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WEIGHTED INEQUALITIES RELATED TO A MUCKENHOUPT AND
WHEEDEN PROBLEM FOR ONE-SIDE SINGULAR INTEGRALS

MARJ{A SILVINA RIVEROS AND RAUL EMILIO VIDAL

(Communicated by J. Soria)

Abstract. In this paper we obtain for 7, a one-sided singular integral given by a Calderén-
Zygmund kernel with support in (—e,0), a L?(w) bound when w € A] . In [A. K. Lerner,
S. Ombrosi and C. Pérez, A| Bounds for Calderon-Zygmund operators related to a problem of
Muckenhoupt and Wheeden, Math. Res. Lett. 16 (2009), no. 1, 149-156.], the authors proved
that this bound is sharp with respect to ||w||4, and with respect to p. We also give a L' (w)
estimate, for a related problem of Muckenhoupt and Wheeden for w € AT. We improve the
classical results, for one-sided singular integrals, by putting in the inequalities a wider class of
weights.

1. Introduction

Let M be the classical Hardy-Littlewood maximal operator and w a weight (i.e.
we Ll (R") and w> 0). C. Fefferman and E. M. Stein in [5] proved an extension of
the classical weak-type (1,1) estimate:

IMFllyiey < C / 2)|Mw(x) dx, (L.1)

where C = C(n). This is a sort of duality for M. A consequence of this result, using
an interpolation argument, is the following: if 1 < p < oo and p’ = p%l then,

L rywax<cp [ 17wl

where C = C(n).
B. Muckenhoupt and R. Wheeden many years ago, in [18], conjectured that the
analogue of (1.1) should hold for T, a singular integral operator, namely

sup Aw({x € R : |Tf(x)| > A}) c/ )| Mw(x) dx, (1.2)
A>0
where C =C(n,T).
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The best result along this line was given by C. Pérez in [20], where M is replaced
by the slightly larger operator M j,g1)c, € > 0,

1
Tl < €2 [ 1£(0IMyugryew(x)d,

where C =C(n,T).

The one-sided version of this result was obtained in [12] by M. Lorente, J. M.
Martell, C. Pérez and M. S. Riveros.

M. C. Reguera in [22] and M. C. Reguera and C. Thiele in [23] proved that the
Muckenhout-Wheeden conjecture is false. In [22] the author give a first approach by
putting in the right hand side the dyadic maximal operator. In [23] they disproved (1.2)
for T the Hilbert transform.

On the other hand there is a variant of the conjecture (1.2) which has a lot of
interest, namely the weak Muckenhoupt-Wheeden conjecture. The idea is to assume
an a priori condition on the weight w. This condition can be read essentially from
inequality (1.2): a weight w € A; if there is a finite constant C such that Mw(x) <
Cw(x) a.ex € R". Denote ||w||4, the smallest of these C. The conjecture is the
following:

Let we Ay, then

iup?tw({x eER"|Tf(x)| > A}) < C||w||a, /R |f () |w(x) dx,
>0 "
where C =C(n,T).

In[11], A. K. Lerner, S. Ombrosy and C. Pérez, exhibit a logarithmic growth

T fllz1=() < ClIwlla, log(e + [IWlla) 1112t o) (1.3)

where C=C(n,T). Itis an open problem if this result obtained by the authors in [11] is
the best possible. Recently, F. Nazarov, A. Reznikov, V. Vasyunin, A. Volberg, proved
that the weak Muckenhoupt-Wheeden conjecture is also false. See [19].

To prove this logarithmic growth result, they had to study first the corresponding
weighted L”(w) estimate for 1 < p < oo and w € Ay,

T fllze ) < CoP' Wy [1f1]2r o) (1.4)

where C = C(n,T), being the last inequality, this time, fully sharp. See [11]. As a
consequence of (1.3) and applying the Rubio de Francia’s algorithm they also get the
following result, let 1 < p < e, w € A, and let T be a Calderén-Zygmund operator
then
T || zp=w) < Cl|wlla, log(e + [[W][a)[f1]r () (1.5)

where C = C(n,p,T).

The first result of this kind obtaining the precise constant dependence on the A,
norm of w of the operator norms of singular integrals, maximal functions, and other
operators in L”(w) was obtained by S. M. Buckley in [2]. There, he proves that

1
M|y S ClIwlIE
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where C = C(n,p).

Recently T. Hytonen, C. Pérez and E. Rela in [9] improved this result by giving a
sharp weighted bound for the Hardy-Littlewood maximal operator involving the Fujii-
Wilson A..-constant. Also T. Hytonen and C. Pérez in [8] improved (1.3), (1.4) and
several well known results, using for all these cases the Fujii-Wilson A..-constant.

In this paper we obtain similar results as the ones in (1.3), (1.4) and (1.5) for
one-sided weights and one-sided singular integrals.

Now we will state the results obtained in this work. The definitions of Sawyer’s
weights and one-sided operators will appear in the next section.

THEOREM 1.1. Let | <p <oo, weE AT and T™ be a one-sided singular integral,
then,

T fller iy < Cop'[[Wl] g L1l o o), (1.6)
where C=C(T™).

THEOREM 1.2. Let w € Al+ and T™ be a one-sided singular integral, then,
1T fll 1oy < ClIwlLg Togle+ w1l ) (1.7)
where C=C(T™).

COROLLARY 1.3. Let 1 < p <o, wc A} and T be a one-sided singular inte-
gral, then
T fllzrguy < ClIwll a5 Tog(e + 1wl )1 zr o), (1.8)

where C=C(T™).

By a duality argument, Corollary 1.3 implies the following:

COROLLARY 1.4. Let 1 <p <ee, w€ A, and T~ be a one-sided singular inte-
gral, then for any measurable set E

= 1
1T~ (%)l rwy < ClIwIl ogle+ [Iwlly; )0 (E)7, (19)

where where C =C(T™) and ¢ = Wi,

In these results ||w]| At is the best constant of the weight w € A} . Clearly, every
theorem has a corresponding one, reversing the orientation of R.

Theorems 1.1, 1.2 and Corollaries 1.3, 1.4, for one-sided singular integrals, im-
prove the ones obtained in [1 1] by putting in the inequalities a wider class of weights
(the Sawyer classes).

The article is organized as follows: in Section 2 we introduce notation, definitions
and well known results. In Section 3 we prove some previous lemmas that will be
essential to obtain the proofs of Theorems and Corollaries given in Section 4. In Section
5 we give a weaker version and a simplest proof of Lemma 3.2 of Section 3.
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2. Preliminaries

In this section we give some definitions and well known results.

2.1. One-side singular integral operators and Sawyer’s weights

DEFINITION 2.1. Let f € L} (R"). The one-sided maximal operators are defined

loc
as

x+h X

1 1
M) =supy | If@lde, M7f() =supy [ 1f(@)|dr.

The good weights for these operators are the Sawyer weights Alf and A, see
[25], [13], [14]. We recall the definition.

DEFINITION 2.2. Let w be a non-negative locally integrable function and 1 <
p < oo. We say that w € A} if there exists C(p) < oo such that for every a <x < b

ﬁ </W) (/xhw”_ll)pl <C(p), @.1)

when 1 < p <eo,andfor p=1,
M w(x) <C(1)w(x), fora.e. x € (a,b), (2.2)
finally A = Up>1A;§, see [15].

The smallest possible C(1) in (2.2) here is denoted by ||w|| At and the smallest
possible C(p) in (2.1) here is denoted by ||w| |A; .

The classes A; for 1 < p < oo are defined in a similar way.
We also define

1 1

1 x-+h . T B 1 X . T

i) =sop (4 [ g =s (5 [ rorar)”
h>0 X h>0 x—h

where r > 1. Observe that MT f < M,*f for all » > 1. Also, we will consider the

following maximal operators introduced by E. J. Martin-Reyes, P. Ortega and A. de la

Torre in [14],

-1

i 10 =sop [ rkear ([ etar)

h>0Jx

X

X -1
Mg 1) =sop [ 1r0lear ([ ear)

h>0Jx—

where g is a positive locally integrable function on R.
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The classes AIJ; (g), 1 < p < oo are defined as follows, let w be non-negative
locally integrable functions and let 1 < p < eo. We say that w € A;,’ (g) if there exists
C(p) < oo such that forevery a <x < b

(/:W> (/xbg”'cf)pl <C(p) (/ﬂbgy, 2.3)

+I§:1,when1<p<oo.Forp=1,

—1

where 6 =wr-T,

=

Mg*(gflw)(x) <C(1)g twix), a.e. x € (a,b).

In [14] it was proved that w € A} (g), if, and only if M, is bounded from L”(w)
into LP(w), for 1 < p <eo, and w € A (g), if, and only if M maps L'(w) into
L'=(w). Observe thatif g =1 then A} (g) = A}, for 1 < p < eo.

DEFINITION 2.3. We shall say that a function K in L} (R"\ {0}) is a Calder6n-
Zygmund kernel if the following properties are satisfied:

° HEH«) <Cy
C
. KO)I< G

C By
o |[K(x)—K(x—y)|< ‘anlill , where |y| < |2—| .
The Calderén-Zygmund singular integral operator associated to K is defined by
Tf(x) = pv.(Kxf)(x) = lim K(x—y)f(v)dy,
€-0JR" /B¢ (0)
and the maximal operator associated with this kernel K is

T s [ K0y

e>0
A one-sided singular integral T is a singular integral associated to a Calderén—
Zygmund kernel with support in (—eo,0); therefore, in that case,

THf(x)= lim [ K(x—y)f(y)dy.

e—0t Jx+e

Examples of such kernels are given by H. Aimar, L. Forzani and F. J. Martin-Reyes in
[1]. The operator 7~ is defined similarly.

REMARK 2.4.

1. In [1], it is proved that the one-sided singular integral T is controlled by the
one-sided maximal functions M in the L”(w) normif w € A% .
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2. It is well known to that the classes A, are included in AIJ; and Ap ; namely

Ap=A4, ﬂAIf. See [25], [13], [14].

3. The one-sided classes of weights satisfy the following factorization, w € A;; if
only if w=wiw, ™ with wi €A} and wy € A7, and [|w]],i < [wilys [Iw2l7~"
4 1
See [25], [13], [14].
4. It is easy to check that (M~ f)® € A} forall 0 < & < 1 with \|(M‘f)5\|Al+ <
c
-5

Finally, we recall some definition concerning Lorentz LP9() spaces. Let f be a
measurable function on a measure space (X,.#, 1t). The non-increasing rearrangement
S*(t) of f is defined as

Ff@)=inf{A>0:u({xeR": |f(x)] >1}) <t},

for all 0 <7 < . The function f is said to belong to the Lorentz space LP9(u) if the
quantities

F1174 () = (%/Ow [tl/pf*(t)]q ﬂ) l/q,

t

whenever 0 < p < e and 0 < g < oo, and
117 () = sup [/ 1),
>0
when 0 < p < oo, are finite. For more details see [26].

3. Previous Lemmas

To obtain Theorems 1.1 and 1.2 we need to prove some previous results: a sharp
weak reverse Holder’s inequality for one-sided weights, a particular case of the Coifman-
type estimate for one-sided singular integrals and one-sided maximal operator, and also
build Al+ weights from duality with special control on the constant, based in the Rubio
de Francia algorithm, see [6].

3.1. Sharp weak reverse Holder’s inequality

F. J. Martin-Reyes proved a weak reverse Holder’s inequality (see [13] Lemma 5).

LEMMA 3.1. [13] (Sharp weak reverse Holder’s inequality) Let 1 < p < oo and
we A;{. There exist positive numbers 8 and C such that

b b
/ wito gCM‘(wx(a’b))(b)‘s/ w, (3.1)

a a
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Sor every bounded interval (a,b), and therefore

M s(WX(ap))(B) SCM™ (Wx(a)) (D),
and
My, s(w)(b) <CM™ (w)(D).
The constant C depends only on 8 and the constant of the A; condition.

Here we will need to be more precise in the constants. In the proof of Lemma
3.1 the constat C depends of a constant § and the constant 6. If we chose 8 =

(4P\|w|\A;)‘1 and § = ———— when 1 < p <o, and = (||w||,+)""! and § =
A2t ] i

1

T, when p = 1, following the same steps of the proof, we obtain that C < 2.
16ee ||lw +
Al

Then we can rewrite the equation (3.1) as

b
[ v <o g [ (32)
for every bounded interval (a,b), and therefore

M, (WX(ap))(b) <2M™ (Wx(ap)) (D),

and
M, (w)(b) <2M "~ (w)(b), (3.3)

'y

1 when p>1,and r, =1+ ——— when p=1.

where 7, =1+ ————,
4p2ee |l ¢ 16¢¢ |l +
P 1

The following Lemma will be necessary to prove good-A result in the next section.

LEMMA 3.2, Let 1 <p <o, wEA, ,a<b<cand E C (b,c) a measurable

—Clw||,—
set. For all € > 0, there exists C = C(g,p) such that if |E| < e il (b—a) then
w(E) < ew(a,c).

Proof. Let we A, Let apply the analogous to equation (3.2), i.e.

/ 2M+(WX1” ) 1/ w.
b

This last inequality implies

(M W x0T < 2MF (Wit o)) (D),

! ,when p>1and r=r, =1+ 1

where we take r=r, =14+ ————— —_
4I’+Ze?|\w\|fr 16ee [jw]|,
14 1

when p=1.
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Using the definition of M, with g = w, we have that for all x € (a,b)
e
l /C wr—lw r—1

w(a,c) Jp

(M (W™ Ke) (0) 7T

< M (WX(x,c) ) (x)
< M (WX(a,c) ) (x) ’

N

then

(ab)C {x:Mﬂwx(a,c))(x) =1 Gaa ) _}

Recalling that M is of weak type (1,1) with respect to the Lebesgue measure, we get

e N
b—a<Ciw(a,c)™T (/ w’) w(a,c),
b

where C; does not depend on the weight w. This last inequality says that 1 € Aj,(w)
(where ' is such that %—l—% = 1), with constant Cy, see (2.3). Let x € (a,b), by
hypothesis E C (b,c) then

M (e () w(x,c) /X w(a,c)’

obtaining that the interval (a,b) C {x: M;} (xe(x)) > }. Observe that M,/ is of

weak type (r,r") with respect to the Lebesgue measure W1th constant ||M,}[|,» /.=
C, (see [14]), then

o s - 5505 < (55 e

1
Taking into account that 1 < r < 2 and C2" < G5, where C3 does not depend on
p or HWHA; (see [14]), then

2wac

1 —Cllwll,, -

7 A
wE) <c2 E] ) <Ce 7 <e, (3.4)

w(a,c) b—a

where the last inequality holds by choosing an appropriate C depending only on p and
e. U

3.2. The Coifman-type estimate

Now we give a particular case of the Coifman-type estimate. In order to do this
we need a kind of good-A inequality result. We will use the next result due to S. M.
Buckley in [2].
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LEMMA 3.3. [2] Let g € L=(I) and T be an operator for which

Cpllo
iTow) > ) < (L),
Sorall ¢ € LP(R), sufficiently large p and o. and C being a constant independent of
p.
Then,

[{ox: Tg(x) > ar}| < Cefliel= 1.

LEMMA 3.4. Let 1 < p <o, weE A;, T~ be a one-sided singular integral and
T* the maximal operator related to T~ . Then, there exist positive constants ci,ca,
Yo > 0 such that for every 0 <y <y

[{x €R:T*f(x) > 24, M f(x) < YA}| <cre” 7 [{T"f(x) > A}]

holds for f € L'(R), A > 0. Also, for all € > 0, there exists ¢’ depending on €,y and
p such that

A

HWHA;

w({xER:T*f(x)>27L,Mf(x)< }) <ew({T"f(x) > 1}).

Proof. Since {x: T*f(x) > A} is an open set and it has finite measure for f €
L'(R), it can be written as a disjoint countable union of open intervals. Let J = (a,b)
be such an interval. It is enough to prove that there exist ¢;, ¢z, ¢’ and }y such that

[{x € : T f(x) > 24, M~ f(x) < YA} < cre” 7 |J],

and

w ({er:T*f(x) >2A0,M f(x) < Cl—k}> <ew(J),

HWHA;

forevery 0 <y < y and every A > 0. Let us take a sequence {x;}7 in J = (a,b) in
such a way that xo = b and x;_; —x; = x; —a for every i > 0. Observe that we only
need to prove that

_a
Y

|{x € (xip1,x) T f(x) > 24, M~ f(x) < y?L}| <cre 7 (X1 —Xip2). (3.5)

By Lemma 3.2 there exists ¢’ depending on &, Yy, p,c1,c2, such that

_AD <ewlixna). (6

HWHA;

w ({x € (xiy1,x) T f(x) > 24, M~ f(x) <
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Let us show (3.5). Let i € N, if {x € (xip1,x;) : T*f(x) >2A, M f(x) <yA} =0
there is nothing to prove. We choose @ < a such that x; —a =a —a and

& =sup{x € (xiy1,%:) : M~ f(x) < yA}.
Letus write f = fi + f> with fj = fx(@,&) then

{x € (wir1,x) : T*f(x) > 24, M f(x) <yA} CAUB,

where
A={x€ (xi41,&) : T* fi(x) > %LM_f(x) < 7yA},
B= {xe (xi41,E) 1 T* fr(x) > %X,M_f(x) < J/?L}.

The second set B is essentially empty for ¥ small enough. By standard estimation
(see [1]), we get that for x € (x;11,&), T*f>(x) < %JL then

{xe (5ee1.8) T () > S2MF() < yx} g,

for 0 < y < Y small enough.
Now we work with set A. Let Q = {x € (x;+1,&) : M~ fi(x) > 3yA}, observe that

/Rfl(t)dt<4yl(x,-—x,-+1).

The last inequality implies that Q C (@,a) with a—& = %(x,- —xi+1). Let us write
Q=JI; where I; = (a;,b;) are disjoint maximal intervals. Then

1
m/I fi(6)di =372
J J

We define Ij+ = (bj,cj), 'Iﬂ =2|l

. Q=U(I ulj)=UI; and f; =g+h with
g = fixr/a+ 2.3YAx;, h=Y hj=3(fi —37A)x;-
J J J

Observe that g < 3yA and g has support in (@,a). Then using Lemma 3.3 we have

{x: T g(x) > %}' < e%(ﬁ—ﬁ) < 33—26770()(:1‘4',1 — Xi+2).
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Now let us study 7*h for x ¢ £~2,

7| < X [ 1) (K= ) = K(x b)) d
j
y—bj
gc;/ﬁ%ﬂ)’”ﬁ@
3 o;
< ECEW/IJ i (v)| dy

Ui
T

Observe that if x € Q then M~ f(x) > yA. In fact, if x € I;, for some j, then by
definition of Q we have that 3yA <M~ fi(x) <M~ f(x). If x € I;T then

where 0; = c;—a;. We write A(x) =

M/fl Ndt = "9 [" fryar <3m f().

(x—aj)lLj] Ja;

By the exponential Carleson’s estimation, (see [3]), we have

& —c =
{xe (1, 8) : AW > ;H < CeT [(xp11,E)] < 2Ce (1111 —x042),

therefore

{x € (5 8): Th(x) > T2 M1 () < yx}| < Ce (xis1 — xis2).

Putting together this last estimate with the ones for f, and g, we obtain the desired
result. [

LEMMA 3.5. Let p > 1, w€ A, and let T~ be a one-sided singular integral.
Then there exists a constant C = C(p,T~), such that

T fllzrwy < ClHWla 1M fl 1) -

Proof. By Lemma 3.4, for € = 1 exists ¢/ such that

W ({x ER:T*f(x) > 24, M~ f(x) < S—AD < %w({T*f(x) SAY).

ol



1098 M. S. RIVEROS AND R. E. VIDAL

Observe that

/ w{T~f>A))d / ({T*f >221)dA < B + B>,

5 . _ dA
B =2/ w(Tf>2A,M f< di,
0 HWHA;

5 A
By=2[ w|lI{M f=> di.
A T,

For B;, we obtain

81:2/02w<{T [>2AM f< I /|)L }) dkg%/on({T*f>7L})d7L
A5

It is easy to see that

where

/
2HWHA;

/ /OZHMHAI w(M‘f}},})dl7

%/ONW({T*f> AV)d <

C

then

_ 4w HA’
T~ fller ) € ——— 1M fllrg)

obtaining the desired result. [J
For the next result we shall need the following Lemma due to A. K. Lerner, S.
Ombrosi and C. Pérez in [11].
LEMMA 3.6. [I1] Let 1 < s <o and v be a weight. There exists an operator R
in L*(v) such that
o h<R(h)
o |[R(A)||zsvy < 20|Al[Ls(v)
o RW(W)s €Ay with  ||R(A)(v)5 ||a, < cs'.

It is known that the weight (M, W)I_P/ belongs to the A, class with the corres-
ponding constants independent of w. Hence the next Lemma is a particular case of the
Coifman-type estimate.

LEMMA 3.7. Let T~ be a one-sided singular integral, p,r > 1. Then there exists
C =C(T™) such that
T
‘ f <cp'
My w M7 w)

(3.7)

- W ' 'Lp’(M,w) '
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Proof. By duality we have

=

=  sup / |T~ f|hdx.
U”(Mfw) HhHLp(M;W =1/R

Choosing s = p and v = M, w, by Lemma 3.6, there exists an operator R such
1 1
that R(h)(M, w)? € Ay with ||R(h)(M, w)?||s, < cp’, then by Remark 2.4, item (2),
R(0) (M, w)? € AT with [[R(R)(M; w)? ||, < cp'
Now using the Remark 2.4, item (3) and item (4), we have
N N S
IR()I| = [1R() (M7 w) P[(M7 w)2P] 725

_ 1 N
< IIR(E) (M ) [ 1M ) .

2
c
<cp/< 1) SCp/.
1_2_17"

L7 slndx< [ 75| RI)ax < CURM, [ 4 (HR(H) dx

Finally by Lemma 3.5,

M-
< Cp// —7fR(h)Mr_wdx <cp
R M w

M_fH
= R Lo (a4 w) -
My w1y vy w) L)

As HhHLP(M;W) =1 we have

M~f
M, w

O

e

M, w

LY (Myw) ' (M; w)

4. Proof of the results

4.1. Proof of the Theorems

In order to prove Theorem 1.1 we first need to show the following result:

THEOREM 4.1. Let 1 < p <eo, 1 <r<2, waweightand T" be a one-sided
singular integral. Then

L
7

T Fller oy < CpP' )AL, (g 4.1)

where C=C(T™).
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Proof. Observe that T~ is the adjoint operator of T, with kernel supported in

(0,00). Also observe that as (M, w) € A] C A}, then (M;w) 7 e A CA. There-
fore (4.1) is equivalent to prove

r s
l My w

By Holder’s inequality

1 b 11 1 b b 1 b 1\ ()" oY
) p < r )
b—a/a fw 'W'\<b—a/uw) (b—a/u (70) ) ’

and taking supremum we get

1
<Cpp' ()7
Y (M7 w)

Wl oy

(M= ()" < (M w(B) ™ (M, (fw ™ 7) (b)),

3w, < 85 (170

1 1
Now using that [[M; g||z» < C(£)% |[g||1s, for g = fwP, k= (pr)’ and s = p we get

then

I

P (M w)

- 1-L
<C<rp—l) i <Cp< 1 ) 2 i '
LY (M7 w) r—1 WL (w) r—1 WL (w)
Observe that 11 <2 fort > 1, then
1 1= j 1
( ) <) <20
r—1
Finally applying Lemma 3.7 we get,
M~ 1
<cp|| XS <cpp()7 || . O
LY (M7 w) L (M7 w) WLV (w)

Proof of Theorem 1.1. This result is a consequence of Theorem 4.1. Using the
equation (3.3), we observe that r/, < ||w| |A1+ and M, (w)(x) <2M~ (w)(x) < 2||w| ‘ATW(’C)
a.e. x. Then,

T fllrow) < Cpp'(r L’ (/ |f17 ()M, (w)(x )dx)

<Cpp'(|Iwl |A1+)'7 [|w] \;} Al )
<Cpp'[wll ¢ 1fllrn- O
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Proof of Theorem 1.2. Without loss of generality we assume that 0 < f € L7 (R).
Let

Q={xcR: M f(x)>A}= UI =J(a;,b)),
i
where I; = (a;,b;) are the connected component of Q and they satisfy

1
m/ij<y>dy=it.

Note that if x ¢ Q, then forall 2> 0

1 [xth
G reay<a

Therefore f(x) <A fora.e x € R\ Q. Let I; = (cj,a;) with ¢; chosen so that |I; | =
2|I;| and set
Q={Ju; vty =UI
J J
We write [ = g+ h where
g:fXR\Q+2.I7LX1jv h:z,lhj:zl(f—x))(g'
Jj= Jj= j=
Observe that 0 < g(x) < A fora.e. x and also that /; has vanishing integral. Then
+ O O- |7t A
w({x: [THf(x)| > A}) Sw(Q)+w( xR\ Q: |TTh(x)| > 5
o A
+w(qxeR\Q: T g(x)| > 5 () =1+

We estimate /:

for each j

_owly)
"= };| g |1,} x/
k/ }I|/ t)dt f(x dxé%/l_(x_;q)/jw(t)dtf(x)dx

< X/ij(x)Mfw(x)dx.
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On the other hand, (w,M~w) € A then M is weak type (1,1) with respect to this
pair of weights, then

Zw w({x: M F(x) > A)) < x/f W w(t)dr,

therefore

1=w(@) < 1 [ oM w@dr <Ll [ owd

To estimate /1, let r; = [I;| = [[;'|/2. Now we use that h; is supported in I,
f,j hj =0, and that K is supported in (—eo,0):

sz({xe]R\fz:|T+h(x)y>%}></2l T h(r)|w(t)dr

2
< > hj Kit—y)—K(— t)dtd
AZ/_|,<y>|/ml< y) ~ K(t—a)|wit)didy
xz/m |/ — K(t —aj)| w(t)dr dy.
Observe that it is suffice to obtain that for all y € I;,
<j . .
[W [K(1=9) = K= ay) | w(0) e < Cessinf M (7).

To see this we use the condition of the kernel K,

[ ) -Ke-ap|wtai - 3 /;2 K=~ Kle—apwi)a

=

<C / - t)dt
Z aj 2k+1rl t—aj)z ()
e y—aj a,-—2kr,
<CZ( )2/ okt W(I)X(a] 2k aj—2k+1 )dt
— 1 1 aj 2’/
gCkgilﬁ(zk"j) /aj*2k+1 ()%(“1 2krja;—2kH1 )dt’
where C=C(T"). If x€I;
cj
[’K(r—y)—K(t—aj)’w(t)dt
1 x— aj+2k+lrj 1 X
<CZ rj x—aj +2k+1r,/a okt W)X (aj-2kry a2kt A1

_ o 1 (x—a; 2k+1r,' _
<SCM w7 (x 27(2kr, o, SCM™ (Wt 7,) (%),
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therefore
I < EZess inf M~ (wy ~)/ |hj(y)| dy
S A = RG2S T

< %z J 1M ) )
lE/f “xm) )dy+§/ljlg(y)|M(wa\,;)(y)dy

C
= (A+B).

For A there is nothing to prove. To work with B we need to prove the following
inequality

- 3 i
M= (Wit 1) 0) < 5 essinf M- (Wt 7) (@), (4.2)

forall y € I;. In fact for y,z € I},

1 <
M (0z5)0) f‘zsr,/ W (01 =50 = [ w6}t )
3 j 3
<5 [0z () < M vt )0
Then

B=% /»\g<y>|M—<wa\;j><y>dy=z’ A ) )
<3 [ sy [ 1 )00

2/ F(0)dr ess inf M (g ) < 2/ FOM™ (g )(0) .
So

HSTS [ FOM ot O < Tl [ SO0

Finally we estimate I11. First observe that doing the same proof that in (4.2) we
obtain

- 3. -
MWt 0)0) < G essind M- (witg ) (2): (43)

forall y € I;.
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By Chevichef’s inequality, using the fact that ¢ < A and choosing r=r, =1+

! in order to apply Theorem 4.1 and equation (3.3), we get that
16e¢ (il

111=w<{xeR\§2: T g| (x) > %})

<25 [Tl ()P0 ()

p 1
< TP ) [ (g WM () ()
or+1 1
< S €PN [ (16l M () ()l
)an! 1
<A@ | [ e ot @) a6t )05

Recalling that f(x) = g(x) for all x € R\ Q and arguing as in B for the integral
of g in Q, this time using (4.3), we obtain

[l (v )0 < 3 [ oM on0a.

Now the fact that w € A] and ¥/ =7}, < Cllwl|+ implies

or+1 L
< — — (Cpp' (F)7) /f M w(x

2P+l 1s
< Cor g7 il / Flxw(x)dx

Cp2
2 o Il [

N

We take p =1+ m and observing that 10+ ™" and #~" are bounded for
Al

t > 1 we have
(o2 |Iwl]4+17 < Clog(e + il )1l

and as 1 < p < 2 we obtain

C
111 < S 1og(e+ [wlly )il [ fCow(x)dx.

Combining this estimate with / and /I completes the proof. [

REMARK 4.2. The choice of p, in proof of Theorem 1.2, is similar to the one
given in [11]. The conjecture or goal was to find a linear dependence of the constant
[[w|]4, . In [19] the authors proved that this is not possible. The nearest one is a ¢log?
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dependence of the constant, by the kind of steps followed to approach to the result.
Maybe it can be shown that a 7log®#, dependence is possible, for some 0 < € < 1. To
prove this result, a better estimate in Theorem 4.1 it should be obtain. C. Pérez in [21]
conjectures that a #log®t dependence is not possible.

4.2. Proof of the Corollaries

To prove the Corollary 1.3, we need to build Af weights with special control on
the constant, based in the Rubio de Francia algorithm. In order to do this we need
the one-sided version of the Buckley result sharp estimate in norm L” of the Hardy-
Littlewood maximal operator M respect to weights w € Aj,. This Theorem was proved
by F. J. Martin-Reyes and A. de la Torre in [17].

THEOREM 4.3. [17] If w € A, then

, e
1M [[p ) < CP27[IwI[ 1T (44)
The equivalent of the following Lemma for weights in A, is proven in [4].

LEMMA 4.4. Let 1 < g < oo and let w € A;;. Then there exists a nonnegative

sublinear operator D bounded on L9 such that for any nonnegative h € L7 (w):
1. h<D(h);
2. HD(h)HLq’(W) < 2HhHLq’(W);
3. D(h)we€A] with |\D(h).w|\Al+ < Cq2’1Hw|\Aq+,

where the constant C not depend on ||w| ‘AT and q.

Proof. We define the operator S(h) =w™ M~ (|h|w), then S is bounded in L4 (w),

moreover, ||S|[,y o) < Cq21 [lw]| a; » indeed using equation (4.4) we get,

€ €
A / q -~ o q
e A R M G KR
1
<M -y 1y < a2 1
q

1
Recalling that w € A implies w!~¢ € A, and that le_q/HA*, = HWHF, we get
q q
[1S] |Lq’(w) < Cq29||w| |Aq+ , as claimed.
Now we define the operator D via the following convergent Neumann series:
o S4h)

DM)Z%W’ where HSH:HSHLq’(w)'
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Then (1) and (2) are clearly satisfied.
(3) It follows from the definition of D and the sublinearity of S that

S(D(h)) < 2||S|[(D(h) —h) < 2||S||D(h),
therefore

M~ (D(h)w) = M~ (D(h)w)w™'w = S(D(h))w < 2||S||D(h)w
< cq2?|[wll; D(yw. O
Proof of Corollary 1.3. For o > 0 we set Qy = {x € R: [T f(x)| > a} and
let (1) =tlog(e+1). Applying Lemma 4.4 with ¢ = p, we get a sublinear operator

D bounded on L?' satisfying properties (1), (2), and (3). Using these properties and
Theorem 1.2, we obtain

C
[ < / D) wdx < (1Dl Il (oo
0(Cp2"wlly5) [ 171D()wax

2ocr ol ( [ 1ews)” ([ ooy vas)”

QUMW) oo 1Bl o)

L
o

QIQ QIQ QIQ

<
The proof is completed by taking the supremum over all & with ||A]| ) = 1. O

Proof of Corollary 1.4. Given a one-sided singular operator 7, its adjoint op-
1

eratoris T*. Let w € A, then 0 = wi= €A, with [[o][+ = [lwl[~". Applying
i p

Corollary 1.3 to the one-sided singular operator 7" and the weight o we get
T4l ey < I 10g<€+|W|‘”)|f|Lp'(0)
< Clwll T togle + vl Il o
From this, by duality we obtain

17 oy < Sl 'log<e+|w|A,,>H£H

where LP!(o) is the standard weighted Lorentz space. Setting here f = oy, where
E is any measurable set, completes the proof. [J
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5. Appendix

We will give an easier proof of a slight weak version of Lemma 3.2.

In [24] M. S. Riveros and A. de la Torre, using Lemma 5 in [13], obtained another
version of weak reverse Holder’s inequality. If we use the equation (3.2), following
the same steps of the proof in [24], we obtain a new result with special control on the
constant.

LEMMA 5.1. [24] (One-sided RHI) Let 1 < p < oo, wGAJr and a < b < ¢ with
b—a=2(c-0b).If r=14+—7— forp>1andr—1—|—7 for p=1

4"+2€'-°HWH + 166‘-’HWHA+

1 b 1 <\
/ wr<C< /w) ,
b—a a C—daJa

where C does not depends on the weight w.

then

The following Lemma is a slight weak version of Lemma 3.2.

LEMMA 5.2. Let p> 1, w€ A, a<b <c suchthat 2(b—a) = (c —b) and
E C (b,c) a measurable set. Thenfor every € > 0 there exists C = C(g,p) such that if
—Cllwl] ,—
|E| <e Pl (b —a) then w(E) < ew(a,c).

Proof. We will use the analogous to Lemma 5.1 for A, weights.

Cib/bcw"’f(c‘bK(c—b><%b/cwr) <cib/;x§)%
:<%>%(c—b)c$/a"w (ﬂ) c/

where the last inequality is obtained by following the same steps as in (3.4). [

~l—=

w(E) =

As a Corollary of Lemma 5.1 we obtain another proof of Proposition 3 in [13],
this is

COROLLARY 5.3. Letl<p<ooandwEA+. Then w € A} ., with p— ¢ =

p—€’
f (;) +1 where 6 =w'™ " and r(0) is the one obtained in the analogous version of

Lemma 5.1 for a weight in A;,

Proof. In [24] it is proved that w € A;," if, and only if there exists C > 0 such that

1 b d _\P!
wo e (L) ([o) < s
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where the supremum is taken over all a,b,c,d suchthat a <b <c¢<d and 2(b—a) =
2(d—c)=c—b.

Let r =r(o) be the one of Lemma 5.1 and a,b,¢,d as in the previous line, then

1 b 14\ 1 b 1o N\
—&—1 < r
el ) =L)<=l =)

() (e le)

<O Wl

where C does not depend on p nor w. [l
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