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Abstract. In this paper, we are concerned with the Hardy type integral equation

u(x) =
∫

Rn

up(y)dy
|y|l |x− y|n−α , u > 0 in Rn,

where n � 1 , α ∈ (0,n) , p > 1 and l � α . Such an equation is related to the extremal functions
of the Hardy-Sobolev inequality. If l > α , then there is not any bounded positive solution for
such an integral equation. If l = α , the fast and the slow decay rates are discussed according to
whether the nonnegative solutions possess some integrability.

1. Introduction

Recently, the following integral equation

u(x) =
∫

Rn

up(y)dy
|x− y|n−α |y|l , u > 0 in Rn (1.1)

was studied by many authors. Here n � 1, p > 1, 0 < α < n and l ∈ R . When l < 0,
(1.1) is related to the Hénon model in the study of spherically symmetric clusters of
stars (cf. [1], [2] and the references therein). When l = 0, (1.1) is associated with the
extremal functions of the Hardy-Littlewood-Sobolev inequality (cf. [3], [5], [8] and
[10]). When l ∈ (0,α) , it is related to the extremal functions of the Hardy-Sobolev
inequality. For example, the Hardy-Sobolev inequality with α = 2 states that

Λ(
∫

Rn
|u|q+1|x|adx)

1
q+1 � (

∫
Rn
|∇u|2dx)1/2, ∀u ∈ D1,2(Rn), (1.2)

where 0 �−a < 2 < q+1 = 2(n+a)
n−2 , and D1,2(Rn) is the homogeneous Sobolev space.

Applying the symmetrization and the theories of ODE, one can obtain the sharp con-
stant Λ (cf. [12]). To find the corresponding extremal function, we consider the mini-
mization problem

Λ = inf{‖∇u‖2
2;u ∈ D1,2(Rn),

∫
RN

|u|q+1|x|adx = 1}.
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To describe the shape of the extremal functions, Lu and Zhu [11] considered the
Euler-Lagrange equation (1.1) and obtained that the positive solutions are radially sym-
metric and decreasing about the origin. Afterwards, [7] shows that (1.1) does not pos-
sess any positive solution as long as p � n−l

n−α . When p > n−l
n−α , u(x) converges to zero

either fast with u(x) � |x|α−n or slowly with u(x) � |x|− α−l
p−1 . Here f (x) � g(x) means

that there exists C > 0 such that C−1g(x) � f (x) � Cg(x) when |x| → ∞ .
In this paper, we are concerned with the case of l � α . When α = 2, according

to the properties of the Newton potential, (1.1) becomes the PDE

−Δu(x) = |x|−lup(x), u > 0 in Rn \ {0}. (1.3)

Such an equation is associated with the study of the conformal scalar curvature problem
(cf. [9]). It is showed that (1.3) has no bounded decaying positive solution in the case
l > 2. When l = 2, each radial solution of (1.3) decays either with the fast rate |x|2−n ,

or with the slow rate (log |x|) 1
1−p when |x| → ∞ . We expect to extend those results to

the more general case α ∈ (0,n) .

THEOREM 1.1. Let n � 1 , α ∈ (0,n) , p > n
n−α and l � α .

(I) In the case of l > α , (1.1) has no locally bounded positive solution on Rn .
(II) In the case of l = α , assume u is a locally bounded positive solution of (1.1)

on Rn \ {0} .

– (i) If u ∈ L
n(p−1)
α−β (Rn) for some β ∈ [0,α) , then u(x) � |x|α−n when |x| → ∞ .

– (ii) If u(x) � (log |x|)θ , then θ = − 1
p−1 .

When α is an even integer 2m(m � 1) , by the properties of the Riesz potentials,
(1.1) becomes

(−Δ)mu = |x|−lup, u > 0 in Rn \ {0}.

Thus, Theorem 1.1 is still true for this 2m-order PDE.
Finally, we present a version of the weighted Hardy-Littlewood-Sobolev (WHLS)

inequality which we will use in this paper.

LEMMA 1. Let p,q > 1 , α ∈ (0,n) , 0 � β1 + β2 � α , and f ∈ Lp(Rn) . Define

Iα f (x) :=
1

|x|β1

∫
Rn

f (y)dy

|y|β2 |x− y|n−α ,

then Iα f ∈ Lq(Rn) , where 1
q = 1

p − α−β1−β2
n and 1

q − n−α
n < β1

n < 1
q . Moreover, there

holds

‖Iα f‖Lq(Rn) � C‖ f‖Lp(Rn).
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2. Proof of Theorem 1.1

Proof of (I). Assume u is a locally bounded positive solution of (1.1) with l > α .
When |x| < 1 and y ∈ B|x|/2(x) , we have |y| � 3|x|/2 and u(y) � c > 0. Therefore,

u(x) �
∫

B|x|/2(x)

up(y)dy
|y|l|x− y|n−α � c

|x|l
∫

B|x|/2(x)

dy
|x− y|n−α � c

|x|l−α .

Let |x| → 0, we see that u → ∞ . It contradicts with the boundedness. Thus, (I) is
proved.

Proof of (II)–(i). Hereafter, we consider the decay rates in the case l = α . Now,
(1.1) becomes

u(x) =
∫

Rn

up(y)dy
|y|α |x− y|n−α , u > 0 in Rn . (2.1)

We assume that u is a locally bounded solution of (2.1) on Rn \ {0} .

Result (II)–(i) is the corollary of the following theorem.

THEOREM 2.1. For the above solution u, the following three statements are equiv-
alent:

(R1) u ∈ L
n(p−1)

α−β (Rn) for some β ∈ [0,α);
(R2) u ∈ Ls(Rn) for any s > n

n−α ;

(R3) u is bounded, and lim|x|→∞ |x|n−αu(x) = B, where B :=
∫
Rn

up(y)dy
|y|α is a pos-

itive constant.

Proof.

(R1)⇒(R2).
For A > 0, define {

uA(x) = u(x), if |x| > A,
uA(x) = 0, if |x| � A.

Let s > n
n−α . For f ∈ Ls(Rn) , define

T f (x) =
∫

Rn

up−1
A (y) f (y)dy

|x− y|n−α |y|α , F(x) =
∫

Rn

(u−uA)p(y)dy
|x− y|n−α |y|α .

Clearly, u solves the operator equation

f = T f +F.

Noting the definition of uA , and applying the WHLS inequality introduced in Lemma
1, we get

‖T f‖s � C‖|y|β−αup−1
A f‖ ns

n+(α−β)s
� CAβ−α‖uA‖p−1

n(p−1)
α−β

‖ f‖s.
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Here we also used the Hölder inequality ‖us f t‖r � ‖u‖s
p‖ f‖t

q with 1
r = s

p + t
q . By

u ∈ L
n(p−1)

α−β (Rn) , if we take A suitably large, then CAβ−α‖uA‖p−1
n(p−1)
α−β

< 1. Thus, T is a

contraction map from Ls(Rn) to itself as long as s > n
n−α . Moreover, p > n

n−α implies
α−β

n(p−1) ∈ (0, n−α
n ) . Thus, T is also a contraction map from Ln(p−1)/(α−β )(Rn) to itself.

Next, the WHLS inequality leads to

‖F‖s � C‖u−uA‖p
sp.

By the definition of uA , we have F ∈ Ls(Rn) as long as s > n
n−α .

Using the lifting lemma (Lemma 2.1 in [6]) on the regularity, we can obtain u ∈
Ls(Rn) as long as s > n

n−α .

REMARK. If s � n
n−α , we claim u �∈ Ls(Rn) . In fact, when |x| > 2,

u(x) �
∫

B1(0)

up(y)dy
|y|α |x− y|n−α � c

|x|n−α .

Thus, ∫
Rn

us(x)dx � c
∫ ∞

2
rn−s(n−α) dr

r
= ∞.

(R2)⇒(R3).
Step 1. Clearly, p > n

n−α implies n(p−1)
α > n

n−α . According to Theorem 2 and
Remark 2 in [4], (R2) shows that the positive solutions of (2.1) are radial symmetric
and decreasing about the origin.

Step 2. We claim that u is bounded. Since u is monotone decreasing, for any
x �= 0,

u(x) �
∫

B|x|/2(x)∩B|x|(0)

up(y)dy
|y|α |x− y|n−α

� cup(x)
|x|α

∫
B|x|/2(x)∩T

dy
|x− y|n−α

� cup(x),

where T is a cone with the corner angle π/2. This implies u(x) � C for x �= 0, where
C > 0 is independent of x . Therefore, lim|x|→0u(x) � C . Thus, we know that u is
bounded.

Step 3. We claim that the improper integral B :=
∫
Rn |y|−αup(y)dy < ∞ .

For R > 0, set

B1 :=
∫

BR(0)

up(y)dy
|y|α , B2 :=

∫
Rn\BR(0)

up(y)dy
|y|α .

By virtue of u ∈ L∞(Rn) , B1 < ∞ . Applying the Hölder inequality and taking 1
t =

n−α−ε
n p with ε > 0 sufficiently small, by (R2) we get

B2 � C‖u‖p
t p(

∫ ∞

R
rn− tα

t−1
dr
r

)1−1/t < ∞.
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Thus, B < ∞ .
Step 4. For fixed R > 0, write

L1 :=
∫

BR

up(y)
|y|α (

|x|n−α

|x− y|n−α −1)dy.

When y ∈ BR and |x| → ∞ ,

up(y)
|y|α | |x|n−α

|x− y|n−α −1|� 2
up(y)
|y|α .

By virtue of Step 3, up(y)
|y|α ∈ L1(Rn) . Using Lebesgue’s dominated convergence theorem,

we obtain |L1| → 0 as |x| → ∞. This result leads to

lim
R→∞

lim
|x|→∞

∫
BR

up(y)
|y|α

|x|n−α

|x− y|n−α dy = B.

Next, write

L2 :=
∫

(Rn\BR)\B(x,|x|/2)

up(y)
|y|α

|x|n−α

|x− y|n−α dy.

Clearly, |x− y|� |x|/2 when y ∈ (Rn \BR)\B(x, |x|/2) . Therefore, when R → ∞ ,

L2 � C
∫

Rn\BR

up(y)
|y|α dy → 0.

Finally, write

L3 :=
∫

B(x,|x|/2)

up(y)
|y|α

|x|n−α

|x− y|n−α dy.

In view of Step 1, u is radially symmetric and decreasing about the origin. Therefore,

L3 � C|x|n−2αup(x/2)
∫

B(x,|x|/2)

dy
|x− y|n−α � C|x|n−αup(x/2). (2.2)

On the other hand, (R2) shows that u ∈ Ls(Rn) with 1
s = n−α−ε

n . Here ε > 0 is suffi-
ciently small. Noting the decreasing property of u , we obtain

us(x/2)|x|n � C
∫

B(0,
|x|
2 )\B(0,

|x|
4 )

us(y)dy � C.

This implies
up(x/2)|x|p(n−α−ε) � C.

Inserting this into (2.2), we get

L3 � C|x|n−α−p(n−α−ε) → 0, as |x| → ∞.

Combining all the estimates of L1,L2 and L3 yields lim
|x|→∞

|x|n−αu(x) = B .
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(R3)⇒(R1). By virtue of p > n
n−α , it follows n <

n(p−1)
α−β (n−α) . Therefore,

∫
Rn

u
n(p−1)
α−β (x)dx =

∫
BR(0)

u
n(p−1)
α−β (x)dx+

∫
Rn\BR(0)

u
n(p−1)
α−β (x)dx

� C+C
∫ ∞

R
r
n− n(p−1)

α−β (n−α) dr
r

< ∞.

Thus, the proof of Theorem 2.1 is complete, and hence (II)–(i) is proved. �

To prove (II)–(ii), we first give two results.

THEOREM 2.2. Let u be a locally bounded solution of (2.1). If there exists c > 0
such that

u(x) � c(log |x|) 1
1−p+ε (2.3)

with ε � 0 for large |x| , then ε = 0 .

Proof. When |y| > 2|x| , we see |x− y|� |x|+ |y|� 3|y|/2. Therefore,

u(x) �
∫

Rn\B2|x|(0)

up(y)dy
|y|α |x− y|n−α

� c
∫

Rn\B2|x|(0)

dy

|y|n(log |y|) p
p−1−pε

= c
∫ ∞

2|x|
1

(logr)
p

p−1−pε
dr
r

= c
∫ ∞

2|x|
d logr

(logr)
p

p−1−pε

=
c

(log |x|) 1
p−1−pε

.

Replacing (2.3) by this new estimate and repeating the process above, we get

u(x) � c(log |x|) 1
1−p+p2ε .

By induction, for any j = 1,2, · · · , we have

u(x) � c(log |x|) 1
1−p +p jε .

Suppose ε > 0. Letting j → ∞ , we see that u(x) blows up. It contradicts the local
boundedness and hence ε = 0. �

THEOREM 2.3. Assume u ∈ L∞
loc(R

n) \ L
n(p−1)

α−β (Rn) for all β ∈ [0,α) solves of

(2.1) with p > n−β
n−α . If there exists C > 0 such that

u(x) � C(log |x|) 1
1−p−ε (2.4)

with ε � 0 for large |x| , then ε = 0 .
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Proof. For large |x| , first we have

∫
B1(0)

up(y)dy
|y|α |x− y|n−α � C‖u‖p

∞
|x|n−α

∫ 1

0
rn−α dr

r
� C

|x|n−α .

Second, there holds |x|/2 � |y| � 3|x|/2 as y ∈ B|x|/2(x) . Thus,

∫
B|x|/2(x)

up(y)dy
|y|α |x− y|n−α

� C|x|−α(log |x|) p
1−p−pε

∫
B|x|/2(x)

dy
|x− y|n−α

� C

(log |x|) p
p−1 +pε

.

Third, since F (r) = rn−α(logr)
p

1−p−pε is an increasing function as long as r is suitably
large, we have ∫

(B2|x|(0)\B1(0))\B|x|/2(x)

up(y)dy
|y|α |x− y|n−α

� C
|x|n−α

∫
B2|x|(0)\B1(0)

up(y)dy
|y|α

� C
|x|n−α

∫ 2|x|

1

rn−α

(logr)
p

p−1+pε
dr
r

� C

(log |x|) p
p−1+pε

∫ 2|x|

1

dr
r

� C

(log |x|) 1
p−1+pε

.

Finally, |y|� 2|x| implies |x− y|� |y|− |x|� |y|/2. Thus, similar to the calculation in
the proof of Theorem 2.2,

∫
Rn\B2|x|(0)

up(y)dy
|y|α |x− y|n−α �

∫
Rn\B2|x|(0)

Cdy

|y|n(log |y|) p
p−1+pε

=
C

(log |x|) 1
p−1+pε

.

Combining the four results above together yields

u(x) � C
|x|n−α +

C

(log |x|) 1
p−1+pε

.

This implies u(x)�C(log |x|) 1
1−p−pε for large |x| . Replacing (2.4) by this new estimate

and repeating the process above, we get for any j = 1,2, · · · ,

u(x) � C
|x|n−α +

C

(log |x|) 1
p−1 +p jε

.
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Suppose ε > 0. Letting j → ∞ , we see u(x) � C
|x|n−α . According to Theorem 2.1,

it follows that u ∈ L
n(p−1)
α−β (Rn) for some β ∈ [0,α) . It contradicts the condition of

Theorem 2.3. Thus, ε = 0. �
Proof of (II)–(ii). Since u(x) � (log |x|)θ when |x| → ∞ , it is easy to verify u �∈

L
n(p−1)
α−β (Rn) for all β ∈ [0,α) . Combining Theorem 2.2 with Theorem 2.3, we can

complete the proof of (II)–(ii). �
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