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STEFFENSEN’S INEQUALITY FOR POSITIVE MEASURES

JULIJE JAKŠETIĆ AND JOSIP PEČARIĆ

(Communicated by S. Varošanec)

Abstract. We generalize Steffensen’s inequality for positive measures. We obtain conditions for
these inequalities which are invariant in form to Steffensen’s inequality for absolutely continuous
measures. Further, we produce linear functionals which generate exponential convexity and
Cauchy means.

1. Introduction and preliminary results

In 1918 Steffensen proved the following inequality, [11]:

THEOREM 1. Suppose that f is non-increasing and g is integrable on [a,b] with
0 � g � 1 and

λ =
∫ b

a
g(t)dt. (1)

Then we have ∫ b

b−λ
f (t)dt �

∫ b

a
f (t)g(t)dt �

∫ a+λ

a
f (t)dt. (2)

Using (2) we can define two linear functionals

L1( f ) =
∫ b

b−λ
f (t)dt −

∫ b

a
f (t)g(t)dt (3)

and

L2( f ) =
∫ b

a
f (t)g(t)dt −

∫ a+λ

a
f (t)dt (4)

that act on class of integrable functions. Steffensen’s inequality tells us that L1( f ) � 0
and L2( f ) � 0 if f is non-decreasing function. In [6] it is showed how to produce
Cauchy means using functionals L1 and L2 and, even more, how to construct nontrivial
examples of exponentially convex functions.
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Our aim is to generalize Steffensen’s inequality in measure theory settings, ap-
proach that is in already considered in papers [3], [4], [5] and book [9]. However, we
will show that our approach to conditions under which these inequalities stand would
give us certain invariance in form to basic Steffensen’s inequality. Further, we define,
similar to (3) and (4), linear functionals that produce exponential convexity and Cauchy
means.

We now list definitions and properties of classes of functions that we will use in
this paper.

DEFINITION 1. Let I ⊆ R be an interval. A function f : I → (0,∞) is log-convex
in the Jensen sense if for all x,y ∈ I :

f 2
(

x+ y
2

)
� f (x) f (y).

The following lemma, using quadratic form, gives a necessary and sufficient con-
dition for the log-convexity of a function in the Jensen sense.

LEMMA 1. Let I ⊆ R be an interval. A function f : I → (0,∞) is log-convex in
the Jensen sense on I if for all ξ1, ξ2 ∈ R and all x,y ∈ I :

ξ 2
1 f (x)+2ξ1ξ2 f

(
x+ y

2

)
+ ξ 2

2 f (y) � 0.

DEFINITION 2. Let I ⊆ R be an open interval. A function f : I → (0,∞) is log-
convex on I if log f is convex on I, or equivalently for x,y ∈ I and α ∈ [0,1]

f (αx+(1−α)y) � f (x)α f (y)1−α .

The following subclass of convex functions is introduced by famous Bernstein in
[2].

DEFINITION 3. A function f : I → R is exponentially convex on I if it is contin-
uous on I and

n

∑
i, j=1

ξiξ j f

(
xi + x j

2

)
� 0

for all n ∈ N and all choices ξi,xi ∈ R.

One of the most important properties of exponentially convex functions is their
integral representation.

THEOREM 2. The function ψ : I → R is exponentially convex on I if and only if

ψ(x) =
∞∫

−∞

etxdσ(t), x ∈ I

for some non-decreasing function σ : R → R.
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Proof. See [1, p. 211]. �
It is obvious that exponentially convex functions form convex cone. The product

of finitely many exponentially convex functions on I is again exponentially convex
function. Many other interesting properties and examples on exponential convexity can
be found in [6].

The following families of functions will be useful in constructing exponentially
convex functions.

LEMMA 2. For p ∈ R let φp : (0,∞) → R be defined with

φp(x) =

{
xp

p , p �= 0;

logx, p = 0.

Then x �→ φp(x) is increasing on R for each p ∈ R and p �→ φp(x) is exponentially
convex on (0,∞), for each x ∈ (0,∞).

Proof. First part: follows from d
dx (φp(x)) = xp−1 > 0 on (0,∞), for each p ∈ R.

Second part: p �→ xp

p = ep logx · 1
p . Since p �→ ep logx and p �→ 1

p are exponentially
convex functions(see [6]), according to the above comment, conclusion follows. �

LEMMA 3. For p ∈ R let ϕp : R → [0,∞) be defined with

ϕp(x) =

{
epx

p , p �= 0;

x, p = 0.

Then x �→ ϕp(x) is increasing on R for each p ∈ R, and p �→ ϕp(x) is exponentially
convex on (0,∞), for each x ∈ R.

Proof. First part: follows from d
dx (ϕp(x)) = epx > 0 on R, for each p ∈ R.

Second part: follows from the fact epx

p = epx · 1
p . �

The following proposition is obvious.

PROPOSITION 1. Let I ⊆R be an open interval. If f : I → (0,∞) is exponentially
convex on I then it is log-convex function on I.

The converse of the Proposition 1 is not true, in general (see example in [6]).
Using characterization of convexity by monotonicity of 1st order divided differ-

ences it follows (see [8, p. 4]):

THEOREM 3. Let I ⊆ R be an open interval. Let f : I → (0,∞) be log-convex,
differentiable function on I and M : I× I → (0,∞) be defined with

M(x,y) =

⎧⎪⎨⎪⎩
(

f (x)
f (y)

) 1
x−y

, x �= y;

exp
(

f ′(x)
f (x)

)
, x = y.
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If x1,x2,y1,y2 ∈ I such that x1 � x2, y1 � y2 then

M(x1,y1) � M(x2,y2).

2. Main results

Denote by B([a,b]) Borel σ -algebra generated on [a,b].

THEOREM 4. Let μ be a positive, finite, measure on B([a,b]) and let f and g
be measurable functions such that f is non-increasing and 0 � g � 1. If there exists
λ ∈ R+ such that

μ((b−λ ,b]) =
∫

[a,b]

g(t)dμ(t), (5)

then ∫
(b−λ ,b]

f (t)dμ(t) �
∫

[a,b]

f (t)g(t)dμ(t). (6)

Proof. ∫
[a,b]

f (t)g(t)dμ(t)−
∫
(b−λ ,b]

f (t)dμ(t)

=
∫

[a,b−λ ]
f (t)g(t)dμ(t)−

∫
(b−λ ,b]

f (t)(1−g(t))dμ(t)

�
∫

[a,b−λ ]
f (t)g(t)dμ(t)− f (b−λ )

∫
(b−λ ,b]

(1−g(t))dμ(t) (7)

=
∫

[a,b−λ ]
f (t)g(t)dμ(t)− f (b−λ )

∫
[a,b−λ ]

g(t)dμ(t) (8)

=
∫

[a,b−λ ]
( f (t)− f (b−λ ))g(t)dμ(t) � 0. �

THEOREM 5. Let μ be a positive, finite, measure on B([a,b]) and let f and
g be measurable functions such that f is non-increasing, non-negative function, and
0 � g � 1. If there exists λ ∈ R+ that satisfies

μ((b,b−λ ]) �
∫

[a,b]

g(t)dμ(t), (9)

then (6) holds.

Proof. We re-adjust proof of Theorem 4: condition (9) together with f (b−λ ) > 0
ensures us transition from line (7) to (8). �
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THEOREM 6. Let μ be a positive, finite, measure on B([a,b]) and let f and g
be measurable functions such that f is non-increasing and 0 � g � 1. If there exists
λ ∈ R+ such that

μ([a,a+ λ ]) =
∫

[a,b]

g(t)dμ(t), (10)

then ∫
[a,a+λ ]

f (t)dμ(t) �
∫

[a,b]

f (t)g(t)dμ(t). (11)

Proof. ∫
[a,a+λ ]

f (t)dμ(t)−
∫

[a,b]
f (t)g(t)dμ(t)

=
∫

[a,a+λ ]
f (t)(1−g(t))dμ(t)−

∫
(a+λ ,b]

f (t)g(t)dμ(t)

� f (a+ λ )
∫

[a,a+λ ]
(1−g(t))dμ(t)−

∫
(a+λ ,b]

f (t)g(t)dμ(t)

= f (a+ λ )
∫

(a+λ ,b]
g(t)dμ(t)−

∫
(a+λ ,b]

f (t)g(t)dμ(t)

=
∫

(a+λ ,b]
( f (a+ λ )− f (t))g(t)dμ(t) � 0. �

THEOREM 7. Let μ be a positive, finite, measure on B([a,b]) and let f and
g be measurable functions such that f is non-increasing, non-negative function, and
0 � g � 1. If there exists λ ∈ R+ such that

μ([a,a+ λ ]) �
∫

[a,b]

g(t)dμ(t), (12)

then (11) holds.

Proof. Similar to proof of Theorem 5. �

REMARK 1. Some comments on Theorems 4-7 are needed.
(i) If we consider the Lebesgue measure in conditions (5) and (10), we get standard

constant λ in Steffensen’s inequality given in (1).
(ii) If μ � ν and h = dμ

dν then condition (9) becomes∫
(b−λ ,b]

h(t)dν(t) �
∫

[a,b]

h(t)g(t)dν(t),

while condition (12) becomes∫
[a,a+λ ]

h(t)dν(t) �
∫

[a,b]

h(t)g(t)dν(t).
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Clearly, both conditions have the same form as Steffensen’s inequality altough mono-
tonicity request on the function h is dropped.

3. Applications

Similar to (3) and (4) we can produce two linear functionals from Theorems 4 and
6:

L1( f ) =
∫

(b−λ ,b]

f (t)dμ(t)−
∫

[a,b]

f (t)g(t)dμ(t) (13)

and
L2( f ) =

∫
[a,b]

f (t)g(t)dμ(t)−
∫

[a,a+λ ]

f (t)dμ(t). (14)

THEOREM 8. Let f �→Li( f ), i = 1,2, be linear functionals defined with (13) and
(14) and let Fi : (0,∞) → R, i = 1,2, be defined with

Fi(p) = Li(φp)

where φp is defined in Lemma 2. Then the following statements hold for every i = 1,2.

(i) The function Fi is continuous on R.

(ii) If n ∈ N and p1, . . . , pn ∈ R are arbitrary, then the matrix[
Fi

(
p j + pk

2

)]n

j,k=1

is positive semidefinite. Particularly,

det

[
Fi

(
p j + pk

2

)]n

j,k=1
� 0.

(iii) The function Fi is exponentially convex on R.

(iv) The function Fi is log-convex on R.

(v) If p,q,r ∈ R are such that p < q < r, then

Fi(q)r−p � Fi(p)r−qFi(r)q−p. (15)

Proof. (i) Continuity of the function p �→ Fi(p) is obvious for p ∈ R \ {0}. For
p = 0 it is directly checked using Heine characterization.

(ii) Let n ∈ N, pi ∈ R (i = 1, . . . ,n) be arbitrary and define auxiliary function
ψ : (0,∞) → R by

ψ(x) =
n

∑
j,k=1

ξ jξkφ p j+pk
2

(x).
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Now

ψ ′(x) =

(
n

∑
j=1

ξ jx
p j−1

2

)2

� 0

implies that ψ is non-increasing function on (0,∞) and then

Li(ψ) � 0, i = 1,2.

This means that the matrix [
Fi

(
pi + p j

2

)]n

j,k=1

is positive semi-definite.
(iii), (iv), (v) are simple consequences of (i) and (ii). �

With similar arguments we deduce the next theorem.

THEOREM 9. Theorem 8 is still valid for ϕp given in Lemma 3.

We now use mean value theorems to produce Cauchy means.

THEOREM 10. Let f �→ Li( f ), i = 1,2 be linear functionals defined with (13)
and (14) and ψ ∈C1[a,b]. Then there exist ξi ∈ [a,b], i = 1,2 such that

Li(ψ) = ψ ′(ξi)Li(id),

where id(x) = x.

Proof. Since ψ ∈C1[a,b] there exist m = min
x∈[a,b]

ψ ′(x) and M = max
x∈[a,b]

ψ ′(x). De-

note h1(x) = Mx−ψ(x) and h2(x) = ψ(x)−mx. Then

h′1(x) = M−ψ ′(x) � 0

h′2(x) = ψ ′(x)−m � 0

which means that Li(h1), Li(h2) � 0, i = 1,2 i.e.

mLi(id) � Li(ψ) � MLi(id).

If Li(id) = 0, the proof is complete. If Li(id) > 0, then

m � Li(ψ)
Li(id)

� M

and the existence of ξi ∈ [a,b] follows. �

Using, standard, Cauchy type mean value theorem we get the next corollary.
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COROLLARY 1. Let f �→ Li( f ), i = 1,2 be linear functionals defined with (13)
and (14) and ψ1, ψ2 ∈ C1[a,b] such that ψ ′

2(x) does not vanish for any value of x ∈
[a,b], then there exist ξi ∈ [a,b], i = 1,2 such that

ψ ′
1(ξi)

ψ ′
2(ξi)

=
Li(ψ1)
Li(ψ2)

, (16)

provided that the denominator on right side is non-zero.

REMARK 2. If the inverse of ψ ′
1/ψ ′

2 exists then various kinds of means can be
defined by (16). That is

ξi =
(

ψ ′
1

ψ ′
2

)−1(
Li(ψ1)
Li(ψ2)

)
, i = 1,2. (17)

Particularly, if we substitute ψ1(x) = φp(x) , ψ2(x) = φq(x) in (17) and use con-
tinuous extension, the following expressions are obtained ( i = 1,2).

Mi(p,q) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
Li(φp)
Li(φq)

)1/(p−q)
, p �=q;

exp
(
− 1

p + Li(φ0φp)
Li(φp)

)
, p=q �=0;

exp
(

Li(φ2
0 )

2Li(φ0)

)
, p=q=0

By Theorem 3, if p,q,u,v ∈ R such that p � u, q � v then,

Mi(p,q) � Mi(u,v).

REMARK 3. Similarly, if we substitute ψ1(x) = ϕp(x) , ψ2(x) = ϕq(x) in (17) and
use continuous extension, the following expressions are obtained ( i = 1,2).

Mi(p,q) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
Li(ϕp)
Li(ϕq)

)1/(p−q)
, p �=q;

exp
(
− 1

p + Li(ϕ0ϕp)
Li(ϕp)

)
, p=q �=0;

exp
(

Li(ϕ2
0 )

2Li(ϕ0)

)
, p=q=0

Again, using Theorem 3, if p,q,u,v ∈ R such that p � u, q � v then,

Mi(p,q) � Mi(u,v).

We can now further refine obtained results by dropping some of analytical proper-
ties of families of functions from Lemmas 2 and 3. Therefore we define

C = {ψp : ψp : [a,b] → R, p ∈ J},
a family of functions from C([a,b]) such that p �→ [x0, x1;ψp] is log-convex in the
Jensen sense on J for every choice of two distinct points x0,x1 ∈ [a,b].
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THEOREM 11. Let f �→ Li( f ), i = 1,2 be linear functionals defined with (13)
and (14) and let Gi : J → R, be defined with

Gi(p) = Li(ψp)

where ψp ∈ C . Then the following statements hold, for every i = 1,2.

(i) Gi is log-convex in the Jensen sense on J.

(ii) If Gi is continuous on J, then it is log-convex on J and for p,q,r ∈ J such that
p < q < r, we have

Gi(q)r−p � Gi(p)r−qGi(r)q−p.

(iii) If Gi is positive and differentiable on J, then for every p,q,u,v ∈ J such that
p � u, q � v, we have

M̃i(p,q) � M̃i(u,v) (18)

where M̃i(p,q) is defined with

M̃i(p,q) =

⎧⎪⎪⎨⎪⎪⎩
(

Gi(p)
Gi(q)

) 1
p−q

, p �= q;

exp

(
d
dp (Gi(p))

Gi(p)

)
, p = q.

(19)

Proof. (i) We prove our claim for the case i = 1, second case is treated similarly.
Choose any two distinct points x0,x1 ∈ [a,b], any ξ1, ξ2 ∈ R and any p, q∈ J. Define
auxiliary function ψ : [a,b] → R by

ψ(x) = ξ 2
1 ψp(x)+2ξ1ξ2ψ p+q

2
(x)+ ξ 2

2 ψq(x), (20)

where ψp,ψ p+q
2

and ψq are from class C1. Then

[x0, x1;ψ ] =ξ 2
1 [x0, x1;ψp]+2ξ1ξ2[x0, x1;ψ p+q

2
]

+ ξ 2
2 [x0, x1, x2;ψq] � 0

by definition of C and characterization of log-convexity. This implies that ψ is non-
decreasing function on [a,b]. Hence L1(ψ) � 0 which is equivalent to

ξ 2
1 G1(p)+2ξ1ξ2G1

(
p+q

2

)
+ ξ 2

2 G1(q) � 0.

This proves that G1 is log-convex in the Jensen sense on J.
(ii) Since Gi is continuous on J, then it is log-convex.
(iii) This is a simple consequence of Theorem 3. �
Let us introduce the following family of functions which will be used in the next

theorem.
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D = {ψp : ψp : [a,b] → R, p ∈ J},
a family of functions from C([a,b]) such that p �→ [x0, x1;ψp] is exponentially convex
on J for every choice of two distinct points x0,x1 ∈ [a,b].

THEOREM 12. Let f �→ Li( f ), i = 1,2 be linear functionals defined with (13)
and (14) and let Hi : J → R, be defined with

Hi(p) = Li(ψp) (21)

where ψp ∈ D . Then the following statements hold for every i = 1,2.

(i) If n ∈ N and p1, . . . , pn ∈ R are arbitrary, then the matrix[
Hi

(
pk + pm

2

)]n

k,m=1

is positive semidefinite. Particularly,

det

[
Hi

(
pk + pm

2

)]n

k,m=1
� 0.

(ii) If the function Hi is continuous on J, then Hi is exponentially convex on J.

(iii) If Hi is positive and differentiable on J, then for every p,q,u,v ∈ J such that
p � u, q � v, we have

M̂i(p,q) � M̂i(u,v)

where M̂i(p,q) is defined with

M̂i(p,q) =

⎧⎪⎪⎨⎪⎪⎩
(

Hi(p)
Hi(q)

) 1
p−q

, p �= q;

exp

(
d
dp (Hi(p))

Hi(p)

)
, p = q.

Proof. (i) We prove our claim for the case i = 1, second case is treated similarly.
Let n ∈ N, p1, . . . pn ∈ R be arbitrary and define auxiliary function ψ : [a,b] → R by

ψ(x) =
n

∑
k,m=1

ξkξmψ pk+pm
2

(x).

Then

[x0, x1;ψ ] =
n

∑
k,m=1

ξkξm[x0, x1;ψ pk+pm
2

] � 0
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by definition of D and exponential convexity. This implies that ψ is non-decreasing
function on [a,b] and then L1(ψ) � 0 which is equivalent to

n

∑
k,m=1

ξiξ jH1

(
pk + pm

2

)
� 0.

(ii) Follows from (i).
(iii) This is a simple consequence of Theorem 3. �

4. Concluding remarks

Families of exponentially convex functions similar to families given in Lemmas 2
and 3 can be easily constructed because of application of Theorem 2.

EXAMPLE 1. Consider a family of functions hp : (0,∞) → (0,∞), p > 0, defined
with

hp(x) =

{
− p−x

log p , p �= 1;

x, p = 1.

Since p �→ d
dx (hp(x)) = p−x is the Laplace transform of a non-negative function

(see [10] p. 210), it is exponentially convex according to Theorem 2.
Obviously x �→ hp(x) are non-decreasing functions for every p > 0. It is easy

to prove that the function p �→ [x0,x1;hp] is also exponentially convex for arbitrary
positive x0,x1 (see also [6]). Using Theorem 12 it follows that for linear functionals
f �→Li( f ), i = 1,2 defined with (13) and (14) we have that p �→Li(hp) is exponentially
convex (it is easy to verify that it is continuous), for i = 1,2.

Using further Theorem 12 we conclude that

Ri(p,q) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
Li(hp)
Li(hq)

) 1
p−q

, p �= q;

exp
(
−Li(h1·hp)

pLi(hp)
− 1

p log p
)

, p = q �= 1;

exp
(
− Li(h2

1)
2Li(h1)

)
, p = q �= 1;

satisfies
Ri(p,q) � Ri(u,v).

for p,q,u,v ∈ R such that p � u, q � v.

REMARK 4. From Example 1 and Theorem 12 it is clear that we presented a new
way how to generate exponentially convex functions, aside from Laplace transform and
Theorem 2.

REMARK 5. Notion of exponential convexity can be even further refined. For
details see [7].
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10000 Zagreb, Croatia
e-mail: pecaric@element.hr

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


