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Abstract. In this paper we obtain for T+ , a one-sided singular integral given by a Calderón-
Zygmund kernel with support in (−∞,0) , a Lp(w) bound when w ∈ A+

1 . In [A. K. Lerner,
S. Ombrosi and C. Pérez, A1 Bounds for Calderón-Zygmund operators related to a problem of
Muckenhoupt and Wheeden, Math. Res. Lett. 16 (2009), no. 1, 149–156.], the authors proved
that this bound is sharp with respect to ||w||A1 and with respect to p . We also give a L1,∞(w)
estimate, for a related problem of Muckenhoupt and Wheeden for w ∈ A+

1 . We improve the
classical results, for one-sided singular integrals, by putting in the inequalities a wider class of
weights.

1. Introduction

Let M be the classical Hardy-Littlewood maximal operator and w a weight (i.e.
w ∈ L1

loc(R
n) and w > 0). C. Fefferman and E. M. Stein in [5] proved an extension of

the classical weak-type (1,1) estimate:

||M f ||L1,∞(w) � C
∫

Rn
| f (x)|Mw(x)dx, (1.1)

where C = C(n) . This is a sort of duality for M . A consequence of this result, using
an interpolation argument, is the following: if 1 < p < ∞ and p′ = p

p−1 then,∫
Rn

(M f (x))pw(x)dx � C p′
∫

Rn
| f (x)|pMw(x)dx,

where C = C(n) .
B. Muckenhoupt and R. Wheeden many years ago, in [18], conjectured that the

analogue of (1.1) should hold for T , a singular integral operator, namely

sup
λ>0

λw({x ∈ R
n : |T f (x)| > λ}) � C

∫
Rn

| f (x)|Mw(x)dx, (1.2)

where C = C(n,T ) .
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The best result along this line was given by C. Pérez in [20], where M is replaced
by the slightly larger operator ML(logL)ε , ε > 0,

||T f ||L1,∞(w) � C2
1
ε

∫
Rn

| f (x)|ML(logL)ε w(x)dx,

where C = C(n,T ) .
The one-sided version of this result was obtained in [12] by M. Lorente, J. M.

Martell, C. Pérez and M. S. Riveros.
M. C. Reguera in [22] and M. C. Reguera and C. Thiele in [23] proved that the

Muckenhout-Wheeden conjecture is false. In [22] the author give a first approach by
putting in the right hand side the dyadic maximal operator. In [23] they disproved (1.2)
for T the Hilbert transform.

On the other hand there is a variant of the conjecture (1.2) which has a lot of
interest, namely the weak Muckenhoupt-Wheeden conjecture. The idea is to assume
an a priori condition on the weight w . This condition can be read essentially from
inequality (1.2): a weight w ∈ A1 if there is a finite constant C such that Mw(x) �
Cw(x) a.e.x ∈ R

n . Denote ||w||A1 the smallest of these C . The conjecture is the
following:

Let w ∈ A1 , then

sup
λ>0

λw({x ∈ R
n : |T f (x)| > λ}) � C ||w||A1

∫
Rn

| f (x)|w(x)dx,

where C = C(n,T ) .
In [11], A. K. Lerner, S. Ombrosy and C. Pérez, exhibit a logarithmic growth

||T f ||L1,∞(w) � C ||w||A1 log(e+ ||w||A1)|| f ||L1(w), (1.3)

where C =C(n,T ) . It is an open problem if this result obtained by the authors in [11] is
the best possible. Recently, F. Nazarov, A. Reznikov, V. Vasyunin, A. Volberg, proved
that the weak Muckenhoupt-Wheeden conjecture is also false. See [19].

To prove this logarithmic growth result, they had to study first the corresponding
weighted Lp(w) estimate for 1 < p < ∞ and w ∈ A1 ,

||T f ||Lp(w) � C pp′||w||A1 || f ||Lp(w), (1.4)

where C = C(n,T ) , being the last inequality, this time, fully sharp. See [11]. As a
consequence of (1.3) and applying the Rubio de Francia’s algorithm they also get the
following result, let 1 < p < ∞ , w ∈ Ap and let T be a Calderón-Zygmund operator
then

||T ||Lp,∞(w) � C ||w||Ap log(e+ ||w||Ap)|| f ||Lp(w), (1.5)

where C = C(n, p,T ) .
The first result of this kind obtaining the precise constant dependence on the Ap

norm of w of the operator norms of singular integrals, maximal functions, and other
operators in Lp(w) was obtained by S. M. Buckley in [2]. There, he proves that

||M||Lp(w) � C ||w||
1

p−1
Ap

,
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where C = C(n, p) .
Recently T. Hytönen, C. Pérez and E. Rela in [9] improved this result by giving a

sharp weighted bound for the Hardy-Littlewood maximal operator involving the Fujii-
Wilson A∞ -constant. Also T. Hytönen and C. Pérez in [8] improved (1.3), (1.4) and
several well known results, using for all these cases the Fujii-Wilson A∞ -constant.

In this paper we obtain similar results as the ones in (1.3), (1.4) and (1.5) for
one-sided weights and one-sided singular integrals.

Now we will state the results obtained in this work. The definitions of Sawyer’s
weights and one-sided operators will appear in the next section.

THEOREM 1.1. Let 1 < p < ∞ , w∈ A+
1 and T+ be a one-sided singular integral,

then,
||T+ f ||Lp(w) � C pp′||w||A+

1
|| f ||Lp(w), (1.6)

where C = C(T+) .

THEOREM 1.2. Let w ∈ A+
1 and T+ be a one-sided singular integral, then,

||T+ f ||L1,∞(w) � C ||w||A+
1

log(e+ ||w||A+
1
)|| f ||L1(w), (1.7)

where C = C(T+) .

COROLLARY 1.3. Let 1 < p < ∞ , w ∈ A+
p and T+ be a one-sided singular inte-

gral, then
||T+ f ||Lp,∞(w) � C ||w||A+

p
log(e+ ||w||A+

p
)|| f ||Lp(w), (1.8)

where C = C(T+) .

By a duality argument, Corollary 1.3 implies the following:

COROLLARY 1.4. Let 1 < p < ∞ , w ∈ A−
p and T− be a one-sided singular inte-

gral, then for any measurable set E

||T−(σ χE)||Lp(w) � C ||w||
1

p−1

A−
p

log(e+ ||w||A−
p
)σ(E)

1
p , (1.9)

where where C = C(T−) and σ = w
−1
p−1 .

In these results ||w||A+
1

is the best constant of the weight w ∈ A+
1 . Clearly, every

theorem has a corresponding one, reversing the orientation of R .
Theorems 1.1, 1.2 and Corollaries 1.3, 1.4, for one-sided singular integrals, im-

prove the ones obtained in [11] by putting in the inequalities a wider class of weights
(the Sawyer classes).

The article is organized as follows: in Section 2 we introduce notation, definitions
and well known results. In Section 3 we prove some previous lemmas that will be
essential to obtain the proofs of Theorems and Corollaries given in Section 4. In Section
5 we give a weaker version and a simplest proof of Lemma 3.2 of Section 3.
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2. Preliminaries

In this section we give some definitions and well known results.

2.1. One-side singular integral operators and Sawyer’s weights

DEFINITION 2.1. Let f ∈L1
loc(R

n) . The one-sided maximal operators are defined
as

M+ f (x) = sup
h>0

1
h

∫ x+h

x
| f (t)|dt, M− f (x) = sup

h>0

1
h

∫ x

x−h
| f (t)|dt.

The good weights for these operators are the Sawyer weights A+
p and A−

p , see
[25], [13], [14]. We recall the definition.

DEFINITION 2.2. Let w be a non-negative locally integrable function and 1 �
p < ∞ . We say that w ∈ A+

p if there exists C(p) < ∞ such that for every a < x < b

1
(b−a)p

(∫ x

a
w

)(∫ b

x
w

−1
p−1

)p−1

� C(p), (2.1)

when 1 < p < ∞ , and for p = 1,

M−w(x) � C(1)w(x), for a.e. x ∈ (a,b), (2.2)

finally A+
∞ = ∪p�1A+

p , see [15].

The smallest possible C(1) in (2.2) here is denoted by ||w||A+
1

and the smallest

possible C(p) in (2.1) here is denoted by ||w||A+
p
.

The classes A−
p for 1 � p � ∞ are defined in a similar way.

We also define

M+
r f (x) = sup

h>0

(
1
h

∫ x+h

x
| f (t)|r dt

) 1
r

, M−
r f (x) = sup

h>0

(
1
h

∫ x

x−h
| f (t)|r dt

) 1
r

,

where r � 1. Observe that M+ f � M+
r f for all r � 1. Also, we will consider the

following maximal operators introduced by F. J. Martı́n-Reyes, P. Ortega and A. de la
Torre in [14],

M+
g f (x) = sup

h>0

∫ x+h

x
| f (t)|g(t)dt

(∫ x+h

x
g(t)dt

)−1

,

M−
g f (x) = sup

h>0

∫ x

x−h
| f (t)|g(t)dt

(∫ x

x−h
g(t)dt

)−1

,

where g is a positive locally integrable function on R .
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The classes A+
p (g) , 1 � p � ∞ are defined as follows, let w be non-negative

locally integrable functions and let 1 � p < ∞ . We say that w ∈ A+
p (g) if there exists

C(p) < ∞ such that for every a < x < b(∫ x

a
w

)(∫ b

x
gp′σ

)p−1

� C(p)
(∫ b

a
g

)p

, (2.3)

where σ = w
−1
p−1 , 1

p + 1
p′ = 1, when 1 < p < ∞ . For p = 1,

M−
g (g−1w)(x) � C(1)g−1w(x), a.e. x ∈ (a,b).

In [14] it was proved that w ∈ A+
p (g) , if, and only if M+

g is bounded from Lp(w)
into Lp(w) , for 1 < p < ∞ , and w ∈ A+

1 (g) , if, and only if M+
g maps L1(w) into

L1,∞(w) . Observe that if g ≡ 1 then A+
p (g) = A+

p , for 1 � p � ∞ .

DEFINITION 2.3. We shall say that a function K in L1
loc(R

n \{0}) is a Calderón-
Zygmund kernel if the following properties are satisfied:

• ||K̂||∞ < C1

• |K(x)| < C2
|x|n

• |K(x)−K(x− y)|< C3|y|
|x|n+1 , where |y| < |x|

2 .

The Calderón-Zygmund singular integral operator associated to K is defined by

T f (x) = p.v.(K ∗ f )(x) = lim
ε→0

∫
Rn/Bε(0)

K(x− y) f (y)dy,

and the maximal operator associated with this kernel K is

T ∗ f (x) = sup
ε>0

∫
Rn/Bε(0)

|K(x− y)|| f (y)|dy.

A one-sided singular integral T+ is a singular integral associated to a Calderón–
Zygmund kernel with support in (−∞,0) ; therefore, in that case,

T+ f (x) = lim
ε→0+

∫ ∞

x+ε
K(x− y) f (y)dy.

Examples of such kernels are given by H. Aimar, L. Forzani and F. J. Martı́n-Reyes in
[1]. The operator T− is defined similarly.

REMARK 2.4.

1. In [1], it is proved that the one-sided singular integral T+ is controlled by the
one-sided maximal functions M+ in the Lp(w) norm if w ∈ A+

∞ .
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2. It is well known to that the classes Ap are included in A+
p and A−

p ; namely
Ap = A−

p ∩A+
p . See [25], [13], [14].

3. The one-sided classes of weights satisfy the following factorization, w ∈ A+
p if

only if w= w1w
1−p
2 with w1 ∈A+

1 and w2 ∈A−
1 , and ||w||A+

p
� ||w1||A+

1
||w2||p−1

A−
1

.

See [25], [13], [14].

4. It is easy to check that (M− f )δ ∈ A+
1 for all 0 < δ < 1 with ||(M− f )δ ||A+

1
�

C
1−δ .

Finally, we recall some definition concerning Lorentz Lp,q(μ) spaces. Let f be a
measurable function on a measure space (X ,M ,μ) . The non-increasing rearrangement
f ∗(t) of f is defined as

f ∗(t) = inf{λ > 0 : μ({x ∈ R
n : | f (x)| > λ}) � t},

for all 0 < t < ∞ . The function f is said to belong to the Lorentz space Lp,q(μ) if the
quantities

|| f ||p,q(μ) =
(

q
p

∫ ∞

0

[
t1/p f ∗(t)

]q dt
t

)1/q

,

whenever 0 < p < ∞ and 0 < q < ∞ , and

|| f ||p,∞(μ) = sup
t>0

[
t1/p f ∗(t)

]
,

when 0 < p � ∞ , are finite. For more details see [26].

3. Previous Lemmas

To obtain Theorems 1.1 and 1.2 we need to prove some previous results: a sharp
weak reverse Hölder’s inequality for one-sided weights, a particular case of the Coifman-
type estimate for one-sided singular integrals and one-sided maximal operator, and also
build A+

1 weights from duality with special control on the constant, based in the Rubio
de Francia algorithm, see [6].

3.1. Sharp weak reverse Hölder’s inequality

F. J. Martı́n-Reyes proved a weak reverse Hölder’s inequality (see [13] Lemma 5).

LEMMA 3.1. [13] (Sharp weak reverse Hölder’s inequality) Let 1 � p < ∞ and
w ∈ A+

p . There exist positive numbers δ and C such that

∫ b

a
w1+δ � CM−(wχ(a,b))(b)δ

∫ b

a
w, (3.1)
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for every bounded interval (a,b) , and therefore

M−
1+δ (wχ(a,b))(b) � CM−(wχ(a,b))(b),

and
M−

1+δ (w)(b) � CM−(w)(b).

The constant C depends only on δ and the constant of the A+
p condition.

Here we will need to be more precise in the constants. In the proof of Lemma
3.1 the constat C depends of a constant β and the constant δ . If we chose β =
(4p||w||A+

p
)−1 and δ = 1

4p+2e
1
e ||w||

A+
p

, when 1 < p < ∞ , and β = (||w||A+
1
)−1 and δ =

1

16e
1
e ||w||

A+
1

, when p = 1, following the same steps of the proof, we obtain that C � 2.

Then we can rewrite the equation (3.1) as∫ b

a
wrw � 2M−(wχ(a,b))(b)rw−1

∫ b

a
w, (3.2)

for every bounded interval (a,b) , and therefore

M−
rw(wχ(a,b))(b) � 2M−(wχ(a,b))(b),

and
M−

rw(w)(b) � 2M−(w)(b), (3.3)

where rw = 1+ 1

4p+2e
1
e ||w||

A+
p

, when p > 1, and rw = 1+ 1

16e
1
e ||w||

A+
1

when p = 1.

The following Lemma will be necessary to prove good-λ result in the next section.

LEMMA 3.2. Let 1 < p < ∞ , w ∈ A−
p , a < b < c and E ⊆ (b,c) a measurable

set. For all ε > 0 , there exists C = C(ε, p) such that if |E| < e
−C||w||

A−p (b− a) then
w(E) < εw(a,c) .

Proof. Let w ∈ A−
p . Let apply the analogous to equation (3.2), i.e.∫ c

b
wr � 2M+(wχ(b,c))(b)r−1

∫ c

b
w.

This last inequality implies

(M+
w (wr−1χ(b,c))(b))

1
r−1 � 2M+(wχ(b,c))(b),

where we take r = rw = 1+ 1

4p+2e
1
e ||w||

A−p
, when p > 1 and r = rw = 1+ 1

16e
1
e ||w||

A−1

,

when p = 1.
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Using the definition of M+
g , with g = w , we have that for all x ∈ (a,b)

(
1

w(a,c)

∫ c

b
wr−1w

) 1
r−1

� (M+
w (wr−1χ(x,c))(x))

1
r−1

� 2M+(wχ(x,c))(x)

� 2M+(wχ(a,c))(x),

then

(a,b) ⊆
{

x : M+(wχ(a,c))(x) >
1
4

(
1

w(a,c)

∫ c

b
wr
) 1

r−1
}

.

Recalling that M+ is of weak type (1,1) with respect to the Lebesgue measure, we get

b−a < C1w(a,c)
1

r−1

(∫ c

b
wr
) −1

r−1

w(a,c),

where C1 does not depend on the weight w . This last inequality says that 1 ∈ A+
r′ (w)

(where r′ is such that 1
r + 1

r′ = 1), with constant C1 , see (2.3). Let x ∈ (a,b) , by
hypothesis E ⊂ (b,c) then

M+
w (χE(x)) � 1

w(x,c)

∫ c

x
χE(t)w(t)dt � w(E)

w(a,c)
,

obtaining that the interval (a,b) ⊂ {x : M+
w (χE(x)) > w(E)

2w(a,c)} . Observe that M+
w is of

weak type (r′,r′) with respect to the Lebesgue measure with constant ||M+
w ||Lr′→Lr′ ,∞ =

C2 (see [14]), then

b−a �
∣∣∣∣{x : M+

w (χE(x)) >
w(E)

2w(a,c)

}∣∣∣∣� C2

(
2w(a,c)
w(E)

)r′

|E|.

Taking into account that 1 < r < 2 and C
1
r′
2 � C3 , where C3 does not depend on

p or ||w||A−
p

(see [14]), then

w(E)
w(a,c)

<

(
C2

|E|
b−a

) 1
r′

< C3e
−C||w||

A−p
r′ < ε, (3.4)

where the last inequality holds by choosing an appropriate C depending only on p and
ε . �

3.2. The Coifman-type estimate

Now we give a particular case of the Coifman-type estimate. In order to do this
we need a kind of good-λ inequality result. We will use the next result due to S. M.
Buckley in [2].



WEIGHTED INEQUALITIES RELATED TO A MUCKENHOUPT–WHEEDEN PROBLEM 1095

LEMMA 3.3. [2] Let g ∈ L∞(I) and T be an operator for which

|{x : Tφ(x) > α}| �
(

Cp||φ ||p
α

)
,

for all φ ∈ Lp(R) , sufficiently large p and α and C being a constant independent of
p .

Then,

|{x : Tg(x) > α}| � Ce
α

e||g||∞ |I|.

LEMMA 3.4. Let 1 � p < ∞ , w ∈ A−
p , T− be a one-sided singular integral and

T ∗ the maximal operator related to T− . Then, there exist positive constants c1,c2,
γ0 > 0 such that for every 0 < γ < γ0∣∣{x ∈ R : T ∗ f (x) > 2λ ,M− f (x) < γλ}∣∣< c1e

− c2
γ |{T ∗ f (x) > λ}|

holds for f ∈ L1(R) , λ > 0 . Also, for all ε > 0 , there exists c′ depending on ε,γ0 and
p such that

w

({
x ∈ R : T ∗ f (x) > 2λ ,M− f (x) <

c′λ
||w||A−

p

})
< εw({T ∗ f (x) > λ}).

Proof. Since {x : T ∗ f (x) > λ} is an open set and it has finite measure for f ∈
L1(R) , it can be written as a disjoint countable union of open intervals. Let J = (a,b)
be such an interval. It is enough to prove that there exist c1 , c2 , c′ and γ0 such that∣∣{x ∈ J : T ∗ f (x) > 2λ ,M− f (x) < γλ}∣∣< c1e

− c2
γ |J| ,

and

w

({
x ∈ J : T ∗ f (x) > 2λ ,M− f (x) <

c′λ
||w||A−

p

})
< εw(J),

for every 0 < γ < γ0 and every λ > 0. Let us take a sequence {xi}∞
i=0 in J = (a,b) in

such a way that x0 = b and xi−1 − xi = xi − a for every i > 0. Observe that we only
need to prove that∣∣{x ∈ (xi+1,xi) : T ∗ f (x) > 2λ ,M− f (x) < γλ}∣∣< c1e

− c2
γ (xi+1− xi+2). (3.5)

By Lemma 3.2 there exists c′ depending on ε,γ0, p,c1,c2 , such that

w

({
x ∈ (xi+1,xi) : T ∗ f (x) > 2λ ,M− f (x) <

c′λ
||w||A−

p

})
< εw(xi,xi+2). (3.6)
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Let us show (3.5). Let i ∈ N , if {x∈ (xi+1,xi) : T ∗ f (x) > 2λ ,M− f (x) < γλ} = Ø
there is nothing to prove. We choose a < a such that xi −a = a−a and

ξ = sup{x ∈ (xi+1,xi) : M− f (x) � γλ}.

Let us write f = f1 + f2 with f1 = f χ(a,ξ ) then

{x ∈ (xi+1,xi) : T ∗ f (x) > 2λ ,M− f (x) < γλ} ⊂ A∪B,

where

A = {x ∈ (xi+1,ξ ) : T ∗ f1(x) >
1
2

λ ,M− f (x) < γλ},

B =
{

x ∈ (xi+1,ξ ) : T ∗ f2(x) >
3
2

λ ,M− f (x) < γλ
}

.

The second set B is essentially empty for γ small enough. By standard estimation
(see [1]), we get that for x ∈ (xi+1,ξ ) , T ∗ f2(x) � 3

2 λ then{
x ∈ (xi+1,ξ ) : T ∗ f2(x) >

3
2

λ ,M− f (x) < γλ
}

= Ø,

for 0 < γ < γ0 small enough.
Now we work with set A . Let Ω = {x ∈ (xi+1,ξ ) : M− f1(x) > 3γλ} , observe that∫

R

f1(t)dt � 4γλ (xi− xi+1).

The last inequality implies that Ω ⊂ (a, ã) with ã− ξ = 4
3 (xi − xi+1) . Let us write

Ω =
⋃

I j where I j = (a j,b j) are disjoint maximal intervals. Then

1∣∣I j
∣∣ ∫Ij

f1(t)dt = 3γλ .

We define I+j = (b j,c j) ,
∣∣∣I+j ∣∣∣= 2

∣∣I j
∣∣ , Ω̃ =

⋃
(I+j ∪ I j) =

⋃
Ĩ j and f1 = g+h with

g = f1χR/Ω +∑
j

3γλ χIj , h = ∑
j

h j = ∑
j
( f1 −3γλ )χIj .

Observe that g � 3γλ and g has support in (a, ã) . Then using Lemma 3.3 we have∣∣∣∣{x : T ∗g(x) >
λ
4

}∣∣∣∣� e
−c
γ (ã−a) � 32

3
e
−c
γ (xi+1 − xi+2).



WEIGHTED INEQUALITIES RELATED TO A MUCKENHOUPT–WHEEDEN PROBLEM 1097

Now let us study T ∗h for x /∈ Ω̃ ,

|T ∗h(x)| � ∑
j

∫
Ij

∣∣h j(y)(K(x− y)−K(x−b j))
∣∣ dy

� C∑
j

∫
Ij

∣∣h j(y)
∣∣ y−b j

(x−b j)2 dy

� 3
2
C∑

j

δ j

δ 2
j +(x−b j)2

∫
Ij

∣∣h j(y)
∣∣ dy

� 9Cγλ ∑
j

δ j

δ 2
j +(x−b j)2

∣∣I j
∣∣

� Cγλ ∑
j

δ 2
j

δ 2
j +(x−b j)2

,

where δ j = c j −a j . We write Δ(x) = ∑ j
δ 2

j

δ 2
j +(x−b j)2

.

Observe that if x ∈ Ω̃ then M− f (x) � γλ . In fact, if x ∈ I j , for some j , then by
definition of Ω we have that 3γλ < M− f1(x) < M− f (x) . If x ∈ I+j then

3γλ =
1∣∣I j
∣∣ ∫Ij

f1(t)dt =
x−a j

(x−a j)|I j|
∫ x

a j

f (t)dt � 3M− f (x).

By the exponential Carleson’s estimation, (see [3]), we have∣∣∣∣{x ∈ (xi+1,ξ ) : Δ(x) >
c
γ

}∣∣∣∣< Ce
−c
γ |(xi+1,ξ )| � 2Ce

−c
γ (xi+1− xi+2),

therefore∣∣∣∣{x ∈ (xi+1,ξ ) : T ∗h(x) >
1
4

λ ,M− f (x) < γλ
}∣∣∣∣� Ce

−c
γ (xi+1 − xi+2).

Putting together this last estimate with the ones for f2 and g , we obtain the desired
result. �

LEMMA 3.5. Let p � 1 , w ∈ A−
p and let T− be a one-sided singular integral.

Then there exists a constant C = C(p,T−) , such that

||T− f ||L1(w) � C ||w||A−
p
||M− f ||L1(w).

Proof. By Lemma 3.4, for ε = 1
4 exists c′ such that

w

({
x ∈ R : T ∗ f (x) > 2λ ,M− f (x) <

c′λ
||w||A−

p

})
<

1
4
w({T ∗ f (x) > λ}).
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Observe that∫ N

0
w({T− f > λ})dλ � 2

∫ N
2

0
w({T ∗ f > 2λ})dλ � B1 +B2,

where

B1 = 2
∫ N

2

0
w

({
T ∗ f > 2λ ,M− f <

c′λ
||w||A−

p

})
dλ ,

B2 = 2
∫ N

2

0
w

({
M− f � c′λ

||w||A−
p

})
dλ .

For B1 , we obtain

B1 = 2
∫ N

2

0
w

({
T ∗ f > 2λ ,M− f <

c′λ
||w||A−

p

})
dλ � 1

2

∫ N

0
w({T ∗ f > λ})dλ .

It is easy to see that

1
2

∫ N

0
w({T ∗ f > λ})dλ �

2||w||A−
p

c′

∫ Nc′
2||w||

A−p
0

w(M− f � λ})dλ ,

then

||T− f ||L1(w) �
4||w||A−

p

c′
||M− f ||L1(w),

obtaining the desired result. �
For the next result we shall need the following Lemma due to A. K. Lerner, S.

Ombrosi and C. Pérez in [11].

LEMMA 3.6. [11] Let 1 < s < ∞ and v be a weight. There exists an operator R
in Ls(v) such that

• h � R(h)

• ||R(h)||Ls(v) � 2||h||Ls(v)

• R(h)(v)
1
s ∈ A1 with ||R(h)(v)

1
s ||A1 � cs′ .

It is known that the weight (M−
r w)1−p′ belongs to the A−

∞ class with the corres-
ponding constants independent of w . Hence the next Lemma is a particular case of the
Coifman-type estimate.

LEMMA 3.7. Let T− be a one-sided singular integral, p,r � 1 . Then there exists
C = C(T−) such that ∣∣∣∣∣∣∣∣ T− f

M−
r w

∣∣∣∣∣∣∣∣
Lp′ (M−

r w)
� C p′

∣∣∣∣∣∣∣∣M− f

M−
r w

∣∣∣∣∣∣∣∣
Lp′ (M−

r w)
. (3.7)
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Proof. By duality we have∣∣∣∣∣∣∣∣ T− f

M−
r w

∣∣∣∣∣∣∣∣
Lp′ (M−

r w)
= sup

||h||
Lp(M−

r w)=1

∫
R

∣∣T− f
∣∣hdx.

Choosing s = p and v = M−
r w , by Lemma 3.6, there exists an operator R such

that R(h)(M−
r w)

1
p ∈ A1 with ||R(h)(M−

r w)
1
p ||A1 � cp′ , then by Remark 2.4, item (2),

R(h)(M−
r w)

1
p ∈ A−

1 with ||R(h)(M−
r w)

1
p ||A−

1
� cp′.

Now using the Remark 2.4, item (3) and item (4), we have

||R(h)||A−
3

= ||R(h)(M−
r w)

1
p [(M−

r w)
1
2p ]−2||A+

3

� ||R(h)(M−
r w)

1
p ||A−

1
||(M−

r w)
1
2p ||2A+

1

� cp′
(

c

1− 1
2pr

)2

� Cp′.

Finally by Lemma 3.5,∫
R

∣∣T− f
∣∣hdx �

∫
R

∣∣T− f
∣∣R(h)dx � C||R(h)||A−

3

∫
R

M−( f )R(h)dx

� Cp′
∫

R

M− f

M−
r w

R(h)M−
r wdx � Cp′

∣∣∣∣∣∣∣∣M− f

M−
r w

∣∣∣∣∣∣∣∣
Lp′ (M−

r w)
||R(h)||Lp(M−

r w).

As ||h||Lp(M−
r w) = 1 we have

∣∣∣∣∣∣∣∣ T− f

M−
r w

∣∣∣∣∣∣∣∣
Lp′ (M−

r w)
� Cp′

∣∣∣∣∣∣∣∣M− f

M−
r w

∣∣∣∣∣∣∣∣
Lp′ (M−

r w)
. �

4. Proof of the results

4.1. Proof of the Theorems

In order to prove Theorem 1.1 we first need to show the following result:

THEOREM 4.1. Let 1 < p < ∞ , 1 < r < 2 , w a weight and T+ be a one-sided
singular integral. Then

||T+ f ||Lp(w) � C pp′(r′)
1
p′ || f ||Lp(M−

r w), (4.1)

where C = C(T+) .
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Proof. Observe that T− is the adjoint operator of T+ , with kernel supported in
(0,∞) . Also observe that as (M−

r w) ∈ A+
1 ⊂ A+

p , then (M−
r w)1−p′ ∈ A−

p′ ⊂ A−
∞ . There-

fore (4.1) is equivalent to prove∣∣∣∣∣∣∣∣ T− f

M−
r w

∣∣∣∣∣∣∣∣
Lp′ (M−

r w)
� Cpp′(r′)

1
p′
∣∣∣∣∣∣∣∣ f

w

∣∣∣∣∣∣∣∣
Lp′ (w)

.

By Hölder’s inequality

1
b−a

∫ b

a
fw− 1

p w
1
p �

(
1

b−a

∫ b

a
wr
) 1

pr
(

1
b−a

∫ b

a

(
f w− 1

p

)(pr)′) 1
(pr)′

,

and taking supremum we get

(M− f (b))p′ � (M−
r w(b))p′−1(M−

(pr)′( f w− 1
p )(b))p′ ,

then ∣∣∣∣∣∣∣∣M− f

M−
r w

∣∣∣∣∣∣∣∣
Lp′ (M−

r w)
�
∣∣∣∣∣∣M−

(pr)′
(

f w− 1
p

)∣∣∣∣∣∣
Lp′ .

Now using that ||M−
k g||Ls � C

(
s
k

)′ 1k ||g||Ls , for g = f w
1
p , k = (pr)′ and s = p′ we get∣∣∣∣∣∣∣∣M− f

M−
r w

∣∣∣∣∣∣∣∣
Lp′ (M−

r w)
� C

(
rp−1
r−1

)1− 1
pr
∣∣∣∣∣∣∣∣ f

w

∣∣∣∣∣∣∣∣
Lp′ (w)

� Cp

(
1

r−1

)1− 1
pr
∣∣∣∣∣∣∣∣ f

w

∣∣∣∣∣∣∣∣
Lp′ (w)

.

Observe that t
1
t � 2 for t � 1, then(

1
r−1

)1− 1
pr

� (r′)1− 1
p+1+ 1

pr′ � 2(r′)
1
p′ .

Finally applying Lemma 3.7 we get,∣∣∣∣∣∣∣∣ T− f

M−
r w

∣∣∣∣∣∣∣∣
Lp′ (M−

r w)
� Cp′

∣∣∣∣∣∣∣∣M− f

M−
r w

∣∣∣∣∣∣∣∣
Lp′ (M−

r w)
� Cpp′(r′)

1
p′
∣∣∣∣∣∣∣∣ f

w

∣∣∣∣∣∣∣∣
Lp′ (w)

. �

Proof of Theorem 1.1. This result is a consequence of Theorem 4.1. Using the
equation (3.3), we observe that r′w � ||w||A+

1
and M−

rw(w)(x)� 2M−(w)(x)� 2||w||A+
1
w(x)

a.e. x . Then,

||T+ f ||Lp(w) � Cpp′(r′w)
1
p′
(∫

R

| f |p(x)M−
rw(w)(x)dx

) 1
p

� Cpp′(||w||A+
1
)

1
p′ ||w||

1
p

A+
1
|| f ||Lp(w)

� Cpp′||w||A+
1
|| f ||Lp(w). �
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Proof of Theorem 1.2. Without loss of generality we assume that 0 � f ∈ L∞
c (R) .

Let
Ω = {x ∈ R : M+ f (x) > λ} =

⋃
j

I j =
⋃
j

(a j,b j),

where I j = (a j,b j) are the connected component of Ω and they satisfy

1
|I j|

∫
Ij

f (y)dy = λ .

Note that if x /∈ Ω , then for all h � 0

1
h

∫ x+h

x
f (y)dy � λ .

Therefore f (x) � λ for a.e x ∈ R\Ω . Let I−j = (c j,a j) with c j chosen so that |I−j | =
2 |I j| and set

Ω̃ =
⋃
j

(I−j ∪ I j) =
⋃
j

Ĩ j.

We write f = g+h where

g = f χ
R\Ω +

∞

∑
j=1

λ χ Ij
, h =

∞

∑
j=1

h j =
∞

∑
j=1

( f −λ ) χ Ij
.

Observe that 0 � g(x) � λ for a.e. x and also that h j has vanishing integral. Then

w({x :
∣∣T+ f (x)

∣∣> λ}) � w(Ω̃)+w

({
x ∈ R\ Ω̃ :

∣∣T+h(x)
∣∣> λ

2

})
+w

({
x ∈ R\ Ω̃ :

∣∣T+g(x)
∣∣> λ

2

})
= I + II + III.

We estimate I :

I = w(Ω̃) � ∑
j
(w(I−j )+w(I j)),

for each j

w(I−j ) =
w(I−j )∣∣I j
∣∣ ∣∣I j

∣∣= w(I−j )∣∣I j
∣∣ 1

λ

∫
Ij

f (x)dx

=
1
λ

∫
Ij

1∣∣I j
∣∣ ∫I−j

w(t)dt f (x)dx � 3
λ

∫
Ij

1
(x− c j)

∫ x

c j

w(t)dt f (x)dx

� 3
λ

∫
Ij

f (x)M−w(x)dx.
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On the other hand, (w,M−w) ∈ A+
1 then M+ is weak type (1,1) with respect to this

pair of weights, then

∑
j

w(I j) = w({x : M+ f (x) > λ}) <
4
λ

∫
R

f (t)M−w(t)dt,

therefore

I = w(Ω̃) � 7
λ

∫
R

f (t)M−w(t)dt � 7
λ
||w||A+

1

∫
R

f (t)w(t)dt.

To estimate II , let r j = |I j| = |I−j |/2. Now we use that h j is supported in I j ,∫
Ij

h j = 0, and that K is supported in (−∞,0) :

II = w

({
x ∈ R\ Ω̃ :

∣∣T+h(x)
∣∣> λ

2

})
� 2

λ

∫
R\Ω̃

∣∣T+h(t)
∣∣w(t)dt

� 2
λ ∑

j

∫
Ij

∣∣h j(y)
∣∣∫

R\Ĩ j

∣∣K(t− y)−K(t−a j)
∣∣w(t)dt dy

=
2
λ ∑

j

∫
Ij

∣∣h j(y)
∣∣∫ c j

−∞

∣∣K(t − y)−K(t−a j)
∣∣w(t)dt dy.

Observe that it is suffice to obtain that for all y ∈ I j ,∫ c j

−∞

∣∣K(t− y)−K(t−a j)
∣∣w(t)dt � Cess inf

Ij
M−(wχ

R\Ĩ j ).

To see this we use the condition of the kernel K ,∫ c j

−∞

∣∣K(t−y)−K(t−a j)
∣∣w(t)dt =

∞

∑
k=1

∫ a j−2kr j

a j−2k+1r j

∣∣K(t − y)−K(t−a j)
∣∣w(t)dt

� C
∞

∑
k=1

∫ a j−2kr j

a j−2k+1r j

∣∣∣∣ y−a j

(t−a j)2

∣∣∣∣w(t)dt

� C
∞

∑
k=1

y−a j

(2kr j)2

∫ a j−2kr j

a j−2k+1r j

w(t)χ(a j−2kr j ,a j−2k+1r j) dt

� C
∞

∑
k=1

1
2k

1
(2kr j)

∫ a j−2kr j

a j−2k+1r j

w(t)χ(a j−2kr j ,a j−2k+1r j) dt,

where C = C(T+) . If x ∈ I j∫ c j

−∞

∣∣K(t− y)−K(t−a j)
∣∣w(t)dt

� C
∞

∑
k=1

1
2k

x−a j +2k+1r j

2kr j

1
x−a j +2k+1r j

∫ x

a j−2k+1r j

w(t)χ(a j−2kr j ,a j−2k+1r j) dt

� CM−wχ
R\Ĩ j (x)

∞

∑
k=1

1
2k

(
x−a j

2kr j
+

2k+1r j

2kr j

)
� CM−(wχ

R\Ĩ j )(x),
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therefore

II � C
λ ∑

j
ess inf

Ij
M−(wχ

R\Ĩ j )
∫

Ij

∣∣h j(y)
∣∣ dy

� C
λ ∑

j

∫
Ij

∣∣h j(y)
∣∣M−(wχ

R\Ĩ j )(y)dy

� C
λ

[
∑
j

∫
Ij

f (y)M−(wχ
R\Ĩ j )(y)dy+∑

j

∫
Ij
|g(y)|M−(wχ

R\Ĩ j )(y)dy

]

=
C
λ

(A+B).

For A there is nothing to prove. To work with B we need to prove the following
inequality

M−(wχ
R\Ĩ j )(y) � 3

2
ess inf

z∈Ij
M−(wχ

R\Ĩ j )(z), (4.2)

for all y ∈ I j . In fact for y,z ∈ I j ,

M−(wχ
R\Ĩ j )(y) = sup

t<y

1
y− t

∫ y

t
w(s)χ

R\Ĩ j (s)ds = sup
t<c j

1
y− t

∫ c j

t
w(s)χ

R\Ĩ j (s)ds

� sup
t<c j

3
2

1
z− t

∫ c j

t
w(s)χ

R\Ĩ j (s)ds � 3
2
M−(wχ

R\Ĩ j )(z).

Then

B = ∑
j

∫
Ij
|g(y)|M−(wχ

R\Ĩ j )(y)dy = ∑
j

∫
Ij

λM−(wχ
R\Ĩ j )(y)dy

� ∑
j

∫
Ij

f (t)dt
1
|I j|

∫
Ij

M−(wχ
R\Ĩ j )(y)dy

� 3
2 ∑

j

∫
Ij

f (t)dt ess inf
Ij

M−(wχ
R\Ĩ j ) � 3

2 ∑
j

∫
Ij

f (t)M−(wχ
R\Ĩ j )(t)dt.

So

II � C
λ ∑

j

∫
Ij

f (t)M−(wχ
R\Ĩ j )(t)dt � C

λ
||w||A+

1

∫
R

f (t)w(t)dt.

Finally we estimate III . First observe that doing the same proof that in (4.2) we
obtain

M−(wχ
R\Ω̃)(y) � 3

2
ess inf

z∈Ij
M−(wχ

R\Ω̃)(z), (4.3)

for all y ∈ I j .
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By Chevichef’s inequality, using the fact that g � λ and choosing r = rw = 1+
1

16e
1
e ||w||

A+
1

in order to apply Theorem 4.1 and equation (3.3), we get that

III = w

({
x ∈ R\ Ω̃ :

∣∣T+g
∣∣(x) >

λ
2

})
� 2p

λ p

∫
R

(
∣∣T+g

∣∣(x))pw(x)χ(R\Ω̃)(x)dx

� 2p

λ p (Cpp′(r′)
1
p′ )p

∫
R

(|g|(x))pM−
r (wχ(R\Ω̃))(x)dx

� 2p+1

λ
(Cpp′(r′)

1
p′ )p

∫
R

(|g|(x))M−(wχ(R\Ω̃))(x)dx

� 2p+1

λ
(Cpp′((r′)

1
p′ )p
[∫

R/Ω
|g(x)|M−(wχ

R\Ω̃)(x)dx+
∫

Ω
|g(x)|M−(wχ

R\Ω̃)(x)dx

]
.

Recalling that f (x) = g(x) for all x ∈ R \Ω and arguing as in B for the integral
of g in Ω , this time using (4.3), we obtain∫

R

|g(x)|M−(wχ
R\Ω̃)(x)dx � 3

2

∫
R

f (x)M−(w)(x)dx.

Now the fact that w ∈ A+
1 and r′ = r′w � C||w||A+

1
implies

III � 2p+1

λ
(Cpp′((r′)

1
p′ )p

∫
R

f (x)M−w(x)dx

� 2p+1

λ
(Cpp′(||w||A+

1
)

1
p′ )p||w||A+

1

∫
R

f (x)w(x)dx

� Cp2p+1

λ
[pp′||w||A+

1
]p
∫

R

f (x)w(x)dx.

We take p = 1+ 1
log(e+||w||

A+
1

) and observing that t(log(e+t))−1
and tt

−1
are bounded for

t > 1 we have

[pp′||w||A+
1
]p � C log(e+ ||w||A+

1
)||w||A+

1
,

and as 1 < p < 2 we obtain

III � C
λ

log(e+ ||w||A+
1
)||w||A+

1

∫
R

f (x)w(x)dx.

Combining this estimate with I and II completes the proof. �

REMARK 4.2. The choice of p , in proof of Theorem 1.2, is similar to the one
given in [11]. The conjecture or goal was to find a linear dependence of the constant
||w||A1 . In [19] the authors proved that this is not possible. The nearest one is a t logt
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dependence of the constant, by the kind of steps followed to approach to the result.
Maybe it can be shown that a t logε t , dependence is possible, for some 0 < ε < 1. To
prove this result, a better estimate in Theorem 4.1 it should be obtain. C. Pérez in [21]
conjectures that a t logε t dependence is not possible.

4.2. Proof of the Corollaries

To prove the Corollary 1.3, we need to build A+
1 weights with special control on

the constant, based in the Rubio de Francia algorithm. In order to do this we need
the one-sided version of the Buckley result sharp estimate in norm Lp of the Hardy-
Littlewood maximal operator M respect to weights w ∈ Ap . This Theorem was proved
by F. J. Martı́n-Reyes and A. de la Torre in [17].

THEOREM 4.3. [17] If w ∈ A−
p then

||M−||Lp(w) � Cp′2p′ ||w||
1

p−1

A−
p

. (4.4)

The equivalent of the following Lemma for weights in Ap , is proven in [4].

LEMMA 4.4. Let 1 < q < ∞ and let w ∈ A+
q . Then there exists a nonnegative

sublinear operator D bounded on Lq′ such that for any nonnegative h ∈ Lq′(w):

1. h � D(h);

2. ||D(h)||Lq′ (w) � 2||h||Lq′ (w) ;

3. D(h).w ∈ A+
1 with ||D(h).w||A+

1
� Cq2q||w||A+

q
,

where the constant C not depend on ||w||A+
1

and q.

Proof. We define the operator S(h)= w−1M−(|h|w) , then S is bounded in Lq′(w) ,
moreover, ||S||Lq′ (w) � Cq2q||w||A+

q
, indeed using equation (4.4) we get,

||Sh||Lq′ (w) =
(∫

R

(w−1M−(|h|w))q′wdx

) 1
q′

=
(∫

R

(M−(|h|w))q′w1−q′ dx

) 1
q′

� ||M−||Lq′ (w1−q′ )|||h|w||Lq′ (w1−q′ ) � Cq2q||w1−q′ ||
1

q′−1

A−
q′

||h||Lq′ (w).

Recalling that w ∈ A+
q implies w1−q′ ∈ A−

q′ and that ||w1−q′ ||A−
q′

= ||w||
1

q−1

A+
q

, we get

||S||Lq′ (w) � Cq2q||w||A+
q

, as claimed.
Now we define the operator D via the following convergent Neumann series:

D(h) =
∞

∑
k=0

Sk(h)
2k||S||k , where ||S|| = ||S||Lq′ (w).
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Then (1) and (2) are clearly satisfied.
(3) It follows from the definition of D and the sublinearity of S that

S(D(h)) � 2||S||(D(h)−h) � 2||S||D(h),

therefore

M−(D(h)w) = M−(D(h)w)w−1w = S(D(h))w � 2||S||D(h)w
� cq2q||w||A+

q
D(h)w. �

Proof of Corollary 1.3. For α > 0 we set Ωα = {x ∈ R : |T+ f (x)| > α} and
let ϕ(t) = t log(e+ t) . Applying Lemma 4.4 with q = p , we get a sublinear operator
D bounded on Lp′ satisfying properties (1), (2), and (3). Using these properties and
Theorem 1.2, we obtain∫

Ωα
hwdx �

∫
Ωα

D(h)wdx � C
α

ϕ(||D(h).w||A+
1
)|| f ||L1(D(h).w)

� C
α

ϕ(Cp2p||w||A+
p
)
∫

R

| f |D(h)wdx

� C
α

2ϕ(Cp2p)ϕ(||w||A+
p
)
(∫

R

| f |p wdx

) 1
p
(∫

R

D(h)p′ wdx

) 1
p′

� C
α

ϕ(||w||A+
p
)|| f ||Lp(w)||h||Lp′ (w).

The proof is completed by taking the supremum over all h with ||h||Lp′ (w) = 1. �

Proof of Corollary 1.4. Given a one-sided singular operator T− , its adjoint op-

erator is T+ . Let w ∈ A−
p then σ = w1−p′ ∈ A+

p′ with ||σ ||A+
p′

= ||w||
1

p−1

A−
p

. Applying

Corollary 1.3 to the one-sided singular operator T+ and the weight σ we get

||T+||Lp′ ,∞(σ) � C||w||
1

p−1

A−
p

log

(
e+ ||w||

1
p−1

A−
p

)
|| f ||Lp′ (σ)

� C||w||
1

p−1

A−
p

log(e+ ||w||A−
p
)|| f ||Lp′ (σ).

From this, by duality we obtain

||T−||Lp(w) � C||w||
1

p−1

A−
p

log(e+ ||w||A−
p
)
∣∣∣∣∣∣∣∣ f

σ

∣∣∣∣∣∣∣∣
Lp,1(σ)

,

where Lp,1(σ) is the standard weighted Lorentz space. Setting here f = σ χE , where
E is any measurable set, completes the proof. �
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5. Appendix

We will give an easier proof of a slight weak version of Lemma 3.2.
In [24] M. S. Riveros and A. de la Torre, using Lemma 5 in [13], obtained another

version of weak reverse Hölder’s inequality. If we use the equation (3.2), following
the same steps of the proof in [24], we obtain a new result with special control on the
constant.

LEMMA 5.1. [24] (One-sided RHI) Let 1 � p < ∞ , w ∈ A+
p and a < b < c with

b−a = 2(c−b) . If r = 1+ 1

4p+2e
1
e ||w||

A+
p

, for p > 1 and r = 1+ 1

16e
1
e ||w||

A+
1

, for p = 1

then

1
b−a

∫ b

a
wr � C

(
1

c−a

∫ c

a
w

)r

,

where C does not depends on the weight w.

The following Lemma is a slight weak version of Lemma 3.2.

LEMMA 5.2. Let p � 1 , w ∈ A−
p , a < b < c such that 2(b− a) = (c− b) and

E ⊆ (b,c) a measurable set. Then for every ε > 0 there exists C =C(ε, p) such that if

|E| < e
−C||w||

A−p (b−a) then w(E) < εw(a,c) .

Proof. We will use the analogous to Lemma 5.1 for A−
p weights.

w(E) =
1

c−b

∫ c

b
wχE (c−b) � (c−b)

(
1

c−b

∫ c

b
wr
) 1

r
(

1
c−b

∫ c

b
χ r′

E

) 1
r′

=
( |E|

c−b

) 1
r′

(c−b)C
1

c−a

∫ c

a
w �

( |E|
b−a

) 1
r′

C
∫ c

a
w � εw(a,c),

where the last inequality is obtained by following the same steps as in (3.4). �
As a Corollary of Lemma 5.1 we obtain another proof of Proposition 3 in [13],

this is

COROLLARY 5.3. Let 1 < p < ∞ and w ∈ A+
p . Then w ∈ A+

p−ε , with p− ε =
p−1
r(σ) + 1 where σ = w1−p′ and r(σ) is the one obtained in the analogous version of

Lemma 5.1 for a weight in A−
p′ .

Proof. In [24] it is proved that w ∈ A+
p if, and only if there exists C > 0 such that

sup
a,b,c,d

1
(b−a)p

(∫ b

a
w

)(∫ d

c
w

−1
p−1

)p−1

< C. (5.1)
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where the supremum is taken over all a,b,c,d such that a < b < c < d and 2(b−a) =
2(d− c) = c−b .

Let r = r(σ) be the one of Lemma 5.1 and a,b,c,d as in the previous line, then

(
1

b−a

∫ b

a
w

)(
1

d− c

∫ d

c
w

−1
p−ε−1

)p−ε−1

�
(

1
b−a

∫ b

a
w

)(
1

d− c

∫ d

c
σ r
) p−1

r

�
(

1
b−a

∫ b

a
w

)(
1

d−b
C
∫ d

b
σ
)p−1

� (C)p−1 ||w||A+
p
,

where C does not depend on p nor w . �
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