo,
1€Ng n=0

for some L € N. Hence [l(r,s,t,p;A(’“))] " =T (p). This completes the proof. [
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To find the f3-dual of I(r,s,t, p;A(’")), we define the following sets:

o SR
B1:{a:(an)€w: 2 <m+]J r )aj existsforallk},
j=n+1 -
oo () o .
D} m+j—k—1 .
B, = {a: (an) ewzk:%z(_l)k n%%( ]]'—k )aj exists forallk},
B3 = {a: (a,,) cEw: (rr;an> S l.x,(p)}7
By = U {a: (an) €w: sup 2 I o <z>o},
LeN 1€No n=0

Bs = {a = (an) ew:Ia,) }Ll{loeln =a Vn}7

=N {a: (an) €w:3(oy) sup i <|ezy,—06n|L>p;1 < °°}7

LeN 1€No n=0
THEOREM 7. ( ) Let p = (px) be a bounded sequence with py > 1 for all k.

6
Then [I(r,s,t, p; AP = ﬂ

Proof. (a) Let py > 1 for all k. We have from (13)

l
Z anxy, = (Ey)i,
n=0

where the matrix E is defined in (12). Thus a € [I(r, s,t7p'A(’"))]ﬁ if and only if

ax = (ayx,) € cs, where x € I(r,s,¢,p; A" if and only if Ey € ¢, where y €1(p), i
E € (I(p),c). Hence by Lemma 4 (iii),

JL e N, sup i

1eNy =0

_q|Pn
e L ) < oo,
(o) llim e, = oy, for all n,

(o) and VL €N sup Y (\eln - a,JL) ™ < oo

1eNy n=0

Therefore [I(r,s,t,p; AP = (B, O

»
(DL

4.2. Matrix mappings

THEOREM 8. Let E = (&,) be the matrix which is same as the matrix E = (ej,)
defined in (12), where a, and a; are replaced by a;, and a;; respectively. Let p, > 1
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forall n. Then A € (I(r,s,t,p;A™),1.) if and only if there exists L € N such that

sup .
L n

P 6
élnLil‘ < oo and (aln)n S ﬂ By.
k=1

Proof. Let p, > 1 forall n and A € (I(r,s,2, p;A™), I,). Then (as)n € [I(r.5,2,p;

A(’“))]ﬁ for each fixed /. Thus Ax exists for all x € [(r,s,t, p;Al)). Now for each [,
we have

g q il DY L k-1
Zoal”x”zz[ T2 2( ik )“"

w0 LSoln =, L
! D( L m+ k—l
J
+ Y (—pfr Z( ) j]}’n
knt2 i—k
:(Ey)l7

Taking ¢ — oo, we have

i AinXn = i ey, foralll.
1=0

We know that for any 7 > 0 and any complex numbers a,b
jab| < T(|laT~"|" + |b|") (14)

where y> 1 and %,-k% = 1. From (14), we get
Zalnxn <SUP2 T{supE |élnT71‘p"—|—2 |yn‘p” < oo,
n=0 I n=0 I n=0 n=0

Thus Ax € L. This proves that A € (I(r,s,7, p;A"™), ..).
Conversely, assume that A € (I(r,s,¢, p;A™),1..) and p, > 1 for all n. Then Ax
exists for each x € I(r, s,t,p;A(m)) which implies that (ay,), € [I(r,s,t, p; A"™)]P for

éln Yn <

sup
!

each 1. Thus (a;), € ﬂ By. Also from Z Xy = Y €,yn, we have E = (&,) €
k=1 n=0

p/
(I(p), ). Therefore there exists some L € N, such that sup Y’ é;anl’ < eo. This
n

l

completes the proof. [

THEOREM 9. Let p, > 1 forall n. Then A € (I(r,s,t,p;A"™), 1)) if and only if

sup Z

’ 6
17)1

Z éL™ ) < eo for some L € N and (aip)nen, € ﬂ By

IeF k=1

Proof. We omit the proof as it follows as routine. []
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5. Compact operators on the space [ p(r,s,t;A(’")), I<p<oo

As the matrix transformations between BK spaces are continuous, it is natural to
find necessary and sufficient conditions for a matrix mapping between BK spaces to
be a compact operator. This can be achieved with the help of Hausdorff measure of
noncompactness. Here, we give necessary and sufficient conditions for matrix operator
to be a compact from the space lp(r,s,t;A(’")) into ¢,co and sufficient conditions in
case of [

Recently several authors, namely, Malkowsky and Rakocevi¢ [25], Djolovié et al.
[15], Djolovi¢ [17], Mursaleen and Noman [29] Bagarir et al. [9] have established some
identities or estimates for the operator norms and the Hausdorff measure of noncom-
pactness of matrix operators from an arbitrary BK space to arbitrary BK space. Let us
recall some definitions and well-known results.

Let X, Y be two Banach spaces and Sy denotes the unit sphere in X . We denote
by #(X,Y), the set of all bounded (continuous) linear operators L : X — Y, which is a
Banach space with the operator norm ||L|| = sup ||L(x)||y forall L€ ZA(X,Y). A linear

xSy

operator L: X — Y is said to be compact if for every bounded sequence (x,) € X, the
sequence (L(x,)) has a convergent subsequence in Y. We denote by %' (X,Y), the class
of all compact operators in #(X,Y). If X is a BK space and a = (a;) € w, then we

consider _
allx = sup | Y, axxe
xeSx ' k=0

, (15)

provided the expression on the right side exists and is finite which is the case whenever
aecXxP [29].

Let (X,d) be a metric space and .#x be the class of all bounded subsets of X .
Let B(x,r) = {y € X : d(x,y) < r} denotes the open ball of radius r > 0 with centre at
x. The Hausdorff measure of noncompactness of a set Q € .#x, denoted by x(Q), is
defined as

1(0) = inf{e >0:0C | JB(u,n)xmeX,r<ene N}.
i=0

The function )y : .#x — [0,e0) is called the Hausdorff measure of noncompactness.

The basic properties of the Hausdorff measure of noncompactness can be found in

([16], [25], [15D.

Let ¢ denotes the set of all finite sequences. Throughout we denote p’ as the
conjugate of p for 1 < p <, ie., p' = 1% for p>1 and p' = for p=1. The
following known results are fundamental for our investigation.

LEMMA 5. [29] Let X denotes any of the sequence spaces ¢y or lw. IfA € (X, ¢),
then we have

(i) oy = lim @,y exists for all k € Ny,

(il) o = (o) €14,
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(iii) sup Y, |an — 04| < oo,
n i=0

(iv) lim A, (x) = i oyxy forall x = (x) € X.

n—oo -0

LEMMA 6. ([25], Theorem 1.29) Let 1 < p < eo. Then we have l,é = lp/ and
lally, = llall;, for all a € 1,y

LEMMA 7. [29] Let X D ¢ and Y be BK spaces. Then we have (X,Y) C
B(X.,Y), ie., every matrix A € (X,Y) defines an operator Ly € HB(X,Y), where
La(x) =Ax forall xe X.

LEMMA 8. [17] Let X D ¢ be a BK space and Y be any of the spaces cy, ¢ or
lo. If A € (X,Y), then we have

1Lall = |All(x 1..) = sup [[Anlx < oo
n

LEMMA 9. [25] Let Q be a bounded subset of the normed space X, where
X =1, for 1 <p<ooand X =co for p=-oo. Let P, : X — X be the operator defined
by Pi(x) = (xp,x1,-+,x71,0,0,---) forall x= (x;) € X. Then
1) = Jim (sup |1 = P)()])).
= \xeQ

where I is the identity operator on X .

Let 7= (z,) € c. Then z has a unique representation z = fe + Z (za—{)ep, where

n=0
) = lim z,. We now define the projections Pf (I € Ng) from c¢ onto the linear span of
n—oo
{67607617 e 761} as

l

FR)=le+ Y (an—Den,
n=0
forall zec and / = lim z,,.

n—o0

Then the following result gives an estimate for the Hausdorff measure of noncom-
pactness in the BK space c.

LEMMA 10. [25] Let Q € #. and Pf : ¢ — c be the projector from ¢ onto the
linear span of {e,ep,ey,...e;}. Then we have

3 im (sup 0 F7)(9)-) < £(0) < fim (sup |1 =)0 ).

[—o0 [—o0 x€Q

where [ is the identity operator on c.
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LEMMA 11. [25] Let X,Y be two Banach spaces and L € #(X,Y). Then

1Ll = % (L(Sx))

and
Le€(X,Y)ifandonly if|L|, =0

THEOREM 10. [14] (Pitt’s compactness theorem) Ler 1 < g < p < oo and put
X, =1, for 1 < p < oo and X = cy. Then every bounded linear operator from X, into
lq is compact.

We establish the following lemmas which are required to characterize the classes
of compact operators with the help of Hausdorff measure of noncompactness.

LEMMA 12. If a = (a) € [lp(r,5,6; A")]B then a = (&) € lg =l and the

equality
> apx =Y, av
k=0 k=0

holds for every x = (x;) € L,(r,s,t; A" and y = () €1, where y = (A(r,s,1).A" )x.
In addition

k+1 D(S) o ..
a D m+j—i—1
ar = rg —k+2(—1)’ k _k D ( I )aj

Solk i i S J=t
- (s) o .
j—k—1—1
+2(- > (m ’ )a.f}- (16)
=2 tl+k j=k+1 J—k—1

Proof. Let a = (ax) € [lp(V7S7Z;A(’”))]I3. Then by ([26], Theorem 3.2), we have
R(a) = (Re(a)) € l,é3 =1, and also

2 apXxy = 2 Ri(a)Ti(x) forallxe lp(r,s,t;A(m)),

where

&4 r(mE+j—i— )
Rl =3 31" P,

Jki=k J—l li
(s) . (s)
Dy m+j—i—1\D;”
= —rkak—|— 2 2 ( J . ) . krkaj
j=k+1i=k J— li
K+l pY¥ e L
ai D m+j—i—1
[ S 5 (i,
Solk ik ] J—t

oo (5) o .
2 D Z m+j—k—I1-1
1:2( ) Ltk =kt J—k—=1 !
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and y = T'(x) = (A(r,s,).A")x. This completes the proof. [J

LEMMA 13. Let 1 < p < oo. Then we have

1
Y

(Z\akl”) I<p<es
lally s piaomy = llall, =4 M=o

sup | d| p=1

k

forall a= (ay) € [L,(r,s,t; A" where @ = (a) is defined in (16).

Proof. Let a = (a;) € [L,(r,5,6;A")]P. Then from Lemma 12, we have d =
(@) € Ly . Since 1y(r,s, 1;AM) s isomorphic to [,, we have x € §, 1y (rs:0) if and

onlyif y=T(x) €S, as ||le (rs.r:A0 = [|yllz, . From (15), we have
lally s iatmry = | zakxk\ = sup zakyk\ = lalf;,-
PR xeS YES),
lp(rvtA
Using Lemma 6, we have ||a||;p(r’5’t;A(m)) = ||EzH;‘P = Hd||lp,, which is finite as @ € 1.

This completes the proof. [l

LEMMA 14. Let Y be any sequence space, A = (ank)mk be an infinite matrix
and 1 < p <oo. If A€ (Ly(r,s,6;A)Y) then A € (1,,Y) such that Ax = Ay for
all x € 1,(r,s,t;A"™) and y € 1,, which are connected by y = (A(r,s,t).A")x and
A= (dnk)n,k is given by

k+1 D(S) o L.
. a D’ m+j—i—1
e = 1| =+ Y (— 1) > < I )an/’

Solk i iS5 J—t

- (s) o .
—k—1-1
20 2 (M50 el 0

tl+k farat)

provided the series on the right side converges for all n, k.

Proof. We assume that A € (I,(r,s,1;A"™),Y), then A, € [I,(r,s,1;A™)]P for all
n. Thus it follows from Lemma 12, we have A, € lg =1, for all n and Ax = Ay
holds for every x € lp(r,s,t;A(m)), y € I, which are connected by the relation y =
(A(r,s,1).A")x. Hence Ay € Y. Since x = (A"~ (A(r,s5,1)) "'y, for every y € 1,,,
we get some x € [,(r,5,2;AU) and hence A € (1,,,Y). This completes the proof. [J

LEMMA 15. Let 1 < p < oo, A= (au)nx be an infinite matrix and A= () e
be the associate matrix definedin (17). If A € (lp(r,s,t;A(m)),Y), where Y € {co,¢,le},
then

1
o

241l = WAl o ) =55 2 ") <
n
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Proof. We write X = lp(r,s,t;A(’")). Since X is a BK space, by using Lemma 8,
we have
[Lall = |All(x 1) = sup |An[x < oo

Now from Lemma 13, we have

oo 1

Anllx = 14l = (3 lamd”)”,

k=0
which is finite as A, € p for all n. This completes the proof. [

Now we prove the main results.

THEOREM 11. Let 1 < p < oo, A= (Gui)nk be an infinite matrix and A = (G ) e
be the associate matrix defined in (17). We have
(a) if A € (I(r,s,1;AM) co) then

1
P

ILalle =timsup ( 5 ") " (18)

n—oo

(b) if A € (I(r,5,6:A), ¢) then

1.
Ehmsup(Z |ank—ak|p>

e N=0

=3

<ILally < thUP<Z|ank—Ofk|p> ; (19)

e N=0

where 0y = lim a,y for all k.

(c) if A€ (Ly(rys,t;AM) 1) then

< 1Lal < timsup Z aul”)” 20)

n—oo

Proof. (a) Let us first observe that the expressions in (18) and in (20) exist by
Lemma 15. Also by using Lemma 14 and Lemma 5, we can deduce that the expressions
in (19) exists.

We write S = Slp(r,sJ;A(”’)) in short. Then by Lemma 11, we have [|Ly||,, = x(AS).
Since lp(r7s7t;A(’”)) and c¢p are BK spaces, A induces a continuous map L, from
lp(r7s7t;A(’”)) to cop by Lemma 7. Thus AS is bounded in ¢y, i.e., AS € .#,,. Now by
Lemma 9,

1(48) = Jim (sup (1~ P)(49)]..).

— 00

where the projection P, : ¢y — c¢o is defined by P(x) = (xo,x1,--+,x;,0,0,---) for
all x = (x¢) € ¢p and [ € Ny. Therefore ||(I — P)(Ax)|| = sup|A,(x)| for all x €
n>l

lp(r,s,t;A(m)). Using (15) and Lemma 13, we have
SupH(l H)(AX)H'X’_SHPHA ||l I’StAm))

ol
n>l
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Therefore x (AS) = hm (sup||A IN ,) _hmsupHA ||l , = limsup < Z |Gk |? ) ; . This

n—o0
completes the proof
(b) We have AS € ... Let Pf : ¢ — c be the projection from ¢ onto the span of
{e,ep,e1, -+, e} defined as

I
Pf(z) = le+ Y, (a—Dex,
k=0

where /= I}im 7. Thus for every [ € Ny, we have

I-P)D) =Y (—Der

k=I1+1

Therefore ||(I— Pf)(z)||- = sup|z — £| for all z = (z;) € c. Applying Lemma 10, we
k>1

have

éhm(supua B) (Al ) < 1Lall < Jim (sup| (7~ B)(Ax)[l)- 1)

[ oo

Since A € (I,(r,s,1;A), ¢), we have by Lemma 14, A € (I,,,c) and Ax = Ay for every
x € L,(r;5,6;A"™) and y € 1,,, which are connected by y = (A(r,s,1).A")x. Using
Lemma 5, we have &y = lim d,; exists forall k, & = (&) € l,é =1y and lim 4,(y) =

n—oo

S Gyyx. Since ||(I— PF)(z)|[ = sup|z — |, we have
k>l

11 = PE)(Ax) o = [[(Z = ) (AY)]|os

-y dk}’k‘
=0

n>l

= sup ‘ > (G — ak)}’k‘-

n>l " =0

Also we know that x € § = Iy (rs:007) if and only if y € Sl From (15) and
Lemma 6, we deduce

sup (1 — BF) (Ax) . = sup (sup

n>l

3 (e — )| ) = sup |, — &, = sup |4, — & -
YESX | k=0 n>l n>l
Hence from (21), we have

L 1
/

. - ~ ~ /
Stimsup (3 aw— ") < IILally < hmsup(z A — ")
n—ee k=0 e k=0

(¢) Since the proof is trivial, we omit the proof. [
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COROLLARY 2. Let 1 < p < oo.
(a) If A € (Ly(r,5,6;A"), ¢y), then Ly is compact if and only if

lim ( 2 |ank|p) =0.
(b) If A € (Ly(r,5,6,A"™), ¢) then Ly is compact if and only if
1

lim (2 |G — aﬂ”) =0, where 0y = lim d,y for all k.
n—>00

n—o0
=0

(¢c) If A € (I(r,s,,AU),1..) then Ly is compact if hm (Z \ank|p> =0.
k=0

Proof. The proof is immediate from Theorem 11. [J

REMARK 1. The condition on the matrix A = (d,;) in Corollary 2 (c) is only
the sufficient condition for the operator L4 to be compact. For example, define a ma-
trix A = (au) by am = % and @, =0 for k > 1. Then for every x = (x)p, €
1y(r,s,6:AM), Ax = %xoe. Therefore A € (I,(r,s,t,A"),l..). Clearly the operator
L, induced by the matrix A is a finite rank operator and hence L4 is compact. But
for the choice of the matrix A = (aux), we have from (17) (du);_, = eo and hence

oo

1
lim (2 |ank\1”) 7.

n—oo k:O
THEOREM 12. Let 1 < g < p <oco. If A€ (Ip(r,;s,t;AM),1,) then ||La|l, =0

Proof. Let 1 < g < p <eo. Suppose that A € (I,,(r, s,t;A(m)),lq). Then by Lemma
14, we have A € (I,,1,), where Ax = Ay for all x € [,(r,5,/;A") and y € I, and
A = (Gy) is defined in (17). Since 1,,, are BK spaces, so A induces a bounded linear
operator L : [, — l;, 1 < g < p <oo. Now by Theorem 10, we have L; is compact.
Again Ly(r,s,1;AM) 2 [, Let T : 1,(r,s,t;A"™) — 1, be a linear isomorphism. Then
the operator L, induced by the matrix A is nothing but Lz o T, ie., Ly = L;oT :
1,(r,s,6;A") — I, which is a compact operator as Lj; is so. Hence by Lemma 11,
ILall, = 0. This completes the proof. [

THEOREM 13. Let 1 < p <oo. If A€ (Iy(r,s,6;A),1,), then
o 1
|Lally = lim (SUP< D |67nk|p> p>~
Ul S Pl S|

and

1
Ly is compact if and only ifllim <sup ( Z |ank\p> p)
— n=I[+1
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Proof. We write S = Sll(”t.A(,,,)). Since L, is a bounded linear operator from
ll(r7s7t;A(’“)) to l,, AS € t///l,,. By Lemma 11 and Lemma 9, we have

1

ILally = 2(45) = Jim (sup (3 lawl?)").

ko Np=l41

Now

1= B)@9ly, =1~y = (3 )’

1

<sup (X Jaul) "Iyl
k Sp=I+1
( 1

> Janel?) 7 1l o

n=[l+1
Thus 1
ILally < hm(sup< Z |dnk|p>p>.
k Sp=i+1

Conversely let p® k=0,1,2,... beabasis of [ (r,s,t;A(m)) such that A(r,s,t;A(m))b(k)
= ¢; for all k and AbX) = Ae;. Let E = {b¥) : k € N}. Then E C S and hence
AE C AS. Therefore Y (AE) < x(AS) = ||La||; . Again

X(AE) = lim (sup|(1— P)ab |, )
[—oo k

— i — P)Ae)
}gg(sip\\(l F)Ae Hp>

=3

1
:}Lﬁ(sup( Z \ﬁnk\p)p> < [ Lally-

k n=Il+1

Hence |
|Lal|; = lim (sup ( 2 |dnk|p> p).
=Nk Nl

The second part of this theorem is immediate from the first part. [J

EXAMPLE. Let A= (a,;) =A(r,s,1).A") be an infinite matrix. Since [, (,s,; A"))
is the matrix domain of A(r,s,2;A™) in I}, we have A € (I;(r,s,£;A"),1;) and hence
A€ (Li(r,s,5;A),1,), 1 < p < oo. With this choice of the matrix A = (a,), the asso-
ciate matrix A = (d,;) becomes the identity matrix, i.e., d,, = | and d =0 for n £ k.
Therefore for each k € Ny, we have

ildk\”= Lo
~ " 0 k<n
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1

Thus sup(Z |Eznk|p> ” =1 and hence |Lally = 1. So by Theorem 13, the bounded
k n=I

linear operator Ly : [ (r,s,1; A — I, for 1 < p < o is not compact.
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