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COMPOSITION OPERATOR FROM H* INTO THE ZYGMUND SPACE
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(Communicated by S. Stevic)

Abstract. A new criterion for the boundedness, as well as for the compactness of the generalized
weighted composition operators from H* into the Zygmund space are given in this paper.

1. Introduction

Let D be the open unit disk in the complex plane C and H(D) be the space
of analytic functions on D). Let H* = H*(DD) denote the space of bounded analytic
functions f on D with norm || f||e = sup_cp |f(z)|. An f € H(DD) is said to belong to
the Bloch space & if

17122 = sup|f' ()| (1 = [z]*) < .
zeD

In this paper, we shall consider the Zygmund space % consisting of the functions
f € HD)NC(D) such that

S OH) + f () 21 ()]
h

[1£]l = sup <o,

where the supremum is taken over all 8 € R and 7 > 0. As a consequence of Theorem
5.3 of [3] and the Closed Graph Theorem, a function f € H(D) belongs to Z if and
only if sup,cp (1 — |z|?)|f”(z)| < eo. Furthermore, the quantity

11l = 1£(0)+ 1 (0)| +Sg£(l ~ )" @),

yields a Banach space structure on 2. For some results on the Zygmund space and
operators on them, see, for example [10, 11, 14, 15].

The differentiation operator D is defined by Df = f’, f € H(D). For a nonnega-
tive integer n, we define

(D°N)(@) = f2), (D"f)(2)=f"(2), n>1, f € HD).
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Let ¢ be an analytic self-map of D, u € H(D) and let n be a nonnegative integer.
Define the linear operator D’} ,, called the generalized weighted composition operator,
by

Q.u>

(D uf)(2) =u(z)-(D"f)(@(2), feHD), zeD.

When n =0 and u(z) = 1, D, is the composition operator Cy,, which is defined by
Cof=fop for fe HD ) If n=0, then Dy, , is the weighted composition operator
uCy, which is defined as follows

uCof =u(fo@), feHD).

If n=1, u(z) = ¢'(z), then Dy _DC(p When u(z) =1, Dy, = CoD". DCy and
CyD" were studied, for example in [4, 7, 12, 13, 15, 20, 19, 24 27]. For the study
of the generalized weighted composition operator on various function spaces, see, for
example, [0, 22, 23,30, 31, 32, 35, 36, 37]. A basic problem concerning concrete oper-
ators on various Banach function spaces is to relate their operator theoretic properties
to the function theoretic properties of the involving symbols, which has attracted a lot
of attention recently, see, for example, [1, 4, 5,6, 7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37].

It is well known that the composition operator is bounded on the Bloch space by
the Schwarz-Pick lemma. Composition operators and weighted composition operators
on Bloch-type spaces were studied, for example, in [16, 17, 26, 28, 33]. In [28], Wulan,
Zheng and Zhu obtained a characterization for the compactness of the composition
operators acting on the Bloch space as follows:

THEOREM A. Let ¢ be an analytic self-map of D. Then Cy : 8 — 9 is compact
if and only if '
fim, ¢’z = 0.

Stevi¢ has studied generalized weighted composition operators D, , : H* — z
in [23] (see also [32]), and, among others, obtained the following result.

THEOREM B. Ler u € H(DD), ¢ be an analytic self-map of D and n be a nonneg-
ative integer. Then the following statements holds.
(a) Dy, : H” — Z is bounded if and only if

(1= |zP)]u"(2)] (1= [zP)lu@)lle’ ()
?

SUp ——— 5~ < oo, sup
b (1=1o@)P)" ep  (1=lo(z))?) 2

< o0

and
(1— )2 (2) 9/ (2) + u(2) 9" (2)|
e (I—loG) Py

(b) Suppose that Dy, ,: H™ — 2 is bounded, then Dy, ,,: H” — 2 is compact if
and only if

< oo

. (1—\z|2)lu”(z)|:0 . (1= zP)u@)le' @)
lp@|—1 (1 —|p(z)[>)" T le@l=r (T=[e(z)]?) T2
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and

i (LR ()¢ (2) + u(z)9" (2)
p(z)|—1 (I—|op(z)?)m !

In [6], Li and Fu obtained a new characterization for the boundedness, as well as
the compactness for D , : # — % . Among others, they proved the following result.

=0.

THEOREM C. Let u€ H(D), ¢ be an analytic self-map of D and n be a positive
integer. Then the following statements hold.
(a) Dy, # — Z is bounded if and only if u € Z,
2 TaNY)
sup(1 —[2[)[u(2)]|@" ()" < o=,
z€eD

Slelﬂg(l — 2|2 (2)9' (z) + u(2) 9" (2)] < o=,

and

max{sup || Dy ko)1l 25 sup [|Dg ko) 2l 2, sup (| D ko) 31l 2} < o,
webD weD web

where

1—lal? J
ka7j(Z):< i ) , j=1,2.3.

1—az

(b)If Dy, : # — Z is bounded, then Dy, : B — 2 is compact if and only if

‘(p(lwi'?‘fl—d HDn(puk(p(w)/H%) = Oa .] = 17273'
Motivated by these observations, in this work we show that D'J,’M HY - &

is bounded (respectively, compact) if and only if the sequence (HD'Q',’MI/ l#)

bounded (respectively, convergent to 0 as j — o), where 1/(z) = z/.
Throughout the paper, C denotes a positive constant which may differ from one

occurrence to the other. The notation A < B means that there exists a positive constant
C such that B/C <A < CB.

is

j=n

2. Main results and proofs

In this section we formulate our main results and give their proofs. For this pur-
pose, we need the next criterion following from standard arguments similar to those
outlined in Proposition 3.11 of [2].

LEMMA 1. Let u € H(D), ¢ be an analytic self-map of D and n be a nonnega-
tive integer. The operator Dy, : H™ — Z is compact if and only if Dy, :H” — z
is bounded and for any bounded sequence (fi)ren in H® which converges to zero
uniformly on compact subsets of D, we have ||D§ ,fill # — 0 as k — oo,
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Next, we state and prove our main results in this paper.

THEOREM 1. Let u € H(D), ¢ be an analytic self-map of D and n be a nonneg-
ative integer. Then Dy, , : H” — Z is bounded if and only if
sup ||D’gf)7ul~f y < oo, where I'(z) =7/. (1)

jzn

Proof. When n = 0, this is just the corresponding result in [1]. Next we only
consider the case n > 1.

Suppose that Dj , : H” — 2 is bounded. For any j € N, the function U is
bounded in H* and [[I/||.. = 1. Then, notice that for j < n, (D}, 17)'(z) =0, the
result follows by the boundedness of the operator Dy, , from H* to z.

Conversely, assume that (1) holds and let Q := sup;., [|D§, I/
operator D’ém to I/ with j =n,n+1,n+2, we obtain

2. Applying the

(D, I")" () = u" (z)n!,
(D ") (2) = (n+ 1)![u"(2)p(2) + 21 () 9" () + u(2) 9" ()]
and

@ W (2)9*(2) + 44/ (2) 9 (2) @' (2)

+2u(2) 9" (2) + 2u(z) 9(2) 9" ()],

(Dl ") (2) =

while for j <n, (D I’ (z) = 0. Thus, using the boundedness of the function ¢, we
have

1 0
2 " noogn
sup(1 — P ()] < g Il 2 < o <= @

sup(1 — [2I?)[2u (2) ¢’ (2) +u(2) 9" (2)]

zeD
1 (n+2)0
< - Dn In+l p 1_ 2 " < e 3
Pt +sup(1 <) (0] < 22 < ®
and
1 1
sup(1 — |z uz)]|¢’ (2)|* < ——== D% J" 2|2 + = sup(1 — |z*) | (z
sup(1 = P )ul2)10' ) < gy bt 2+ g sup(1 = P (0
+SU£(1 —|21*)24/ (2) @' (z) + u(2) 9" (2)|
zE
0 0 (20 “

(n+2)! 2n! " (n41)!
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For a € D, set

b i (LY i ()

From the definition of f,, g, and h,, it is easy to see that f,, g, and h, have bounded
norms in H*. Since

f@)=(-1aP) 3@, gl =(1— P Y jar o]

0 j=1

Mx

J

and

ha(2) = é(l ~laP) Y, - D@,

J=2

using linearity we get

1D ufall z < (1—\al)2\al'f\\D Az <20,

Jj=0
1D .8all 2 < (1= laf® 221]|a|’ DG 2 <40
J
and
1Dy el < 51 ~1al?) zj a2 1D 1772 < 40.
Therefore, by the arbitrariness of a € D, we get
maX{i‘;gHD wll 25 SHPHDwgq; 1EZ SUP||D howllz} <o (5)

From (2), (3), (4), (5) and Theorem C, we see that D'J,’M 1 B — % is bounded and hence
D, H” — % is bounded, as desired. [

THEOREM 2. Let u € H(D), @ be an analytic self-map of D and n be a non-
negative integer. Suppose that Dy , : H” — % is bounded, then Dy, H” — Zis
compact if and only if

lim ||D || 2 =0, where I'(z) =2/. (6)

Proof. When n = 0, this is just the corresponding result in [1]. Next we only
consider the case n > 1.

Assume that Dy, , : H” — 2 is compact. Since the sequence {l’} is bounded
in H” and converges to 0 uniformly on compact subsets, by Lemma 1 it follows that
1D 1]
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Conversely, suppose that (6) holds. Fix € > 0 and choose N € N such that
1D 17| > < €/4 for all j>N. Let z € D be such that [@(z)] — 1 as k — o,
Arguing as in Theorem 1, we have

1D foollz < (L=10()?) X [0V 1Dy ]| 2

~.
Nt

=
L

= (1=lo@)P) X o)l 1Dy 1|
Jj=0

=

+(1— o) Z @)V 1D ||

Jj=
(1—|<P(Zk)| )+

7 < (1—=]o(z)| 2 1o (z) D%,

1D

o.u80(z)
N -
= (I —|o(z)| 2J|§0 @)Dy L 2

+(1—o(@)P) 2 Jlo@)V D | =
Jj=N+1

NVEDC (1 gy +e.

;(l—kp ()| 3221 J= Do) 2D 2| 2
v

1 ~
= 2(1—\#) %) 2] (=Dl 1D 22| >

N

1D uhoz | 2

//\

1 A
+§(1—\<P(Zk Z JG =Dl (1D,
Jj=N+2

< MV DIVEDO ) () +e.

Since |@(zx)| — 1 as k — oo, by the arbitrariness of €, we get

Hm [[Dp u fp(eyll 2 =0, lim || D )l =0, lim [|Dg g (g | 2 =0,

?, ug(P (zx)
i.e., we obtain

W(laiﬁl 1DG ufo(a)llz = 0 (llm 1D% 480l 2 = 0 (hm D% uhg@ll 2 =0.(7)

From (7) and Theorem C, we see that Dy, , : # — 2 is compact and therefore Dy, , :
H* — % is compact. The proof is complete. [

From main results in [6, 23, 32] and Theorems 1 and 2 in this paper, we can
immediately get the following two corollaries.
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COROLLARY 1. Let u € H(D), ¢ be an analytic self-map of D and n be a posi-
tive integer. Then the following statements are equivalent.

(a) D, - H” — % is bounded;

(b) Dy, : B — % is bounded;

(c) 31;[; 1Dy 1| 2 < oo, where I(z) =2z’

COROLLARY 2. Let u € H(D), ¢ be an analytic self-map of D and n be a posi-
tive integer. Suppose that Dy, : H=(or#B) — % is bounded, then the following state-
ments are equivalent.

(a) Dy, : H™ — % is compact;

(b) Dy, : B — Z is compact;

(¢) limj oo || DYy 17 || 2 = 0, where I'(z) =2/
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