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ON BACKWARD ALUTHGE ITERATES OF HYPONORMAL OPERATORS

EUNGIL KO AND MEE-JUNG LEE

(Communicated by T. Ando)

Abstract. In this paper we study several remarkable properties of the backward Aluthge iterates
of a hyponormal operator. In particular, we show that, under suitable conditions, operators in
BAIH(k) admit a moment sequence and have nontrivial hyperinvariant subspaces.

1. Introduction

Let H be a separable complex Hilbert space and let L (H ) denote the algebra
of all bounded linear operators on H . An operator T in L (H ) has the unique po-

lar decomposition T = U |T | , where |T | = (T ∗T )
1
2 and U is the uniquely determined

partial isometry satisfying ker(U) = ker(|T |) = ker(T ) and ker(U∗) = ker(T ∗). As-

sociated with T , an operator |T | 1
2U |T | 1

2 is called the Aluthge transform of T , denoted
throughout this paper by T̃ . For an arbitrary T in L (H ) , the sequence {T̃ (n)} of the
Aluthge iterates of T is defined by T̃ (0) = T and T̃ (n) = [T̃ (n−1)]∼ for n ∈ N where N
denotes the set of positive integers.

An operator T ∈ L (H ) is said to be a p-hyponormal operator if (T ∗T )p �
(TT ∗)p , where 0 < p < ∞ . If p = 1, T is called hyponormal and if p = 1

2 , T is called
semi-hyponormal. If an operator T ∈ L (H) is invertible and log(TT ∗) � log(T ∗T ) ,
then T is called a log-hyponormal operator (see [27]). Since log : (0,∞) → (−∞,∞)
is operator monotone, every invertible p -hyponormal operator is log-hyponormal. But
it is known that there is a log-hyponormal operator which is not p-hyponormal (see
Example 1.2 in [27]). Also an operator T = U |T | is called a w-hyponormal operator,
if |T̃ | � |T | � |T̃ ∗| .

An operator X in L (H ) is called a quasiaffinity if it has trivial kernel and dense
range. An operator T in L (H ) is said to be a quasiaffine transform of an operator S
in L (H ) if there is a quasiaffinity X in L (H ) such that XT = SX , and this relation
of S and T is denoted by T ≺ S . If both T ≺ S and S ≺ T , then we say that S and T
are quasisimilar .

DEFINITION. For k ∈ N , an operator T ∈ L (H ) is called a backward Aluthge
iterate of a hyponormal operator of order k if T̃ (k) is a hyponormal operator for some
k ∈ N .
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We denote by BAIH(k) the class of all backward Aluthge iterate of a hyponor-
mal operator of order k . For example, BAIH(1) contains all semi-hyponormal op-
erators and BAIH(2) contains all p -hyponormal (0 < p < 1

2 ) , log-hyponormal, and
w-hyponormal operator, etc (see [2], [3], and [27]). In [21], E. Ko showed that T ∈
BAIH(k) is a weighted shift with weights {αn}∞

n=0 of positive real numbers if and only

if (∏k
j=0 αkCj

n+ j)
1/2k � (∏k

j=0 αkCj
n+ j+1)

1/2k
holds for n = 0,1,2, · · · .

In this paper we study several remarkable properties of the backward Aluthge
iterates of a hyponormal operator. In particular, we show that, under suitable conditions,
operators in BAIH(k) admit a moment sequence and have nontrivial hyperinvariant
subspaces.

2. Preliminaries

An operator T ∈ L (H ) is said to have the single-valued extension property,
abbreviated SVEP, if for every open subset G of C and any analytic function f : G →
H such that (T − z) f (z) ≡ 0 on G , we have f (z) ≡ 0 on G . For an operator T ∈
L (H ) and x ∈ H , the resolvent set ρT (x) of T at x is defined to consist of z0 in C
such that there exists an analytic function f (z) on a neighborhood of z0 , with values
in H , which verifies (T − z) f (z) ≡ x . The local spectrum of T at x is given by
σT (x) = C\ρT (x) . Using local spectra, we define the local spectral subspace of T by
HT (F) = {x ∈ H : σT (x) ⊂ F} , where F is a subset of C . An operator T ∈ L (H )
is said to have Dunford’s property (C) if HT (F) is closed for each closed subset F of
C . An operator T ∈ L (H ) is said to have Bishop’s property (β ) if for every open
subset G of C and every sequence fn : G → H of H -valued analytic functions such
that (T − z) fn(z) converges uniformly to 0 in norm on compact subsets of G , then
fn(z) converges uniformly to 0 in norm on compact subsets of G . It is known from
[22] that

Bishop’s property (β ) ⇒ Dunford’s property (C) ⇒ SVEP.

An operator T ∈ L (H ) is called upper semi-Fredholm if T has closed range
and dim ker(T ) < ∞ , and T is called lower semi-Fredholm if T has closed range
and dim(H /ran(T )) < ∞ . When T is either upper semi-Fredholm or lower semi-
Fredholm, it is called semi-Fredholm. The index of a semi-Fredholm operator T ∈
L (H ) , denoted index(T ) , is given by index(T ) = dim ker(T )− dim(H /ran(T ))
and this value is an integer or ±∞ . Also an operator T ∈L (H ) is said to be Fredholm
if it is both upper and lower semi-Fredholm. An operator T ∈ L (H ) is said to be
Weyl if it is Fredholm of index zero. For an operator T ∈ L (H) , if we can choose the
smallest positive integer m such that ker(Tm) = ker(Tm+1) , then m is called the ascent
of T and T is said to have finite ascent. Moreover, if there is the smallest positive
integer n satisfying ran(Tn) = ran(Tn+1) , then n is called the descent of T and T is
said to have finite descent. We say that T ∈ L (H ) is Browder if it is Fredholm of
finite ascent and finite descent. We define the Weyl spectrum σw(T ) and the Browder
spectrum σb(T ) by

σw(T ) = {λ ∈ C : T −λ is not Weyl}
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and
σb(T ) = {λ ∈ C : T −λ is not Browder}.

It is evident that
σe(T ) ⊂ σw(T ) ⊂ σb(T ).

We say that Weyl’s theorem holds for T if

σ(T )\π00(T ) = σw(T ), or equivalently, σ(T )\σw(T ) = π00(T )

where π00(T ) := {λ ∈ iso σ(T ) : 0 < dim ker(T −λ ) < ∞} and iso σ(T ) denotes the
set of all isolated points of σ(T ) . We say that Browder’s theorem holds for T ∈L (H )
if σb(T ) = σw(T ).

3. Main results

In this section, we study some important properties of the backward Aluthge iter-
ates of a hyponormal operator of order k . We first give some elementary properties for
such operators.

PROPOSITION 1. Let T ∈ BAIH(k) for some k ∈ N . Then the following state-
ments hold.

(i) αT ∈ BAIH(k) for any α ∈ C .
(ii) W ∗TW ∈ BAIH(k) where W is unitary.
(iii) If T is invertible, then T−1 ∈ BAIH(k) and

‖
0

∏
j=k−1

|T̃ ( j)| 1
2 (T −λ )−1

k−1

∏
j=0

|T̃ ( j)|− 1
2 ‖ =

1
dist(λ ,σ(T ))

for λ �∈ σ(T ) where ∏k−1
j=0 S j := S0S1 · · ·Sk−1 and ∏0

j=k−1 S j := Sk−1Sk−2 · · ·S0 .
(iv) If T = U |T | is the polar decomposition of T , then Re σ(T ) = σ((Re Uk−1)

|T̃ (k−1)|) where T̃ (k−1) = Uk−1|T̃ (k−1)| is the polar decomposition of T̃ (k−1) .

Proof. (i) Let α ∈ C . Since T̃ (k) is hyponormal and α̃T
(k)

= αT̃ (k) , it holds that
αT ∈ BAIH(k) .

(ii) Since W̃ ∗TW = W ∗T̃W , it is easy to see that W̃ ∗TW
(k)

= W ∗T̃ (k)W by in-

duction. Since T̃ (k) is hyponormal, W̃ ∗TW
(k)

= W ∗T̃ (k)W is also hyponormal. Hence
W ∗TW ∈ BAIH(k) .

(iii) If T = U |T | is the polar decomposition of T and is invertible, then U is a
unitary operator. Since |T | = U∗|T ∗|U , we have

T−1 = (U |T |)−1 = |T |−1U∗ = U∗|T ∗|−1UU∗ = U∗|T ∗|−1.

Since |T−1|2 = (T−1)∗(T−1) = (T ∗)−1(T−1)= (TT ∗)−1 = |T ∗|−2 , we obtain the iden-
tity |T−1| = |T ∗|−1 . Hence T−1 = U∗|T ∗|−1 is the polar decomposition of T−1 . So
we get

T̃−1 = |T ∗|− 1
2U∗|T ∗|− 1

2 . (1)
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Hence (1) implies that

(T̃ )−1 = (|T | 1
2U |T | 1

2 )−1 = (U∗|T ∗| 1
2U |T ∗| 1

2U)−1

= U∗|T ∗|− 1
2U∗|T ∗|− 1

2U = U∗T̃−1U. (2)

Claim. (T̃ (m))−1 = (∏0
j=m−1U∗

j )T̃−1
(m)

(∏m−1
j=0 Uj) for all m ∈ N where T̃ ( j) =

Uj|T̃ ( j)| is the polar decomposition of T̃j for each j ∈ N∪{0} .

If m = 1, (T̃ )−1 = U∗
0 T̃−1U0 from (2). If the claim holds when m = n , then by

induction hypothesis and (2),

(T̃ (n+1))−1 = ([T̃ (n)]∼)−1 = U∗
n [(T̃ (n))−1]∼Un =U∗

n [(
0

∏
j=n−1

U∗
j )T̃−1

(n)
(
n−1

∏
j=0

Uj)]∼Un

= U∗
n

0

∏
j=n−1

U∗
j [T̃−1

(n)
]∼

n−1

∏
j=0

UjUn = (
0

∏
j=n

U∗
j )T̃−1

(n+1)
(

n

∏
j=0

Uj).

So we complete the proof of our claim.

Since T ∈ BAIH(k) , we get that (T̃ (k))−1 is hyponormal by [28], and so T̃−1
(k)

is also hyponormal by the above claim. Hence T−1 ∈ BAIH(k) by the induction.
Since T̃ (k) is hyponormal and σ(T ) = σ(T̃ ) from [16], [2] implies that

‖(T̃ (k) −λ I)−1‖ =
1

dist(λ ,σ(T ))

for λ �∈ σ(T ) . Since (T̃ (k) − λ I)−1 = ∏0
j=k−1 |T̃ ( j)| 1

2 (T − λ I)−1 ∏k−1
j=0 |T̃ ( j)|− 1

2 , we
complete our proof.

(iv) Let T̃ (k−1) = Uk−1|T̃ (k−1)| be the polar decomposition of T̃ (k−1) . Since T̃ (k)

is hyponormal, it is known from [24] that σ(Re T̃ (k)) = Re σ(T̃ (k)) . Since σ(T ) =
σ(T̃ (k)) form [16], we get that

Re σ(T ) = σ(Re T̃ (k)) = σ
( T̃ (k) + T̃ (k)∗

2

)
= σ(|T̃ (k−1)| 1

2

(Uk−1 +U∗
k−1

2

)
|T̃ (k−1)| 1

2 ).

From some applications of Proposition 1 in [14], we get that

σ(|T̃ (k−1)| 1
2

(Uk−1 +U∗
k−1

2

)
|T̃ (k−1)| 1

2 ) = σ
(Uk−1 +U∗

k−1

2
|T̃ (k−1)|

)
= σ((Re Uk−1)|T̃ (k−1)|).

Hence we complete the proof. �

As some applications of the equation (1) in the proof of Proposition 1, we get the
following corollary.
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COROLLARY 1. Let T = U |T | be the polar decomposition of T . If T is invert-
ible, then the following statements hold.

(i) T̃−1 = |T ∗|− 1
2U∗|T ∗|− 1

2 and

(ii) (T̃ )−1 = T̃−1 if and only if [U, |T | 1
2 |T ∗| 1

2 ] = 0 , where [A,B] = AB−BA for
any operators A and B.

Proof. (i) The proof follows from (1).

(ii) Since T̃−1 = |T ∗|− 1
2U∗|T ∗|− 1

2 by (i), we get that

T̃ (T̃−1) = (|T | 1
2 U |T | 1

2 )(|T ∗|− 1
2U∗|T ∗|− 1

2 ) = |T | 1
2U(U∗|T ∗| 1

2U)|T ∗|− 1
2U∗(U |T |− 1

2U∗)

= |T | 1
2 |T ∗| 1

2U |T ∗|− 1
2 |T |− 1

2U∗.

Hence T̃ (T̃−1) = I if and only if |T | 1
2 |T ∗| 1

2U = U |T | 1
2 |T ∗| 1

2 . �

For T ∈ L (H ) , the algebraic core Alg(T ) is defined as the greatest (not nec-
essarily closed) subspace M of H satisfying TM = M . The analytical core of T
is the set Anal(T ) of all x ∈ H such that there exists a sequence {un} ⊂ H and a
constant δ > 0 such that x = u0 , Tun+1 = un , and ‖un‖ � δ n‖x‖ for every n ∈ N .

LEMMA 1. Let T = U |T | ∈ L (H ) be the polar decomposition of T . Then

(i) Alg(T̃ ) = |T | 1
2 Alg(T ) ,

(ii) Alg(T ) = U |T | 1
2 Alg(T̃ ) ,

(iii) Anal(T̃ ) = |T | 1
2 Anal(T ) if T is invertible, and

(iv) Anal(T ) = U |T | 1
2 Anal(T̃ ) if T is invertible.

Proof. (i) Since TAlg(T ) = Alg(T ) , we get that

T̃ |T | 1
2 Alg(T ) = |T | 1

2U |T |Alg(T ) = |T | 1
2 TAlg(T ) = |T | 1

2 Alg(T ).

Hence |T | 1
2 Alg(T ) ⊆ Alg(T̃ ) .

On the other hand, since T̃Alg(T̃ ) = Alg(T̃ ) , TU |T | 1
2 Alg(T̃ ) =U |T | 1

2 T̃Alg(T̃ ) =
U |T | 1

2 Alg(T̃ ) . Hence U |T | 1
2 Alg(T̃ ) ⊆ Alg(T ) . Therefore

Alg(T̃ ) = T̃Alg(T̃ ) = |T | 1
2U |T | 1

2 Alg(T̃ ) ⊆ |T | 1
2 Alg(T ).

So we have Alg(T̃ ) = |T | 1
2 Alg(T ) .

(ii) By (i), we can get U |T | 1
2 Alg(T̃ ) = TAlg(T ) = Alg(T ) .

(iii) Let x ∈ Anal(T ) . Then there exist a sequence {un} ⊂ H and a constant
δ > 0 such that x = u0 , Tun+1 = un , and ‖un‖ � δ n‖x‖ for every n ∈ N . Since

|T | 1
2 x = |T | 1

2 u0 , T̃ |T | 1
2 un+1 = |T | 1

2 Tun+1 = |T | 1
2 un and

‖|T | 1
2 un‖ � ‖|T | 1

2 ‖‖un‖ � ‖|T | 1
2 ‖δ n‖x‖ � ‖|T | 1

2 ‖‖|T |− 1
2 ‖δ n‖|T | 1

2 x‖
� (‖|T | 1

2 ‖‖|T |− 1
2 ‖)nδ n‖|T | 1

2 x‖ = (‖|T | 1
2 ‖‖|T |− 1

2 ‖δ )n‖|T | 1
2 x‖
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for all n ∈ N , it holds that |T | 1
2 Anal(T ) ⊆ Anal(T̃ ) .

On the other hand, let y ∈ Anal(T̃ ) . Then there exist a sequence {vn} ⊂ H and a
constant δ > 0 such that y = v0 , T̃ vn+1 = vn , and ‖vn‖� δ n‖y‖ for every n∈N . Since

T is inverible, so is |T | 1
2 . Set z = |T |− 1

2 y and sn = |T |− 1
2 vn for every n ∈ N∪{0} .

Then z = s0 . Since |T | 1
2 Tsn+1 = T̃ |T | 1

2 sn+1 = T̃ vn+1 = vn = |T | 1
2 (|T |− 1

2 vn) = |T | 1
2 sn

and |T | 1
2 is invertible, we have Tsn+1 = sn . Moreover,

‖sn‖ � ‖|T |− 1
2 ‖‖vn‖ � ‖|T |− 1

2 ‖δ n‖y‖
= ‖|T |− 1

2 ‖δ n‖|T | 1
2 z‖ � (‖|T |− 1

2 ‖‖|T | 1
2 ‖)δ n‖z‖

� (‖|T | 1
2 ‖‖|T |− 1

2 ‖)nδ n‖z‖

for all n ∈ N . Hence z ∈ Anal(T ) , i.e., y ∈ |T | 1
2 Anal(T ) . Therefore Anal(T̃ ) ⊆

|T | 1
2 Anal(T ) .
(iv) By the similar method as in (iii), we obtain that Anal(T) = U |T | 1

2 Anal(T̃ ) if
0 �∈ σ(T ) . �

Note that if T ∈L (H ) is invertible with polar decomposition T =U |T | , then U
is unitary and |T | is invertible. Since σ(T ) = σ(T̃ ( j)) for every j ∈ N by [16], |T̃ ( j)|
is also invertible for every j ∈ N . Combining such a fact with Lemma 1, we easily get
the following proposition by induction. So we omit its proof.

PROPOSITION 2. For T ∈ L (H ) , let T̃ ( j) = Uj|T̃ ( j)| be the polar decomposi-
tion for every j ∈ N∪{0} . If k ∈ N , then the following statments hold.

(i) Alg(T̃ (k)) = (∏0
j=k−1 |T̃ ( j)| 1

2 )Alg(T ) .

(ii) Alg(T ) = (∏k−1
j=0Uj|T̃ ( j)| 1

2 )Alg(T̃ (k)) .

(iii) Anal(T̃ (k)) = (∏0
j=k−1 |T̃ ( j)| 1

2 )Anal(T ) if T is invertible, and

(iv) Anal(T ) = (∏k−1
j=0Uj|T̃ ( j)| 1

2 )Anal(T̃ (k)) if T is invertible.

PROPOSITION 3. Let T = U |T | ∈ BAIH(k) be the polar decompositon of T for
some k ∈ N . Then ker(λ I−T)∩Anal(λ I−T ) = {0} for all λ ∈ C .

Proof. If T = U |T | ∈ BAIH(k) , then T has the single-valued extension property
from [21]. Hence the proof follows from [1]. �

Recall that if T ∈ L (H ) and x ∈ H , then {Tnx}∞
n=0 is called the orbit of x

under T , denoted by O(x,T ) . If O(x,T ) is dense in H , then x is called a hypercyclic
vector for T . An operator T ∈ L (H ) is called hypercyclic if there is at least one hy-
percyclic vector for T , and hypertransitive if every nonzero vector in H is hypercyclic
for T . Denote the set of all nonhypertransitive operators in L (H ) by (NHT ) .

THEOREM 1. If k ∈ N , then the following statements hold.
(i) BAIH(k) is closed in the uniform operator topology.
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(ii) The spectrum σ is continuous in the Hausdorff metric at every T ∈ BAIH(k) .
(iii) Every T ∈ BAIH(k) is nonhypertransitive.
(iv) If T ∈ BAIH(k) and σ(T ) is a Lebesgue null set, then T̃ (k) is normal and

T̃ (k) = T̃ (k+n) for every n ∈ N .

Proof. (i) If limn→∞ ‖Tn−T‖= 0 and Tn ∈BAIH(k) , then limn→∞ ‖T̃n
(k)− T̃ (k)‖=

0 by [11]. Since T̃n
(k)

is hyponormal, T̃ (k) is also hyponormal. Therefore T ∈
BAIH(k) .

(ii) If limn→∞ ‖Tn−T‖= 0, then T ∈ BAIH(k) by (i) and limn→∞ ‖T̃n
(k)− T̃ (k)‖=

0 by [11]. Since the spectrum σ is continuous at hyponormal operators, limn→∞ σ(T̃n
(k)

)

= σ(T̃ (k)) . Since σ(T̃n
(k)

)= σ(Tn) and σ(T̃ (k))= σ(T ) by [16], we have limn→∞ σ(Tn)
= σ(T ) .

(iii) If T is not a quasiaffinity, then σp(T )∪σp(T ∗) �= /0 . Hence T has a nontrivial
invariant subspace, and so T ∈ (NHT ) . Otherwise, suppose that T is a quasiaffinity.
Since T̃ (k) is not hypercyclic from [20], there exists a nonzero vector x ∈ H such
that O(x, T̃ (k)) is not dense in H . Let T̃ ( j) = Uj|T̃ ( j)| be the polar decomposition for

j = 0,1, . . . ,k−1. Since Uj|T̃ ( j)| 1
2 T̃ ( j+1) = T̃ ( j)Uj|T̃ ( j)| 1

2 , it follows that

T̃ (k−1)(Uk−1|T̃ (k−1)| 1
2 O(x, T̃ (k))) = Uk−1|T̃ (k−1)| 1

2 (T̃ (k)O(x, T̃ (k)))
⊆ Uk−1|T̃ (k−1)| 1

2 O(x, T̃ (k)).

Since T is a quasiaffinity, so is T̃ (k−1) . Hence |T̃ (k−1)| 1
2 is a quasiaffinity and Uk−1 is

unitary. Therefore, Uk−1|T̃ (k−1)| 1
2 O(x, T̃ (k)) is not dense in H . So T̃ (k−1) ∈ (NHT )

because |T̃ (k−1)| 1
2 {Uk−1|T̃ (k−1)| 1

2 O(x, T̃ (k))} = T̃ (k)O(x, T̃ (k)) ⊂ O(x, T̃ (k)) . Repeating
the same arguments as above and using [5] or [17], we can show that T ∈ (NHT ) .

(iv) Since T̃ (k) is hyponormal, we obtain from [24] that

||(T̃ (k))∗(T̃ (k))− (T̃ (k))(T̃ (k))∗|| � 1
π

μ(σ(T̃ (k))) =
1
π

μ(σ(T ))

where μ denotes the Lebegue measure. Thus, if σ(T ) is a Lebesgue null set, then T̃ (k)

is normal. Since T̃ (k) is normal, the proof follows from [16]. �

COROLLARY 2. If T ∈ BAIH(k) for some k ∈ N , then the Weyl spectrum σw and
the Browder spectrum σb are continuous at T .

Proof. If T ∈ BAIH(k) , T is subscalar by [21]. Hence T satisfies Weyl’s theorem
from [1]. Since σ is continuous at T by Theorem 1, the proof follows from [10]. �

Recall that an operator T in L (H ) admits a moment sequence if there exists
nonzero vectors x and y in H and a (finite, regular) Borel measure μ suppoerted on
σ(T ) such that

〈Tnx,y〉 =
∫

σ(T)
λ ndμ , n ∈ N∪{0}.

(We use the term measure here in the usual sense of a nonnegative-valued set function.)
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LEMMA 2. Let T ∈L (H ) with invertible |T | . If T̃ admits a moment sequence,
then T also admits a moment sequence.

Proof. Since T̃ admits a moment sequence, there exists nonzero vectors x and y
in H and a (finite, regular) Borel measure μx,y supported on σ(T̃ ) such that

〈(T̃ )nx,y〉 =
∫

σ(T̃ )
λ ndμx,y, n ∈ N∪{0}.

Set s = |T |− 1
2 x and t = |T | 1

2 y . Then s and t are nonzero vectors in H satisfying that

〈Tns,t〉 = 〈Tn|T |− 1
2 x, |T | 1

2 y〉 = 〈|T | 1
2 Tn|T |− 1

2 x,y〉
= 〈(T̃ )nx,y〉 =

∫
σ(T̃ )

λ ndμx,y. (3)

Set dνs,t = dμ
|T | 12 s,|T |− 1

2 t
. Then νs,t is a (finte, regular) Borel measure supported on

σ(T )(= σ(T̃ )) . Then we get that

〈Tns, t〉 =
∫

σ(T̃ )
λ ndμx,y =

∫
σ(T)

λ ndμ
|T | 12 s,|T |− 1

2 t
=

∫
σ(T )

λ ndνs,t ,

i.e., T admits a moment sequence. �

Recall that an operator T ∈ L (H ) is said to be binormal if [|T |, |T ∗|] = 0. An
operator T is said to be centered if the following sequence

· · · ,T 3(T 3)∗,T 2(T 2)∗,TT ∗,T ∗T,(T 2)∗T 2,(T 3)∗T 3, · · ·

is commutative. As some applications of Lemma 2, we get the following theorem.

THEOREM 2. Let T ∈ BAIH(k) for some k ∈ N . Suppose that one of the follow-
ing statements hold: (i) T is invertible, (ii) σ(T ) has nonempty interior, and (iii) T is
centered. Then T admits a moment sequence.

Proof. (i) Since T̃ (k) is hyponormal and invertible, T̃ (k) admits a moment se-
quence by [12]. Since T is invertible for by [16], we have 0 �∈ σ(|T | 1

2 ) . Hence T
admits a moment sequence from Lemma 2.

(ii) Since T̃ (k) is hyponormal and σ(T̃ (k)) has nonempty interior, T̃ (k) has a non-
trivial invariant subspace by [6]. By [16], T has a nontrivial invariant subspace. If M
is a nontrivial invariant subspace of T , take x ∈ M \ {0} and y ∈ M⊥ \ {0} . If we
define μ ≡ 0 on σ(T ) , then 〈Tnx,y〉 = 0 =

∫
σ(T ) λ ndμ . Thus T admits a moment

sequence.
(iii) Since T is centered, T̃ (k) is binormal by [15, Theorem F]. Since T̃ (k) is

binormal and hyponormal, T̃ (k) has a nontrivial invariant subspace by [7] and so does
T by [16]. Hence T admits a moment sequence as in the proof of (ii). �
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COROLLARY 3. Let T ∈BAIH(k) be invertible for some k∈N . If σ(T ) contains
at least one isolated point, then T has a nontivial invariant subspace.

Proof. Since T admits a moment sequence from Theorem 2, the proof follows
from [9]. �

As some applications of [26], we obtain the following theorem.

THEOREM 3. Let T ∈ BAIH(k) for some k ∈ N and let T �= λ I for any λ ∈ C .
If there exists a nonzero vector x ∈H such that (i) σT (x) � σ(T ) or (ii) ‖Tnx‖�Crn

for every n ∈ N , some constants C > 0 , and 0 < r < ‖T̃ (k)‖ , then T has a nontrivial
hyperinvariant subspace.

Proof. (i) If there exists a nonzero vector x ∈ H such that σT (x) � σ(T ) , set

M := HT (σT (x)), i.e., M = {y ∈ H : σT (y) ⊆ σT (x)}.
Since T has Dunford’s property (C) by [21], M is a hyperinvariant subspace of T
from [22]. Since x ∈ M , we get M �= {0} . To show M �= H , suppose that this is
false. Since T has the single-valued extension property, it follows from [22] that

σ(T ) =
⋃
{σT (y) : y ∈ H } ⊆ σT (x) � σ(T ).

But this is a contradiction, and hence M is a nontrivial hyperinvariant subspace of T .
(ii) If σp(T )∪σp(T ∗) �= /0 , then T has a nontrivial hyperinvariant subspace. Oth-

erwise, T is a quasiaffinity. Assume that there is a nonzero vector x ∈ H such
that ‖Tnx‖ � Crn for every n ∈ N , some constant C > 0, and 0 < r < ‖T̃ (k)‖. Set
f (z) := −∑∞

n=0 z−(n+1)Tnx , which is analytic for |z| > r . If ω = z−1 for |z| > r , then

f (ω) = −∑∞
n=0 ωn+1Tnx for 0 < |ω | < 1

r . Since limsupn→∞ ‖Tnx‖ 1
n � r, the radius

of convergence for f (ω) is at least 1
r . Setting f (0) := 0, we have f (ω) is analytic for

|ω | < 1
r . Therefore f (z) is analytic for |z| > r . Since

(T − z) f (z) = −
∞

∑
n=0

z−(n+1)Tn+1x+
∞

∑
n=0

z−nT nx = x

for all z ∈ C with |z| > r , we have ρT (x) ⊇ {z ∈ C : |z| > r} , i.e.,

σT (x) ⊆ {z ∈ C : |z| � r}.

Since σT̃ (k) (∏k−1
j=1 |T̃ ( j)| 1

2 x) ⊂ σT (x) by [19], we get that

σT̃ (k) (
k−1

∏
j=1

|T̃ ( j)| 1
2 x) ⊆ {z ∈ C : |z| � r}.

Since r < ‖T̃ (k)‖ and T̃ (k) is normaloid by [13], it holds that

σT̃ (k) (
k−1

∏
j=0

|T̃ ( j)| 1
2 x) � σ(T̃ (k)).
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Since T is a quasiaffinity, so is |T̃ ( j)| 1
2 for each j = 0,1,2, · · · ,k−1. Then ∏k−1

j=0 |T̃ ( j)| 1
2 x

�= 0. By (i), T̃ (k) has a nontrivial hyperinvariant subspace, which implies that T has a
nontrivial hyperinvariant subspace by [16]. �

COROLLARY 4. Let T ∈ BAIH(k) for some k ∈ N . If T has a nonzero invari-
ant subspace M such that σ(T |M ) � σ(T ) , then T has a nontrivial hyperinvariant
subspace.

Proof. For any nonzero x ∈ M , we have

σT (x) ⊆ σT |M (x) ⊆ σ(T |M ) � σ(T ).

Hence T has a nontrivial hyperinvariant subspace by Theorem 3. �

COROLLARY 5. Let T ∈BAIH(k) for some k∈N . If there exists a nonzero vector
x∈H such that σT̃ (k)(x) � σ(T̃ (k)) , then T has a nontrivial hyperinvariant subspace.

Proof. If σp(T )∪σp(T ∗) �= /0 , T has a nontrivial hyperinvariant subspace. Oth-
erwise, T is a quasiaffinity. Since σT̃ (k) (x) � σ(T̃ (k)) for some x �= 0, T̃ (k) has a
nontrivial hyperinvariant subspace by Theorem 3. By [16], T has a nontrivial hyperin-
variant subspace. �

COROLLARY 6. Under the same hypotheses as in Theorem 3, suppose that R ∈
L (H ) is an operator satisfying the following conditions:

(i) T n = Rn,
(ii) T n−2R = Rn−1 , Rn−2T = Tn−1 , and
(iii) T n−1 +Rn−1 �= 0

for some positive integer n � 2 . Then R has a nontrivial invariant subspace.

Proof. Suppose that R has no nontrivial invariant subspace. Then Lat T ∩Lat R
is trivial. Define S = Tn−1 + Rn−1 for some positive integer n � 2. Then we have
ST = (Tn−1 +Rn−1)T = Tn +Rn−1T and RS = R(Tn−1 +Rn−1) = RTn−1 +Rn. Since
Rn−1T = RRn−2T = RTn−1 , we get that ST = RS . Similarly, SR = TS holds. Hence
S doubly intertwines (T,R) . By [23, Lemma], S is 0 or a quasiaffinity. Since S =
Tn−1 +Rn−1 �= 0, S is a quasiaffinity. Since S is a quasiaffinity and doubly intertwines
(T,R) , T and R are quasisimilar. Since T has nontrivial a hyperinvariant subspace
by Theorem 3, [25, Theorem 6.19], implies that R has a nontrivial hyperinvariant sub-
space, a contradiction. �

For an operator T ∈ L (H ) , we write {T}′ = {S ∈ L (H ) : TS = ST} for the
commutant of T . An operator T ∈ L (H ) is said to have the property (PS) if there
exists a sequence {Sn} ⊂ {T}′ and {Kn} such that ‖Sn −Kn‖ → 0 where {Kn} is a
nontrivial sequence of compact operators in L (H ) , which means that {Kn} converges
to a nonzero operator in the weak operator topology. An operator T ∈ L (H ) has the
property (A) if there exists a nontrivial sequence {Kn} of compact operators in L (H )
such that ‖TKn−KnT‖→ 0.
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THEOREM 4. Let T ∈ BAIH(k) for some k ∈ N and let T �= λ I for any λ ∈C . If
T̃ (k) has the property (PS), then T has a nontrivial hyperinvariant subspace. Moreover,
if T is a quasiaffinity, then it has the property (PS).

Proof. Let T = U |T | be the polar decomposition. If T is not a quasiaffinity, then
σp(T )∪ σp(T ∗) �= /0 . Hence T has a nontrivial hyperinvariant subspace. If T is a
quasiaffinity, then |T | is a quasiaffinity and U is unitary, i.e., T̃ is a quasiaffinity. By
induction, T̃ ( j) is a quasiaffinity for j = 0,1, · · · ,k− 1. If T̃ (k) has the property (PS),
then there exists a sequence {Qn} ⊂ {T̃ (k)}′

and {Hn} such that ‖Qn−Hn‖ → 0 and
{Hn} is a nontrivial sequence of compact operators. Set

Sn := (
k−1

∏
j=0

Uj|T̃ ( j)| 1
2 )Qn(

0

∏
j=k−1

|T̃ ( j)| 1
2 )

and

Kn := (
k−1

∏
j=0

Uj|T̃ ( j)| 1
2 )Hn(

0

∏
j=k−1

|T̃ ( j)| 1
2 )

where T̃ ( j) = Uj|T̃ ( j)| is the polar decomposition of T̃ ( j) for j = 0,1, · · · ,k−1. Then
{Kn} is a nontrivial sequence of compact operators since T̃ ( j) is a quasiaffinity. More-
over, we get that

SnT = (
k−1

∏
j=0

Uj|T̃ ( j)| 1
2 )Qn(

0

∏
j=k−1

|T̃ ( j)| 1
2 )U |T | 1

2 |T | 1
2

= (
k−1

∏
j=0

Uj|T̃ ( j)| 1
2 )QnT̃

(k)(
0

∏
j=k−1

|T̃ ( j)| 1
2 )

= (
k−1

∏
j=0

Uj|T̃ ( j)| 1
2 )T̃ (k)Qn(

0

∏
j=k−1

|T̃ ( j)| 1
2 )

= T (
k−1

∏
j=0

Uj|T̃ ( j)| 1
2 )Qn(

0

∏
j=k−1

|T̃ ( j)| 1
2 ) = TSn

and

‖Sn−Kn‖ = ‖(
k−1

∏
j=0

Uj|T̃ ( j)| 1
2 )Qn(

0

∏
j=k−1

|T̃ ( j)| 1
2 )− (

k−1

∏
j=0

Uj|T̃ ( j)| 1
2 )Hn(

0

∏
j=k−1

|T̃ ( j)| 1
2 )‖

� ‖
k−1

∏
j=0

Uj|T̃ ( j)| 1
2 ‖‖Qn−Hn‖‖

0

∏
j=k−1

|T̃ ( j)| 1
2 ‖

→ 0.

Therefore T has the property (PS). From [18] and [8], T has a nontrivial hyperinvariant
subspace. �
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COROLLARY 7. Let T be a quasiaffinity in BAIH(k) for some k ∈ N . If T̃ (k) has
the property (PS) or (A), then T has the property (A).

Proof. Since every scalar multiple of the identity operator satisfies the property
(A), we may assume that T �= λ I for any λ ∈ C . If T̃ (k) has the property (PS), then
T has the property (PS) from Theorem 4. Hence the proof follows from [18]. If T̃ (k)

has the property (A), then there exist a sequence {En} of compact operators such that
‖T̃ (k)En−EnT̃ (k)‖→ 0 and {En} converges to a nonzero operator in the weak operator

topology. Set Rn := (∏k−1
j=0Uj|T̃ ( j)| 1

2 )En(∏0
j=k−1 |T̃ ( j)| 1

2 ) . Then {Rn} is a seqence of
compact operators which converges to a nonzero operator in the weak operator topology
since T is a quasiaffinity. Furthermore, we obtain that

‖TRn−RnT‖

= ‖(
k−1

∏
j=0

Uj|T̃ ( j)| 1
2 )T̃ (k)En(

0

∏
j=k−1

|T̃ ( j)| 1
2 )− (

k−1

∏
j=0

Uj|T̃ ( j)| 1
2 )EnT̃

(k)(
0

∏
j=k−1

|T̃ ( j)| 1
2 )‖

� ‖
k−1

∏
j=0

Uj|T̃ ( j)| 1
2 ‖‖T̃ (k)En−EnT̃

(k)‖‖
0

∏
j=k−1

|T̃ ( j)| 1
2 ‖

→ 0

which implies that T has the property (A). �
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