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Abstract. Let T =
[
X Y
0 Z

]
be an n -square matrix, where X ,Z are r -square and (n− r) -square,

respectively. Among other determinantal inequalities, it is proved that

det (In +T ∗T ) � det(Ir +X∗X) ·det (In−r +Z∗Z)

with equality if and only if Y = 0 .

1. Introduction

The well known Fischer inequality [4, p. 506] states that if A =
[
A11 A12

A∗
12 A22

]
is

positive semidefinite, then

detA � detA11 ·detA22. (1)

As any positive semidefinite matrix A can be factorized as A = T ∗T with T =[
X Y
0 Z

]
being comformally partitioned as A , inequality (1) can be written as

detX∗X ·detZ∗Z = detT ∗T � detX∗X ·det(Y ∗Y +Z∗Z). (2)

This paper presents some results that complement (2). We believe our results are
of new pattern concerning determinantal inequalities. Let us fix some notation. The
matrices considered here have entries from the field of complex numbers. X ′,X ,X∗
stand for transpose, (entrywise)conjugate, conjugate transpose of X , respectively. For
two n -square Hermitian matrices X ,Y , we write X � Y to mean X −Y is positive
semidefinite (so X � 0 means X is positive semidefinite). The n -square identity matrix
is denoted by In . The Frobenius norm of X is denoted by ‖X‖F . It is known that
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‖X‖F =
√

trX∗X , where tr denotes the trace. If X =
[
X11 X12

X21 X22

]
is an n -square matrix

with X11 nonsingular, then the Schur complement of X11 in X is defined by X/X11 =
X22−X21X

−1
11 X12 . A well known property of the Schur complement is detX = detX11 ·

det(X/X11) . Finally, for an n -square matrix, we denote by λ j(X) and σ j(X) , j =
1, . . . ,n , the eigenvalues and singular values of X , respectively, such that |λ1(X)| �
· · · � |λn(X)| and σ1(X) � · · · � σn(X) .

2. Main results

We present the following result, showing that when more matrices are summed,
the identity in (2) becomes an inequality.

THEOREM 1. Let Tk =
[
Xk Yk

0 Zk

]
, k = 1, . . . ,m, be n-square conformally parti-

tioned matrices. Then

det

(
m

∑
k=1

T ∗
k Tk

)
� det

(
m

∑
k=1

X∗
k Xk

)
·det

(
m

∑
k=1

Z∗
k Zk

)
. (3)

Proof. By a standard continuity argument, we may assume X∗
k Xk is nonsingular

for k = 1, . . . ,m . As [
X∗

k Xk X∗
k Yk

Y ∗
k Xk Y ∗

k Yk

]
=
[
Xk Yk

]∗ [
Xk Yk

]
� 0,

summing for k from 1 to m gives[
∑m

k=1 X∗
k Xk ∑m

k=1 X∗
k Yk

∑m
k=1Y ∗

k Xk ∑m
k=1Y ∗

k Yk

]
� 0.

Hence,

m

∑
k=1

Y ∗
k Yk −

(
m

∑
k=1

Y ∗
k Xk

)(
m

∑
k=1

X∗
k Xk

)−1( m

∑
k=1

X∗
k Yk

)
� 0.

On the other hand, T ∗
k Tk =

[
X∗

k Xk X∗
k Yk

Y ∗
k Xk Y ∗

k Yk +Z∗
kZk

]
. Thus

( m

∑
k=1

T ∗
k Tk

)/ ( m

∑
k=1

X∗
k Xk

)
=

m

∑
k=1

(Y ∗
k Yk +Z∗

kZk)−
(

m

∑
k=1

Y ∗
k Xk

)(
m

∑
k=1

X∗
k Xk

)−1( m

∑
k=1

X∗
k Yk

)

�
m

∑
k=1

Z∗
k Zk � 0.

Applying the determinant on both sides gives the desired inequality. �
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REMARK 1. By a simple induction, Theorem 1 can be extended to the p× p ( p >
2) block upper triangular case.

A full characterization of the equality case in (3) is nasty, so we do not include it
here. We extract a special case of Theorem 1 with m = 2 for later use. Moreover, the
equality case is concise.

COROLLARY 1. Let T =
[
X Y
0 Z

]
be an n-square matrix, where X ,Z are r -square

and (n− r)-square, respectively. Then

det(In +T ∗T ) � det(Ir +X∗X) ·det(In−r +Z∗Z) . (4)

Equality holds in (4) if and only if Y = 0 .

Proof. It suffices to show the equality case. If Y = 0, clearly (4) becomes an
equality. Conversely, if the equality in (4) holds, then

det
(
In−r +Z∗Z +Y ∗Y −Y∗X(Ir +X∗X)−1X∗Y

)
= det(In−r +Z∗Z). (5)

As Y ∗Y −Y ∗X(Ir + X∗X)−1X∗Y � 0, the equality (5) holds only if Y ∗Y −Y ∗X(Ir +
X∗X)−1X∗Y = 0, i.e,

Y ∗
(
Ir −X(Ir +X∗X)−1X∗

)
Y = 0.

Now for any j = 1, . . . ,r ,

λ j

(
Ir −X(Ir +X∗X)−1X∗

)
= 1− λr− j+1(X∗X)

1+ λr− j+1(X∗X)

=
1

1+ λr− j+1(X∗X)
> 0.

So Ir −X(Ir +X∗X)−1X∗ is positive definite, forcing Y = 0. �

COROLLARY 2. Let Tk =
[
Xk Yk

0 Zk

]
, k = 1, . . . ,m, be n-square conformally parti-

tioned matrices. If Xk,Zk are all normal matrices, then

det

(
m

∑
k=1

T ∗
k Tk

)
�
∣∣∣∣∣det

(
m

∑
k=1

XkXk

)∣∣∣∣∣ ·
∣∣∣∣∣det

(
m

∑
k=1

ZkZk

)∣∣∣∣∣ . (6)

Proof. In view of Theorem 1, it suffices to show

det

(
m

∑
k=1

X∗
k Xk

)
�
∣∣∣∣∣det

(
m

∑
k=1

XkXk

)∣∣∣∣∣ .
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As [
∑m

k=1 XkX ′
k ∑m

k=1 XkXk

∑m
k=1 X∗

k X ′
k ∑m

k=1 X∗
k Xk

]
=

m

∑
k=1

[
X ′

k Xk
]∗ [

X ′
k Xk

]
� 0,

this yields (see [4, p. 445, P25])[
det
(
∑m

k=1 XkX ′
k

)
det
(
∑m

k=1 XkXk
)

det
(
∑m

k=1 X∗
k X ′

k

)
det
(
∑m

k=1 X∗
k Xk
)
]

� 0,

and so

det

(
m

∑
k=1

XkX
′
k

)
·det

(
m

∑
k=1

X∗
k Xk

)
�
∣∣∣∣∣det

(
m

∑
k=1

XkXk

)∣∣∣∣∣
2

.

But Xk , k = 1, . . . ,m , are normal, and so

det

(
m

∑
k=1

XkX
′
k

)
= det

(
m

∑
k=1

XkX
′
k

)′

= det

(
m

∑
k=1

XkX
∗
k

)
= det

(
m

∑
k=1

X∗
k Xk

)
,

as desired. �
The author does not know if there is a simple characterization for the equality case

in (6). The following example shows that (6) may fail without the normality assump-
tion.

EXAMPLE 1. Taking

T1 =

⎡
⎢⎢⎢⎣

−9 10 5 12
−7 10 −11 −10
0 0 −2 3
0 0 2 26

⎤
⎥⎥⎥⎦ , T2 =

⎡
⎢⎢⎢⎣

13 −16 3 3
−7 9 3 11
0 0 3 −16
0 0 −7 −13

⎤
⎥⎥⎥⎦ ,

a simple calculation using Matlab gives

det(T ∗
1 T1 +T ∗

2 T2) = 1.25×108

<
∣∣det

(
X2

1 +X2
2

)∣∣ · ∣∣det
(
Z2

1 +Z2
2

)∣∣= 9.93×108.

Our next result says that, to some extent, Corollary 2 can be improved.

THEOREM 2. Let T =
[
X Y
0 Z

]
be an n-square matrix, where X ,Z are r -square

and (n− r)-square, respectively. Then

det(In +T∗T ) � det
(
Ir +XX

) ·det
(
In−r +ZZ

)
. (7)

Equality holds in (7) if and only if Y = 0 and X ,Z are symmetric.
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REMARK 2. Compared with (6), we don’t use absolute value on the right hand
side of (7). This is because det

(
Ir +XX

)
� 0, an observation by Djoković [1, 2].

However, it is possible that det
(
∑m

k=1 XkXk
)

< 0 in (6). For example, taking

X1 = X ′
2 =

[
1 2
0 1

]
,

a simple calculation gives

det(X1X1 +X2X2) = det

[
2 4
4 2

]
= −12 < 0.

We need a lemma, which plays a key role in establishing the equality case in
Theorem 2.

LEMMA 1. Let X be an n-square matrix. Then

det(In +X∗X) � det
(
In +XX

)
. (8)

Equality holds in (8) if and only if X is symmetric.

Proof. From the proof of Corollary 2, we have

det(In +XX∗) ·det(In +X∗X) � det
(
In +XX

)2
.

Note that

det(In +XX ′) = det(In +XX ′)′ = det(In +XX∗) = det(In +X∗X).

This proves (8).
If X is symmetric, then X = X∗ and so det

(
In +XX

)
= det(In +X∗X) .

We show the other way around. It is clear that

det
(
In +XX

)
=

n

∏
j=1

(
1+ λ j(XX)

)
�

n

∏
j=1

(
1+ |λ j(XX)|

)

with the second inequality becoming an equality only if λ j(XX) � 0 for all j .
By Weyl’s inequality [6, p. 317], for k = 1, . . . ,n ,

k

∏
j=1

|λ j(XX)| �
k

∏
j=1

σ j(XX)

�
k

∏
j=1

σ j(X)σ j(X) =
k

∏
j=1

σ2
j (X) =

k

∏
j=1

σ j(X∗X),

where equality holds when k = n . The strict convexity of the function f (t) = log(1+et)
([6, p. 156]) implies that

n

∏
j=1

(
1+ |λ j(XX)|

)
�

n

∏
j=1

(
1+ σ j(X∗X)

)
= det(In +X∗X)
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with the first inequality becoming an equality only if XX is normal.
Thus, if det

(
In +XX

)
= det(In + X∗X) , then XX � 0 and λ j(XX) = σ j(X∗X)

for all j . In particular, trXX = trX∗X . We shall show the latter implies that X is
symmetric. Compute

‖X −X ′‖2
F = tr(X −X ′)∗(X −X ′)

= trX∗X − trXX − tr(XX)∗ + trXX ′

= 2
(
trX∗X − trXX

)
= 0,

and so X = X ′ , as required. �

REMARK 3. As pointed out by a referee, Lemma 1 possesses a much shorter proof
using exterior products and the Cauchy-Schwarz inequality.

Proof of Theorem 2. The inequality (7) follows from (4) and (8).
If Y = 0 and X ,Z are symmetric, then

det(In +T ∗T ) = det(Ir +X∗X) ·det(In−r +Z∗Z)
= det

(
Ir +XX

) ·det
(
In−r +ZZ

)
.

Conversely, if the equality holds in (7), then actually we have

det(In +T ∗T ) = det(Ir +X∗X) ·det(In−r +Z∗Z)
= det

(
Ir +XX

) ·det
(
In−r +ZZ

)
.

In view of Corollary 1, the first equality gives Y = 0. By Lemma 1, the second equality
implies that X ,Z are symmetric. �

An immediate consequence of Theorem 2 is the following, which is due to Drury
[3, Lemma 4].

COROLLARY 3. (Drury’s inequality) Let T = [ti j] be an n-square upper trian-
gular matrix. Then

det(In +T ∗T ) �
n

∏
j=1

(1+ |t j j|2).

Equality holds if and only if T is diagonal.

3. More results

The absolute value of a matrix X is defined to be the matrix |X | = (X∗X)1/2 , the
unique positive semidefinite square root of X∗X . The inequality (3) can be rewritten as

det

(
m

∑
k=1

|Tk|2
)

� det

(
m

∑
k=1

|Xk|2
)
·det

(
m

∑
k=1

|Zk|2
)

. (9)

The following result is an extension of Corollary 1.
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THEOREM 3. Let T =
[
X Y
0 Z

]
be an n-square matrix, where X ,Z are r -square

and (n− r)-square, respectively. Then for any p > 0

det(In + |T |p) � det(Ir + |X |p) ·det(In−r + |Z|p) . (10)

Equality holds in (10) if and only if Y = 0 .

Proof. The proof is similar to the one given in [3, Lemma 4]. Let X = U1|X | ,
Z = U2|Z| be the polar decomposition of X ,Z , respectively. Taking U =

[
U1 0
0 U2

]
(so

U is unitary) gives U∗T =
[|X | U∗

1Y
0 |Z|

]
. We have by Weyl’s inequality [6, p. 317]

k

∏
j=1

|λ j(U∗T )| �
k

∏
j=1

σ j(U∗T ) =
k

∏
j=1

σ j(T ), k = 1, . . . ,n,

i.e.,

k

∏
j=1

λ j

([|X | 0
0 |Z|

])
�

k

∏
j=1

σ j(T ), k = 1, . . . ,n,

where equality holds when k = n .
By the convexity of the function f (t) = log(1+ ept) for p > 0, we obtain from

[6, p. 156] that

det(Ir + |X |p) ·det(In−r + |Z|p) = det

(
In +

[|X |p 0
0 |Z|p

])
� det(In + |T |p).

This proves (10).
If Y = 0, then clearly

det(In + |T |p) = det(Ir + |X |p) ·det(In−r + |Z|p) .

Conversely, if

det(In + |T |p) = det(Ir + |X |p) ·det(In−r + |Z|p) ,

the strict convexity of f (t) = log(1+ ept) , p > 0, gives that

k

∏
j=1

λ j

([|X | U1Y
0 |Z|

])
=

k

∏
j=1

σ j

([|X | U1Y
0 |Z|

])
, k = 1, . . . ,n.

And so

[|X | U1Y
0 |Z|

]
is normal (see, e.g., [5, p. 157, P19]]), which is the case only if

U1Y = 0 and therefore Y = 0. �
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Nevertheless, (9) does not have such an analogue. We show by an example that, in
general, it is not true that

det(|T1|+ |T2|) � det(|X1|+ |X2|) ·det(|Z1|+ |Z2|) , (11)

where T1,T2 , are as in Theorem 1.

EXAMPLE 2. Taking

T1 =

⎡
⎢⎢⎢⎣

2 −3 9 −1
−4 15 1 −19
0 0 0 −2
0 0 −4 19

⎤
⎥⎥⎥⎦ , T2 =

⎡
⎢⎢⎢⎣

0 1 6 0
4 −12 12 10
0 0 14 −2
0 0 23 −3

⎤
⎥⎥⎥⎦ ,

a simple calculation using Matlab gives

det(|T1|+ |T2|) = 5193.1 < det(|X1|+ |X2|) ·det(|Z1|+ |Z2|) = 20248.
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1 and several insightful comments. The research is supported by a PIMS postdoctoral
fellowship.

RE F ER EN C ES
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