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SOME NEW OPIAL DYNAMIC INEQUALITIES

WITH WEIGHTED FUNCTIONS ON TIME SCALES

S. H. SAKER, M. M. OSMAN, D. O’REGAN AND R. P. AGARWAL

(Communicated by J. Pečarić)

Abstract. In this paper we prove some new dynamic inequalities with two weight functions and
some new dynamic inequalities with two unknown functions of Opial type on time scales. The
main results will be proved by employing Hölder’s inequality, the chain rule and some basic
algebraic inequalities.

1. Introduction

In 2001, Bohner and Kaymakçalan [1] proved some dynamic inequalities of Opial
type on time scales. In particular, they proved that if y : [0,a]∩T −→ R is delta differ-
entiable with y(0) = 0, then

∫ a

0
|y(t)+ yσ(t)|

∣∣∣y�(t)
∣∣∣�t � a

∫ a

0

∣∣∣y�(t)
∣∣∣2�t. (1.1)

Also Bohner and Kaymakçalan in [1] proved that if p and q are positive rd−continuous
functions on [0,b],

∫ b
0 (�t/p(t)) < ∞, q is non-increasing and y : [0,b]∩T −→ R is

delta differentiable with y(0) = 0, then

∫ b

0
qσ (t)

∣∣∣(y(t)+ yσ(t))y�(t)
∣∣∣�t �

∫ b

0

�t
p(t)

∫ b

0
p(t)q(t)

∣∣∣y�(t)
∣∣∣2�t. (1.2)

Karpuz et al. [6] replaced qσ (t) with q(t) and proved an inequality similar to (1.2) of
the form ∫ b

a
q(t)

∣∣∣(y(t)+ yσ (t))y�(t)
∣∣∣�t � Kq(a,b)

∫ b

a

∣∣∣y�(t)
∣∣∣2�t, (1.3)

where q is a positive rd−continuous function on [a,b]T, y : [a,b]∩T −→ R is delta
differentiable with y(a) = 0, and

Kq(a,b) =
(

2
∫ b

a
q2(u)(σ(u)−a)�u

)1/2

. (1.4)
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Wong et al. [11] and Srivastava et al. [10] proved that if q is a rd-continuous, positive
and non-increasing function on [a,b]∩T , then

∫ b

a
q(t) |y(t)|λ

∣∣∣y�(t)
∣∣∣γ �t � γ

λ + γ
(b−a)λ

∫ b

a
q(t)

∣∣∣y�(t)
∣∣∣λ+γ �t, (1.5)

where y : [a,b]∩T −→ R is delta differentiable with y(a) = 0.
Saker [9] improved the conditions in (1.5) and proved some new dynamic inequal-

ities with two weight functions p and q . In particular, he proved that if p and q are
nonnegative rd-continuous function on [a,b]T such that

∫ b
a p−1/(λ+γ−1)�t < ∞, and

y : [a,b]∩T → R is delta differentiable with y(a) = 0, then

∫ b

a
q(t) |y(t)|λ

∣∣∣y�(t)
∣∣∣γ �t � K1(a,b,λ ,γ)

∫ b

a
p(t)

∣∣∣y�(t)
∣∣∣λ+γ �t, (1.6)

where

K1(a,b,λ ,γ)=
(

γ
λ+γ

)γ/(λ+γ)
(∫ b

a

(q(t))(λ+γ)/λ

(p(t))γ/λ

(∫ t

a
p

−1
(λ+γ−1)�s

)(λ+γ−1)

�t

)γ/(λ+γ)

.

(1.7)
In this paper we prove some new integral inequalities involving two weight functions
with a power k different from λ + γ which appears in the right hand side of (1.6).
We also prove some new integral inequalities involving two unknown functions g1 and
g2 with two weight functions. The paper is divided into two sections. In Section 2,
we introduce some preliminaries on time scales and in Section 3, we prove the main
results.

2. Preliminaries on time scales

In this section, for completeness, we recall the following concepts related to the
notion of time scales. For more details on time scale analysis, we refer the reader to
the two books by Bohner and Peterson [2], [3] which summarize and organize much of
time scale calculus. A time scale T is an arbitrary nonempty closed subset of the real
numbers R . We assume throughout that T has the topology that it inherits from the
standard topology on the real numbers R. The forward jump operator and the backward
jump operator are defined by:

σ(t) := inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T : s < t},
where sup /0 = infT . A point t ∈ T, is said to be left–dense if ρ(t) = t and t > infT,
is right–dense if σ(t) = t, is left–scattered if ρ(t) < t and right–scattered if σ(t) > t.
A function g : T → R is said to be right–dense continuous (rd–continuous) provided g
is continuous at right–dense points and at left–dense points in T, left hand limits exist
and are finite. The set of all such rd–continuous functions is denoted by Crd(T).

The graininess function μ for a time scale T is defined by μ(t) := σ(t)− t , and
for any function f : T → R the notation f σ (t) denotes f (σ(t)). Fix t ∈ T and let
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f : T → R . Define f Δ(t) to be the number (if it exists) with the property that given any
ε > 0 there is a neighborhood U of t with

|[ f (σ(t))− f (s)]− f Δ(t)[σ(t)− s]| � ε|σ(t)− s|, for all s ∈U.

In this case, we say f Δ(t) is the (delta) derivative of f at t and that f is (delta) differ-
entiable at t . We will frequently use the following results due to Hilger [4]. Throughout
the paper will assume that f : T → R and let t ∈ T .

(i) If f is differentiable at t , then f is continuous at t .
(ii) If f is continuous at t and t is right-scattered, then f is differentiable at t

with f Δ(t) = f (σ(t))− f (t)
μ(t) .

(iii) If f is differentiable and t is right-dense, then f Δ(t) = lims→t
f (t)− f (s)

t−s .

(iv) If f is differentiable at t , then f (σ(t)) = f (t)+ μ(t) f Δ(t) .

The three most popular examples of calculus on time scales are differential cal-
culus, difference calculus, and quantum calculus (see Kac and Cheung [5]), that is,
when T = R, T = N and T = qN0 = {qt : t ∈ N0} where q > 1. Without loss of
generality, we assume that supT = ∞ , and define the time scale interval [a,b]T by
[a,b]T := [a,b]∩T. In this paper we will refer to the (delta) integral which we can de-
fine as follows. If GΔ(t) = g(t) , then the Cauchy (delta) integral of g is defined by∫ t
a g(s)Δs := G(t)−G(a). It can be shown (see [2]) that if g∈Crd(T), then the Cauchy

integral G(t) :=
∫ t
t0

g(s)Δs exists, t0 ∈ T , and satisfies GΔ(t) = g(t) , t ∈ T. An infinite

integral is defined as
∫ ∞
a f (t)Δt = limb→∞

∫ b
a f (t)Δt. The integration on discrete time

scales is defined by
∫ b
a f (t)�t = ∑t∈[a,b) μ(t) f (t). We will make use of the following

product and quotient rules for the derivative of the product f g and the quotient f/g
(where ggσ �= 0, here gσ = g ◦σ ) of two differentiable function f and g

( f g)Δ = f Δg+ f σgΔ = f gΔ + f Δgσ , and

(
f
g

)Δ
=

f Δg− f gΔ

ggσ . (2.1)

The chain rule formula on time scale is given by

(xγ (t))Δ = γ
1∫

0

[hxσ +(1−h)x]γ−1 dhxΔ(t), (2.2)

which is a simple consequence of Keller’s chain rule [2, Theorem 1.90]. The integration
by parts formula on time scales is given by∫ b

a
u(t)vΔ(t)Δt = [u(t)v(t)]ba−

∫ b

a
uΔ(t)vσ (t)Δt. (2.3)

Hölder’s inequality [2, Theorem 6.13] states that for u, v ∈ Crd([a, b]T , R), we have

∫ b

a
|u(t)v(t)|Δt �

[∫ b

a
|u(t)|q Δt

] 1
q
[∫ b

a
|v(t)|p Δt

] 1
p

, (2.4)

where p > 1 and 1
p + 1

q = 1.
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3. Main results

The results in this section generalize and extend the Opial inequality (1.6) and
the inequality (1.5). Throughout this section (without mentioning) the integrals in the
statements of the theorems are assumed to exist.

To prove the main results we will use of the chain rule (2.2), Hölder’s inequality
(2.4) and the inequality

aλ +bλ � (a+b)λ � 2λ−1(aλ +bλ ), if a, b � 0, λ � 1. (3.1)

THEOREM 3.1. Assume that T be a time scale with α, τ ∈ T, k > 1, λ > 0 and
0 < γ < k . Let p(t),q(t) be non-negative rd-continuous functions on [α,τ]T such that∫ t

α(p(s))−1/(k−1)�s < ∞. If x : [α,τ]T −→R is delta differentiable with x(α) = 0, then

∫ τ

α
q(t) |x(t)|λ

∣∣∣x�(t)
∣∣∣γ �t � K1(λ ,γ,k)

[∫ τ

α
p(t)

∣∣∣x�(t)
∣∣∣k�t

](λ+γ)/k

, (3.2)

where

K1(λ ,γ,k) :=
(

γ
λ + γ

)γ/k
⎡
⎣∫ τ

α

(
qk(t)
pγ(t)

) 1
(k−γ)

(∫ t

α
p

−1
k−1 (s)�s

) λ(k−1)
(k−γ) �t

⎤
⎦

(k−γ)
k

.

(3.3)

Proof. Since x(α) = 0, we have that

|x(t)| �
∫ t

α

∣∣∣x�(s)
∣∣∣�s =

∫ t

α
(p(s))−1/k (p(s))1/k

∣∣∣x�(s)
∣∣∣�s. (3.4)

Applying the Hölder inequality (2.4) with indices k/(k− 1) and k on the right hand
side of (3.4), we get

|x(t)| �
(∫ t

α
(p(s))−1/(k−1)�s

)(k−1)/k(∫ t

α
p(s)

∣∣∣x�(s)
∣∣∣k�s

)1/k

. (3.5)

This implies that

|x(t)|λ �
(∫ t

α
(p(s))

−1
(k−1)�s

)λ (k−1)/k(∫ t

α
p(s)

∣∣∣x�(s)
∣∣∣k�s

)λ/k

. (3.6)

Now, we define

y(t) :=
∫ t

α
p(s)

∣∣∣x�(s)
∣∣∣k�s. (3.7)

This gives us

y�(t) = p(t)
∣∣∣x�(t)

∣∣∣k > 0, (3.8)
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and hence ∣∣∣x�(t)
∣∣∣γ = (p(t))−γ/k

(
y�(t)

)γ/k
. (3.9)

Since q is a non-negative function and λ > 0, we have from (3.6), (3.7) and (3.9) that

q(t) |x(t)|λ
∣∣∣x�(t)

∣∣∣γ
� q(t)(p(t))

−γ
k

(∫ t

α
(p(s))

−1
k−1�s

)λ (k−1)/k

(y(t))λ/k
(
y�(t)

)γ/k
. (3.10)

Integrating (3.10) from α to τ , and applying Hölder’s inequality (2.4) with indices
k/(k− γ) and k/γ, we have that∫ τ

α
q(t) |x(t)|λ

∣∣∣x�(t)
∣∣∣γ �t

�

⎡
⎣∫ τ

α

(
qk(t)
pγ(t)

) 1
(k−γ)

(∫ t

α
(p(s))

−1
(k−1)�s

) λ(k−1)
(k−γ) �t

⎤
⎦

(k−γ)
k

×
(∫ τ

α
(y(t))λ/γ y�(t)�t

)γ/k

. (3.11)

From the chain rule (2.2), and the fact that y�(t) > 0, we see that

(y(t))λ/γ y�(t) � γ
λ + γ

(y(λ+γ)/γ(t))�. (3.12)

Substituting (3.12) into (3.11), we have∫ τ

α
q(t) |x(t)|λ

∣∣∣x�(t)
∣∣∣γ �t

�

⎡
⎣∫ τ

α

(
qk(t)
pγ (t)

) 1
(k−γ)

(∫ t

α
(p(s))

−1
(k−1) �s

) λ(k−1)
(k−γ) �t

⎤
⎦

(k−γ)
k

×
(

γ
λ + γ

)γk(∫ τ

α
(y(λ+γ)/γ(t))��t

)γ/k

=

⎡
⎣∫ τ

α

(
qk(t)
pγ (t)

) 1
(k−γ)

(∫ t

α
(p(s))−1/(k−1)�s

) λ(k−1)
(k−γ) �t

⎤
⎦

(k−γ)
k

×
(

γ
λ + γ

)γ/k

(y(τ))(λ+γ)/k .

From (3.7), and the last inequality, we have

∫ τ

α
q(t) |x(t)|λ

∣∣∣x�(t)
∣∣∣γ �t � K1(λ ,γ,k)

[∫ τ

α
p(t)

∣∣∣x�(t)
∣∣∣k�t

](λ+γ)/k

,
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which is the desired inequality (3.2). The proof is complete. �
Here, we only state the following theorem, since its proof is similar to that of

Theorem 3.1 with [α, τ]T replaced by [τ, β ]T .

THEOREM 3.2. Assume that T be a time scale with τ , β ∈ T , k > 1, λ > 0 and
0 < γ < k. Let p(t),q(t) be non-negative rd-continuous functions on [τ,β ]T such that∫ β
t (p(s))−1/(k−1)�s < ∞. If x : [τ,β ]T −→ R is delta differentiable with x(β ) = 0,

then

∫ β

τ
q(t) |x(t)|λ

∣∣∣x�(t)
∣∣∣γ �t � K2(λ ,γ,k)

[∫ β

τ
p(t)

∣∣∣x�(t)
∣∣∣k�t

](λ+γ)/k

, (3.13)

where

K2(λ ,γ,k) :=
(

γ
λ + γ

)γ/k
⎡
⎣∫ β

τ

(
qk(t)
pγ(t)

) 1
(k−γ)

(∫ β

t
(p(s))

−1
(k−1) �s

) λ(k−1)
(k−γ)

�t

⎤
⎦

(k−γ)
k

.

(3.14)

REMARK 3.1. As a special case when we take k = λ + γ, we see that inequality
(3.2) becomes inequality (1.6).

If we put p(t) = q(t) in (3.2), we obtain the following special case from Theorem
3.1, which is a generalization of inequality (1.5).

COROLLARY 3.1. Assume that T be a time scale with α , τ ∈ T , k > 1, λ > 0
and 0 < γ < k. Let p(t) be non-negative rd-continuous functions on [α,τ]T such that∫ t

α(p(s))−1/(k−1)�s < ∞. If x : [α,τ]T −→R is delta differentiable with x(α) = 0, then

∫ τ

α
p(t) |x(t)|λ

∣∣∣x�(t)
∣∣∣γ �t � K∗

1 (λ ,γ,k)
[∫ τ

α
p(t)

∣∣∣x�(t)
∣∣∣k�t

](λ+γ)/k

, (3.15)

where

K∗
1 (λ ,γ,k) :=

(
γ

λ + γ

)γ/k
⎡
⎣∫ τ

α
p(t)

(∫ t

α
(p(s))

−1
(k−1)�s

) λ(k−1)
(k−γ) �t

⎤
⎦

(k−γ)
k

. (3.16)

On a time scale T , we note as a consequence of the chain rule (2.2) that(
(t−α)

λ(k−1)
(k−γ) +1

)�
=
(

λ (k−1)
(k− γ)

+1

)∫ 1

0
[h(σ(t)−α)+ (1−h)(t−α)]

λ(k−1)
(k−γ) dh

�
(

λ (k−1)
(k− γ)

+1

)∫ 1

0
[h(t−α)+ (1−h)(t−α)]

λ(k−1)
(k−γ) dh

=
(

λ (k−1)
(k− γ)

+1

)
(t−α)

λ(k−1)
(k−γ) . (3.17)
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This implies that ∫ τ

α
(t−α)

λ(k−1)
(k−γ) �t � (τ −α)Λ

Λ
, (3.18)

where Λ = λ (k−1)
(k−γ) +1. From (3.18) and (3.16) with p(t) = 1, one obtains that

K∗
1 (λ ,γ,k) =

(
γ

λ + γ

)γ/k [∫ τ

α
(t−α)

λ(k−1)
(k−γ) �t

] (k−γ)
k

(3.19)

�
(

γ
λ + γ

)γ/k
[

(τ −α)Λ

Λ

] (k−γ)
k

.

Setting p(t) = 1 in (3.15) and using (3.19), we have the following inequality.

COROLLARY 3.2. Let T be a time scale with α , τ ∈ T , k > 1, λ > 0 and 0 <
γ < k. If x : [α,τ]T −→ R is delta differentiable with x(α) = 0, then

∫ τ

α
|x(t)|λ

∣∣∣x�(t)
∣∣∣γ �t �

(
γ

λ + γ

)γ/k
[

(τ −α)Λ

Λ

] (k−γ)
k [∫ τ

α

∣∣∣x�(t)
∣∣∣k�t

](λ+γ)/k

,

(3.20)
where Λ = λ (k−1)

(k−γ) +1.

REMARK 3.2. As a special case when k = λ + γ, inequality (3.20) becomes

∫ τ

α
|x(t)|λ

∣∣∣x�(t)
∣∣∣γ �t � γγ/(λ+γ)

λ + γ
(τ −α)λ

∫ τ

α

∣∣∣x�(t)
∣∣∣λ+γ �t. (3.21)

REMARK 3.3. Note that when T = R , inequality (3.21) becomes

∫ τ

α
|x(t)|λ

∣∣∣x′(t)∣∣∣γ dt � γγ/(λ+γ)

λ + γ
(τ −α)λ

∫ τ

α

∣∣∣x′(t)∣∣∣λ+γ
dt. (3.22)

REMARK 3.4. Note that when λ = γ = 1, we have the following result∫ τ

α
|x(t)|

∣∣∣x′(t)∣∣∣dt �
(

τ −α
2

)∫ τ

α

∣∣∣x′(t)∣∣∣2 dt. (3.23)

THEOREM 3.3. Assume that T be a time scale with α, τ ∈ T , λ � 0 and γ � 1.
Let f (t) be positive on [α,τ]T with

∫ τ
α ( f (t))−γ�t < ∞, and let g(t) be a positive

non-increasing and rd-continuous function on [α,τ]T. If x : [α,τ]T−→ R is delta dif-
ferentiable with x(α) = 0, then∫ τ

α
( f (t))γ(γ−1) gγ(t) |x(t)|λ

∣∣∣x�(t)
∣∣∣γ �t (3.24)

�
(

γ
λ + γ

)(∫ τ

α
( f (t))−γ�t

)λ ∫ τ

α
( f (t))γ(λ+γ−1)gγ(t)

∣∣∣x�(t)
∣∣∣λ+γ �t.
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Proof. Define

z(t) =
∫ t

α
( f (s))γ(γ−1) (g(s))

γ2

(λ+γ)
∣∣∣x�(s)

∣∣∣γ �s, for t ∈ [α,τ]T. (3.25)

Hence

z�(t) = ( f (t))γ(γ−1) (g(t))γ2/(λ+γ)
∣∣∣x�(t)

∣∣∣γ , (3.26)

and then ∣∣∣x�(t)
∣∣∣γ = ( f (t))−γ(γ−1) (g(t))−γ2/(λ+γ)z�(t). (3.27)

Since x(α) = 0, we see that

|x(t)| �
∫ t

α

∣∣∣x�(s)
∣∣∣�s =

∫ t

α
( f (s))−(γ−1) ( f (s))γ−1

∣∣∣x�(s)
∣∣∣�s.

Applying Hölder’s inequality (2.4) with indices γ/(γ −1) and γ, we have

|x(t)| �
(∫ t

α
( f (s))−γ�s

)(γ−1)/γ(∫ t

α
( f (s))γ(γ−1)

∣∣∣x�(s)
∣∣∣γ �s

)1/γ
.

Then for α � t � τ, we get that

|x(t)|λ �
(∫ t

α
( f (s))−γ�s

)λ (γ−1)/γ(∫ t

α
( f (s))γ(γ−1)

∣∣∣x�(s)
∣∣∣γ �s

)λ/γ
. (3.28)

Thus, if g(t) is positive and non-increasing, we have from (3.27) and (3.28) that

( f (t))γ(γ−1) gγ(t) |x(t)|λ
∣∣∣x�(t)

∣∣∣γ �t

� (g(t))
λγ

(λ+γ)

(∫ t

α
( f (s))−γ�s

) λ(γ−1)
γ
(∫ t

α
( f (s))γ(γ−1)

∣∣∣x�(s)
∣∣∣γ �s

) λ
γ
z�(t)

= (F(t))
λ(γ−1)

γ z
λ
γ (t)z�(t), (3.29)

where F(t) :=
∫ t

α( f (s))−γ�s. Now, since FΔ(t) = ( f (t))−γ > 0, we see that F(t) �
F(τ). This and (3.29) implies that

∫ τ

α
( f (t))γ(γ−1) gγ(t) |x(t)|λ

∣∣∣x�(t)
∣∣∣γ �t

�
∫ τ

α
(F(τ))λ (γ−1)/γ zλ/γ(t)z�(t)�t

=
(∫ τ

α
( f (s))−γ�s

)λ (γ−1)/γ ∫ τ

α
zλ/γ(t)z�(t)�t. (3.30)
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From the chain rule (2.2), and the fact that z�(t) > 0, we obtain

(
z(λ+γ)/γ(t)

)�
=
(

λ + γ
γ

)∫ 1

0
[hzσ +(1−h)z]λ/γ dhz�(t)

�
(

λ + γ
γ

)∫ 1

0
[hz+(1−h)z]λ/γ dhz�(t) (3.31)

=
(

λ + γ
γ

)
zλ/γ(t)z�(t).

Substituting (3.31) into (3.30), and using the fact that z(α) = 0, we have

∫ τ

α
( f (t))γ(γ−1) gγ(t) |x(t)|λ

∣∣∣x�(t)
∣∣∣γ �t

�
(

γ
λ + γ

)(∫ τ

α
( f (t))−γ�t

) λ(γ−1)
γ

z
(λ+γ)

γ (τ)

=
(

γ
λ + γ

)(∫ τ

α
( f (t))−γ�t

)λ (γ−1)/γ(∫ τ

α
( f (t))γ(γ−1) (g(t))

γ2

(λ+γ)
∣∣∣x�(t)

∣∣∣γ �t

) (λ+γ)
γ

=
(

γ
λ + γ

)(∫ τ

α
( f (t))−γ�t

)λ (γ−1)/γ

×
(∫ τ

α
( f (t))

−λγ
(λ+γ) ( f (t))

γ2(λ+γ−1)
(λ+γ) (g(t))

γ2

(λ+γ)
∣∣∣x�(t)

∣∣∣γ �t

) (λ+γ)
γ

.

Again applying Hölder’s inequality (2.4) with indices (λ + γ)/λ and (λ + γ)/γ, we
have ∫ τ

α
( f (t))γ(γ−1) gγ(t) |x(t)|λ

∣∣∣x�(t)
∣∣∣γ �t

�
(

γ
λ + γ

)(∫ τ

α
( f (t))−γ�t

)λ (γ−1)/γ

×
(∫ τ

α
( f (t))−γ�t

)λ/γ ∫ τ

α
( f (t))γ(λ+γ−1)gγ(t)

∣∣∣x�(t)
∣∣∣λ+γ �t

=
(

γ
λ + γ

)(∫ τ

α
( f (t))−γ�t

)λ ∫ τ

α
( f (t))γ(λ+γ−1)gγ(t)

∣∣∣x�(t)
∣∣∣λ+γ �t,

which is the desired inequality (3.24). The proof is complete. �

REMARK 3.5. As a special case when f (t) = 1 and gγ(t) = q(t), inequality
(3.24) becomes inequality (1.5).

Here, we only state the following theorem, since its proof is similar to that of
Theorem 3.3 with [α, τ]T replaced by [τ, β ]T.
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THEOREM 3.4. Assume that T be a time scale with τ, β ∈ T , λ � 0 and γ �
1. Let f (t) be positive on [τ,β ]T with

∫ β
τ ( f (t))−γ�t < ∞, and let g(t) be positive

non-decreasing and rd-continuous function on [τ,β ]T. If x : [τ,β ]T −→ R is delta
differentiable with x(β ) = 0, then∫ β

τ
( f (t))γ(γ−1) gγ(t) |x(t)|λ

∣∣∣x�(t)
∣∣∣γ �t (3.32)

�
(

γ
λ + γ

)(∫ β

τ
( f (t))−γ�t

)λ ∫ β

τ
( f (t))γ(λ+γ−1)gγ(t)

∣∣∣x�(t)
∣∣∣λ+γ �t.

Now, we prove some new integral inequalities involving two unknowns g1 and g2

with two weight functions p and q .

THEOREM 3.5. Assume that T be a time scale with α , τ ∈ T , let p(t) is a pos-
itive rd-continuous function on [α,τ]T with

∫ τ
α

�t
p(t) < ∞, and q(t) be a positive, non-

increasing and rd-continuous function on [α,τ]T. If g1, g2 : [α,τ]T −→ R are delta
differentiable with g1(α) = g2(α) = 0, then∫ τ

α
qσ (t)

[∣∣∣(g1(t)+gσ
1 (t))g�2 (t)

∣∣∣+ ∣∣∣(g2(t)+gσ
2 (t))g�1 (t)

∣∣∣]�t (3.33)

�
∫ τ

α

�t
p(t)

∫ τ

α
p(t)q(t)

[∣∣∣g�1 (t)
∣∣∣2 +

∣∣∣g�2 (t)
∣∣∣2]�t.

Proof. Let fi(t) :=
∫ t

α
√

qσ (s)
∣∣∣g�i (s)

∣∣∣�s, for t ∈ [α, τ]T and i = 1, 2. Note that

f�i (t) =
√

qσ (t)
∣∣∣g�i (t)

∣∣∣> 0 and note that for s < t we have qσ (s) � q(t) . Thus

|gi(t)| �
∫ t

α

∣∣∣g�i (s)
∣∣∣�s �

∫ t

α

√
qσ (s)
q(t)

∣∣∣g�i (s)
∣∣∣�s =

fi(t)√
q(t)

.

Hence, (note that t � σ(t) which implies q(t) � qσ (t))∫ τ

α
qσ (t)

[∣∣∣(g1(t)+gσ
1 (t))g�2 (t)

∣∣∣+ ∣∣∣(g2(t)+gσ
2 (t))g�1 (t)

∣∣∣]�t

�
∫ τ

α
qσ (t)

[(
f1(t)√
q(t)

+
f σ
1 (t)√
qσ (t)

)
f�2 (t)√
qσ (t)

+

(
f2(t)√
q(t)

+
f σ
2 (t)√
qσ (t)

)
f�1 (t)√
qσ (t)

]
�t

�
∫ τ

α

[
( f1(t)+ f σ

1 (t)) f�2 (t)+ ( f2(t)+ f σ
2 (t)) f�1 (t)

]
�t

=
∫ τ

α
( f1 f�2 + f σ

1 f�2 + f2 f�1 + f σ
2 f�1 )�t

= 2
∫ τ

α
( f1(t) f2(t))�(t)�t = 2 f1(τ) f2(τ) � ( f1(τ))2 +( f2(τ))2,

where we have applied the inequality

2αβ � (α2 + β 2), for α, β reals. (3.34)
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Applying Hölder’s inequality (2.4), we get∫ τ

α
qσ (t)

[∣∣∣(g1(t)+gσ
1 (t))g�2 (t)

∣∣∣+ ∣∣∣(g2(t)+gσ
2 (t))g�1 (t)

∣∣∣]�t

�
(∫ τ

α

1√
p(t)

√
p(t)qσ (t)

∣∣∣g�1 (t)
∣∣∣�t

)2

+

(∫ τ

α

1√
p(t)

√
p(t)qσ (t)

∣∣∣g�2 (t)
∣∣∣�t

)2

�
∫ τ

α

�t
p(t)

∫ τ

α
p(t)qσ (t)

∣∣∣g�1 (t)
∣∣∣2�t +

∫ τ

α

�t
p(t)

∫ τ

α
p(t)qσ (t)

∣∣∣g�2 (t)
∣∣∣2�t

�
∫ τ

α

�t
p(t)

∫ τ

α
p(t)q(t)

[∣∣∣g�1 (t)
∣∣∣2 +

∣∣∣g�2 (t)
∣∣∣2]�t,

which is the desired inequality (3.33). The proof is complete. �

REMARK 3.6. Note that when g1(t) = g2(t) = g(t), then inequality (3.33) be-
comes the Opial inequality (1.2).

The proof of the following theorem is similar to the proof of Theorem 3.5.

THEOREM 3.6. Assume that T be a time scale with τ , β ∈T , let p(t) be positive
and rd-continuous function on [τ,β ]T with

∫ β
τ

�t
p(t) < ∞, and q(t) be positive, non-

decreasing and rd-continuous function on [τ,β ]T. If g1, g2 : [τ,β ]T −→ R are delta
differentiable with g1(β ) = g2(β ) = 0, then

∫ β

τ
qσ (t)

[∣∣∣(g1(t)+gσ
1 (t))g�2 (t)

∣∣∣+ ∣∣∣(g2(t)+gσ
2 (t))g�1 (t)

∣∣∣]�t (3.35)

�
∫ β

τ

�t
p(t)

∫ β

τ
p(t)q(t)

[∣∣∣g�1 (t)
∣∣∣2 +

∣∣∣g�2 (t)
∣∣∣2]�t.

THEOREM 3.7. Assume that T be a time scale with α , τ ∈ T , λ � 0 and γ � 1.
Let p(t) is a positive rd-continuous function on [α,τ]T with

∫ τ
α

�t
p(t) < ∞, and q(t) be

positive, non-increasing and rd-continuous function on [α,τ]T. If g1, g2 : [α,τ]T −→R

are delta differentiable with g1(α) = g2(α) = 0, then∫ τ

α
qσ (t) |g1(t)g2(t)|λ

[
|g1(t)+gσ

1 (t)|γ
∣∣∣g�2 (t)

∣∣∣γ + |g2(t)+gσ
2 (t)|γ

∣∣∣g�1 (t)
∣∣∣γ]�t

� 2γ−1
(

γ
λ + γ

)
(τ −α)2λ+γ−1

×
∫ τ

α

�t
p(t)

∫ τ

α
p(t)q(t)

[∣∣∣g�1 (t)
∣∣∣2(λ+γ)

+
∣∣∣g�2 (t)

∣∣∣2(λ+γ)
]
�t. (3.36)

Proof. Let fi(t) =
∫ t

α (q(s))γ/2(λ+γ)
∣∣∣g�i (s)

∣∣∣γ �s, t ∈ [α, τ]T for i = 1,2. Thus

f�i (t) = (q(t))γ/2(λ+γ)
∣∣∣g�i (t)

∣∣∣γ > 0, (3.37)
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and since gi(α) = 0, we have

|gi(t)| �
∫ t

α

∣∣∣g�i (s)
∣∣∣�s =

∫ t

α

1

(q(s))1/2(λ+γ) (q(s))1/2(λ+γ)
∣∣∣g�i (s)

∣∣∣�s.

Applying Hölder’s inequality (2.4) with indices γ and γ/(γ −1), we obtain

|gi(t)| �
(∫ t

α

�s

(q(s))γ/2(λ+γ)(γ−1)

)γ−1/γ(∫ t

α
(q(s))γ/2(λ+γ)

∣∣∣g�i (s)
∣∣∣γ �s

)1/γ

� (q(t))−1/2(λ+γ) (τ −α)(γ−1)/γ ( fi(t))
1/γ . (3.38)

Applying the inequality (3.1) and (3.38), we get (note that σ(t) � t which implies
qσ (t) � q(t)), that

|gi(t)+gσ
i (t)|γ � 2γ−1 [|gi(t)|γ + |gσ

i (t)|γ]
� 2γ−1 (τ −α)γ−1 (qσ (t))−γ/2(λ+γ) [ fi(t)+ f σ

i (t)] . (3.39)

Hence∫ τ

α
qσ (t) |g1(t)g2(t)|λ

[
|g1(t)+gσ

1 (t)|γ
∣∣∣g�2 (t)

∣∣∣γ + |g2(t)+gσ
2 (t)|γ

∣∣∣g�1 (t)
∣∣∣γ]�t

� 2γ−1(τ −α)(γ−1)(2λ+γ)/γ

×
∫ τ

α
( f1(t) f2(t))

λ/γ
[
( f1(t)+ f σ

1 (t)) f�2 (t)+ ( f2(t)+ f σ
2 (t)) f�1 (t)

]
�t

= 2γ (τ −α)(γ−1)(2λ+γ)/γ
∫ τ

α
( f1(t) f2(t))

λ/γ ( f1(t) f2(t))��t. (3.40)

Applying the chain rule (2.2), we see that(
( f1 f2)

(λ+γ)/γ
)�

=
λ + γ

γ

∫ 1

0
[h( f1 f2)σ +(1−h)( f1 f2)]

λ/γ dh( f1 f2)
�

� λ + γ
γ

( f1 f2)
λ/γ ( f1 f2)

� . (3.41)

Substituting (3.41) into (3.40), we obtain∫ τ

α
qσ (t) |g1(t)g2(t)|λ

[
|g1(t)+gσ

1 (t)|γ
∣∣∣g�2 (t)

∣∣∣γ + |g2(t)+gσ
2 (t)|γ

∣∣∣g�1 (t)
∣∣∣γ]�t

� 2γ
(

γ
λ + γ

)
(τ −α)(γ−1)(2λ+γ)/γ ( f1(τ) f2(τ))

(λ+γ)/γ
. (3.42)

Applying inequalities (3.34) and (3.1) yield

( f1 f2)(λ+γ)/γ �
(1

2

)(λ+γ)/γ
( f 2

1 + f 2
2 )(λ+γ)/γ

�
(1

2

)(λ+γ)/γ
2λ/γ

[
f 2(λ+γ)/γ
1 + f 2(λ+γ)/γ

2

]
=

1
2

[
f 2(λ+γ)/γ
1 + f 2(λ+γ)/γ

2

]
. (3.43)
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Substituting (3.43) into (3.42), we get

∫ τ

α
qσ (t) |g1(t)g2(t)|λ

[
|g1(t)+gσ

1 (t)|γ
∣∣∣g�2 (t)

∣∣∣γ + |g2(t)+gσ
2 (t)|γ

∣∣∣g�1 (t)
∣∣∣γ]�t

� 2γ−1
(

γ
λ + γ

)
(τ −α)(γ−1)(2λ+γ)/γ

[
( f1(τ))2(λ+γ)/γ +( f2(τ))2(λ+γ)/γ

]
. (3.44)

On the other hand applying Hölder’s inequality (2.4) with indices 2(λ + γ)/γ,2(λ +
γ)/(2λ + γ), we have

( fi(τ))2(λ+γ)/γ =

(∫ τ

α

(q(t)p(t))γ/2(λ+γ)

(p(t))γ/2(λ+γ)

∣∣∣g�i (t)
∣∣∣γ �t

)2(λ+γ)/γ

�
(∫ τ

α

�t

(p(t))γ/2λ+γ

)2λ+γ/γ ∫ τ

α
q(t)p(t)

∣∣∣g�i (t)
∣∣∣2(λ+γ)�t.

Again applying Hölder’s inequality (2.4) with indices (2λ + γ)/γ, (2λ + γ)/2λ , we
get

( fi(τ))2(λ+γ)/γ �
(∫ τ

α
�t

)2λ/γ ∫ τ

α

�t
p(t)

∫ τ

α
q(t)p(t)

∣∣∣g�i (t)
∣∣∣2(λ+γ)�t

= (τ −α)2λ/γ
∫ τ

α

�t
p(t)

∫ τ

α
q(t)p(t)

∣∣∣g�i (t)
∣∣∣2(λ+γ)�t. (3.45)

Substituting (3.45) into (3.44), we get the desired inequality (3.36). The proof is com-
plete. �

THEOREM 3.8. Assume that T be a time scale with τ , β ∈ T , λ � 0 and γ � 1.

Let p(t) is a positive rd-continuous function on [τ,β ]T with
∫ β

τ
�t
p(t) < ∞, and q(t) be a

positive, non-decreasing and rd-continuous function on [τ,β ]T. If g1, g2 : [τ,β ]T −→
R are delta differentiable with g1(β ) = g2(β ) = 0, then

∫ β

τ
qσ (t) |g1(t)g2(t)|λ

[
|g1(t)+gσ

1 (t)|γ
∣∣∣g�2 (t)

∣∣∣γ + |g2(t)+gσ
2 (t)|γ

∣∣∣g�1 (t)
∣∣∣γ]�t

� 2γ−1
(

γ
λ + γ

)
(β − τ)2λ+γ−1

×
∫ β

τ

�t
p(t)

∫ β

τ
p(t)q(t)

[∣∣∣g�1 (t)
∣∣∣2(λ+γ)

+
∣∣∣g�2 (t)

∣∣∣2(λ+γ)
]
�t. (3.46)

For p(t) = 1 in Theorem 3.7, we obtain the following result.

COROLLARY 3.3. Assume that T be a time scale with α , τ ∈ T , λ � 0 and
γ � 1 . Let q(t) be positive, non-increasing and rd-continuous function on [α,τ]T. If
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g1, g2 : [α,τ]T −→ R are delta differentiable with g1(α) = g2(α) = 0, then

∫ τ

α
qσ (t) |g1(t)g2(t)|λ

[
|g1(t)+gσ

1 (t)|γ
∣∣∣g�2 (t)

∣∣∣γ + |g2(t)+gσ
2 (t)|γ

∣∣∣g�1 (t)
∣∣∣γ]�t

� 2γ−1
(

γ
λ + γ

)
(τ −α)2λ+γ

∫ τ

α
q(t)

[∣∣∣g�1 (t)
∣∣∣2(λ+γ)

+
∣∣∣g�2 (t)

∣∣∣2(λ+γ)
]
�t. (3.47)

Also for q(t) = 1 and γ = 1 in inequality (3.47), we have the following result.

COROLLARY 3.4. Assume that T be a time scale with α , τ ∈ T and λ � 0 . Let
g1, g2 : [α,τ]T −→ R are delta differentiable, and g1(α) = g2(α) = 0, then

∫ τ

α
|g1(t)g2(t)|λ

[∣∣∣(g1(t)+gσ
1 (t))g�2 (t)

∣∣∣+ ∣∣∣(g2(t)+gσ
2 (t))g�1 (t)

∣∣∣]�t

� (τ −α)2λ+1

λ +1

∫ τ

α

[∣∣∣g�1 (t)
∣∣∣2(λ+1)

+
∣∣∣g�2 (t)

∣∣∣2(λ+1)
]
�t. (3.48)

Also for p(t) = q(t) = 1 and γ = 1 in inequality (3.46), we have the following
result.

COROLLARY 3.5. Assume that T be a time scale with τ , β ∈ T and λ � 0 . Let
g1, g2 : [τ,β ]T −→ R are delta differentiable, and g1(β ) = g2(β ) = 0, then

∫ β

τ
|g1(t)g2(t)|λ

[∣∣∣(g1(t)+gσ
1 (t))g�2 (t)

∣∣∣+ ∣∣∣(g2(t)+gσ
2 (t))g�1 (t)

∣∣∣]�t

� (β − τ)2λ+1

λ +1

∫ β

τ

[∣∣∣g�1 (t)
∣∣∣2(λ+1)

+
∣∣∣g�2 (t)

∣∣∣2(λ+1)
]
�t. (3.49)

Now, a combination of (3.48) and (3.49) with τ = β+α
2 immediately gives the

following result.

COROLLARY 3.6. Assume that T be a time scale with α , β ∈ T and λ � 0. Let
g1, g2 : [α,β ]T −→ R are delta differentiable, and g1(α) = g1(β ) = g2(α) = g2(β ) =
0, then

∫ β

α
|g1(t)g2(t)|λ

[∣∣∣(g1(t)+gσ
1 (t))g�2 (t)

∣∣∣+ ∣∣∣(g2(t)+gσ
2 (t))g�1 (t)

∣∣∣]�t

� 1
λ +1

(
β −α

2

)2λ+1∫ β

α

[∣∣∣g�1 (t)
∣∣∣2(λ+1)

+
∣∣∣g�2 (t)

∣∣∣2(λ+1)
]
�t. (3.50)

Note that when T = R, we have gσ
i = gi for i = 1, 2. Then from the above

inequalities (3.36), (3.48), and (3.49), we obtain the following results due to Lin and
Yang [7], and Pachpatte [8].
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COROLLARY 3.7. Let λ � 0 , γ � 1 and let g1(t), g2(t) be absolutely continuous
functions on [α,τ] such that g1(α) = g2(α) = 0, then

∫ τ

α
q(t) |g1(t)g2(t)|λ

[∣∣∣g1(t)g
′
2(t)
∣∣∣γ +

∣∣∣g′
1(t)g2(t)

∣∣∣γ]dt

� γ
2(λ + γ)

(τ −α)2λ+γ−1
∫ τ

α

dt
p(t)

∫ τ

α
p(t)q(t)

[∣∣∣g′
1(t)
∣∣∣2(λ+γ)

+
∣∣∣g′

2(t)
∣∣∣2(λ+γ)

]
dt,

(3.51)

where p(t) is a positive and continuous function with
∫ τ

α
�t
p(t) < ∞, and q(t) is a posi-

tive, bounded, and non-increasing function on [α,τ].

COROLLARY 3.8. Let λ � 0, and let g1(t), g2(t) be absolutely continuous func-
tions on [α,τ] such that g1(α) = g2(α) = 0, then

∫ τ

α
|g1(t)g2(t)|λ

[∣∣∣g1(t)g
′
2(t)
∣∣∣+ ∣∣∣g′

1(t)g2(t)
∣∣∣]dt

� (τ −α)2λ+1

2(λ +1)

∫ τ

α

[∣∣∣g′
1(t)
∣∣∣2(λ+1)

+
∣∣∣g′

2(t)
∣∣∣2(λ+1)

]
dt. (3.52)

COROLLARY 3.9. Let λ � 0, and let g1(t), g2(t) be absolutely continuous func-
tions on [τ,β ] such that g1(β ) = g2(β ) = 0, then

∫ β

τ
|g1(t)g2(t)|λ

[∣∣∣g1(t)g
′
2(t)
∣∣∣+ ∣∣∣g′

1(t)g2(t)
∣∣∣]dt

� (β − τ)2λ+1

2(λ +1)

∫ β

τ

[∣∣∣g′
1(t)
∣∣∣2(λ+1)

+
∣∣∣g′

2(t)
∣∣∣2(λ+1)

]
dt. (3.53)

COROLLARY 3.10. Let λ � 0, and let g1(t), g2(t) be absolutely continuous
functions on [α,β ] such that g1(α) = g2(α) = g1(β ) = g2(β ) = 0, then

∫ β

α
|g1(t)g2(t)|λ

[∣∣∣g1(t)g
′
2(t)
∣∣∣+ ∣∣∣g′

1(t)g2(t)
∣∣∣]dt

� 1
2(λ +1)

(
β −α

2

)2λ+1∫ β

τ

[∣∣∣g′
1(t)
∣∣∣2(λ+1)

+
∣∣∣g′

2(t)
∣∣∣2(λ+1)

]
dt. (3.54)

Note that when T = N and p(n) = 1, we have from (3.36) the following discrete
Opial type inequality.

COROLLARY 3.11. Assume that λ , γ be positive real numbers such that γ �
1, {q(i)}0�i�N is a non-increasing sequence of non-negative real number. Further,
let {g1(i)}0�i�N and {g2(i)}0�i�N be two sequences of real numbers with g1(0) =
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g2(0) = 0 . Then

N

∑
n=1

q(n+1) |g1(n)g2(n)|λ

×[|g1(n)+g1(n+1)|γ |�g2(n)|γ + |g2(n)+g2(n+1)|γ |�g1(n)|γ]
� 2γ−1

(
γ

λ + γ

)
(N−α)2λ+γ

N

∑
n=1

q(n)
[
|�g1(n)|2(λ+γ) + |�g2(n)|2(λ+γ)

]
.

(3.55)

Also when p(n) = q(n) = 1 and γ = 1, we have the following discrete Opial type
inequality.

COROLLARY 3.12. Let {g1(i)}0�i�N and {g2(i)}0�i�N be two sequences of real
numbers with g1(0) = g2(0) = 0 . Then for λ � 0

N

∑
n=1

|g1(n)g2(n)|λ [|g1(n)+g1(n+1)| |�g2(n)|+ |g2(n)+g2(n+1)| |�g1(n)|]

� (N−α)2λ+1

λ +1

N

∑
n=1

[
|�g1(n)|2(λ+1) + |�g2(n)|2(λ+1)

]
. (3.56)
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