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LINEAR OPERATORS INEQUALITY FOR

n–CONVEX FUNCTIONS AT A POINT
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(Communicated by N. Elezović)

Abstract. We study necessary and sufficient conditions on linear operators A and B for inequal-
ity A f � B f to hold for every function f that is n -convex at a point.

1. Introduction

Levinson’s inequality states that if f : [a,b]→ R is a 3-convex function and pi,xi,
yi , i = 1,2, . . . ,n , are such that pi > 0, ∑n

i=1 pi = 1, a � xi,yi � b , maxi xi � mini yi

and
x1 + y1 = x2 + y2 = . . . = xn + yn = 2c (1)

for some c ∈ [a,b] , then the following holds

n

∑
i=1

pi f (xi)− f (x) �
n

∑
i=1

pi f (yi)− f (y), (2)

where x = ∑n
i=1 pixi and y = ∑n

i=1 piyi denote the weighted arithmetic means. Mercer
[4] showed that inequality (2) still holds if the assumption (1) of symmetric distribution
with respect to the point c is replaced with the weaker one

n

∑
i=1

pi(xi − x)2 =
n

∑
i=1

pi(yi− y)2, (3)

i.e. that the variances of the two sequences are equal. Witkowski [9] extended these
results to more a general probabilistic setting.

On the other hand, Baloch, Pečarić and Praljak [1] showed that, for fixed c ∈
(a,b) , inequality (2) under the equal-variances assumption (3) holds for a larger class
of functions they introduced and called 3-convex functions at a point. Here, we give
a more general definition for this class and, in doing so, we introduce new classes of
(n+1)-convex functions at a point that we will use in this paper.
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DEFINITION 1.1. Let I be an interval in R , c a point in the interior of I and
n ∈ N0 . A function f : I → R is said to be (n+ 1)-convex at point c if there exists a
constant Kf such that the function

F(x) = f (x)− Kf

n!
xn (4)

is n -concave on I ∩ (−∞,c] and n -convex on I ∩ [c,∞) . We denote the family of
(n+ 1)-convex functions at point c by K c

n+1(I) . A function f is said to be (n+ 1)-
concave at point c if the function − f is (n+1)-convex at point c .

Probabilistic version of Levinson’s inequality under the equal-variances assump-
tion for the class of 3-convex functions at a point was proven by Pečarić, Praljak and
Witkowski [5] and is given in the following theorem.

THEOREM 1.2. Let X : Ω → I ∩ (−∞,c] and Y : Ω → I ∩ [c,∞) be two random
variables such that Var(X) = Var(Y ) < ∞ . Then, for every f ∈ K c

3 (I) such that
E( f (X)) and E( f (Y )) are finite, the following holds

E( f (X))− f (E(X)) � E( f (Y ))− f (E(Y )). (5)

Notice that inequality (5) can be restated as

A f � B f , (6)

where A and B are the linear operators

A f = E( f (X))− f (E(X)), B f = E( f (Y ))− f (E(Y )).

Actually, if one looks at the proof of Theorem 1.2 in [5], it was proven that the following
inequalities hold

A f � Kf

n!
h � B f , (7)

where n = 2 and h = Var(X) = Var(Y ) .
Next, we will cite some known results regarding necessary and sufficient condi-

tions on a linear operator to be non-negative on a cone of n -convex functions. Be-
fore stating the relevant results we introduce some notation. With C([u,v]) we denote
continuous functions on [u,v] and ‖ · ‖ is the norm ‖ f‖ = maxu�x�v | f (x)| . A se-
quence of functions fn ∈ C([u,v]) converges uniformly to a function f ∈ C([u,v]) if
limn ‖ fn − f‖ = 0. Let us assume that D ⊂ R , and let S(D) be one of the normed
subspaces of the space of all real functions defined on D , where the norm of a function
f ∈ S(D) is denoted by ‖ f‖D (for example, for a one-element set D the space S(D) is
equivalent to R). We consider operators A of the following form A :C([u,v]) → S(D) ,
and say that A is continuous if limn ‖ fn − f‖ = 0 implies limn ‖A fn −A f‖D = 0 as
well. Also, we write A f � 0 if A f (t) � 0 holds for every t ∈ D , where f is a given
function in the space C([u,v]) .

The family of the polynomials of degree at most n is denoted by Πn . The family of
continuous n -convex functions on [u,v] (i. e. right-continuous at a and left-continuous
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at b ) is denoted by Kn[u,v] . Monomials are denoted by ei , i. e. ei(x) = xi for i =
0,1,2, . . . The functions wn and ρn , for n ∈ N , n � 2, are

wn(x,d) = (x−d)n−1
+ , ρn(x,d) = (x−d)n−1

− , (8)

where

(x−d)+ =

{
x−d, x � d,

0, x < d,
(x−d)− =

{
0, x � d,

x−d, x < d.

Specifically, for n = 1 we denote

w1(x,d) =

{
1, x � d,

0, x < d,
ρ1(x,d) = 1−w1(x,d).

The following is a result of our interest (see [2], [6]).

THEOREM 1.3. Let A :C([a,b])→ S(D) be a linear and continuous operator and
n � 2 . Then, the inequality

A f � 0

holds for every function f ∈ Kn([a,b]) if and only if the operator A satisfies:

(a) Aei = 0 for i = 0,1, . . . ,n−1 ,

(b) Awn(·,d) � 0 for every d ∈ [a,b].

The proof of Theorem 1.3 is based on the following representation of n -convex
functions due to Popoviciu [8].

LEMMA 1.4. Let the function Fm be of the form

Fm(x) = Pn−1(x)+
m

∑
i=1

αiwn(x,xi), (9)

where Pn−1 ∈ Πn−1 , αi , i = 1, . . . ,m, are real constants and a � x1 < x2 < · · · < xm �
b.

(a) A necessary and sufficient condition for Fm to be n-convex is that αi � 0 ( i =
1, . . . ,m).

(b) Every continuous n-convex function on [a,b] is the uniform limit of the sequence
of functions Fm (m = 1,2, . . .) where the Fm ’s are of the form in (9) and αi � 0
( i = 1, . . . ,m) are real constants.

In this paper we will study necessary and sufficient conditions on linear operators
A and B under which inequalities of type (6) and (7) hold for every function f that
is (n + 1)-convex at point c . Our main results will be proven in Section 2 and ap-
plication of these results will be given in Section 3. For clarity of presentation and a
reader’s convenience, some technical proofs are moved to Appendix, which also con-
tains a recollection of some well-known results on n -convex functions that are invoked
throughout the paper.
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2. Main results

We will first give necessary and sufficient conditions for inequalities of type (7) to
hold. The result can be derived directly from Theorem 1.3, but we will derive it from
Lemma 1.4 for an easier and more instructive comparison to Theorem 2.4.

THEOREM 2.1. Let A : C([a,c]) → S(D) and B : C([c,b]) → S(D) be two linear
and continuous operators, h : D → R and n � 2 . Then, the inequalities

A f � Kf

n!
h � B f

hold for every continuous f ∈K c
n+1([a,b]) (and arbitrary constant Kf from Definition

1.1) if and only if the operators A and B satisfy:

(a) Aei = Bei = 0 for i = 0,1, . . . ,n−1 , and Aen = Ben = h,

(b) Aρn(·,d) � 0 for every d ∈ [a,c] ,

(c) Bwn(·,d) � 0 for every d ∈ [c,b] .

Proof. Assume that (a)–(c) hold and let F = f −Kf en/n! be as in Definition
1.1. Since F is n -concave on the segment [a,c] , by Lemma 1.4 it can be obtained as a
uniform limit of functions Fm of the form

Fm(x) = Pn−1(x)−
m

∑
i=1

αiwn(x,xi) = P̃n−1(x)+
m

∑
i=1

αiρn(x,xi),

where Pn−1 ∈Πn−1 , αi � 0, a � x1 < · · ·< xm � c and P̃n−1(x)= Pn−1(x)−∑m
i=1 αi(x−

xi)n−1 . Due to the assumptions,

AFm = AP̃n−1 +
m

∑
i=1

αiAρn(·,xi) � 0

and

A f − Kf

n!
Aen = AF = lim

m→∞
AFm � 0.

Similarly, F restricted to [c,b] can be obtained as a uniform limit of the functions Gk

of the form

Gk(y) = Qn−1(y)+
k

∑
i=1

βiwn(y,yi),

where Qn−1 ∈ Πn−1 , βi � 0 and c � y1 < · · · < yk � b and we conclude that

B f − Kf

n!
Ben = BG = lim

k→∞
BGk � 0.

On the other hand, suppose that (7) holds for every continuous f ∈ K c
n+1([a,b]) .

Then property (a) holds since both ei and −ei for i = 0,1, . . . ,n − 1 belong to
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K c
n+1([a,b]) with Kei = K−ei = 0 and both en and −en belong to K c

n+1([a,b]) with
Ken = n! = −K−en . Moreover, since ρn(·,d) (resp. wn(·,d)) belongs to K c

n+1([a,b])
for d ∈ [a,c] (resp. d ∈ [c,b]) and Bρn(·,d) = B0 = 0 (resp. Awn(·,d) = A0 = 0), we
conclude that property (b) (resp. (c)) holds. �

REMARK 2.2. Theorem 2.1 is an extension of Theorem 1.3. For a linear and con-
tinuous operator B : C([c,b]) → S(D) let us define the linear operator A with A f =
B(en)[x0,x1, . . . ,xn] f , where xi , i = 0,1, . . . ,n , are some arbitrary distinct points in
[a,c] . Notice that Aei = 0 for i = 0,1, . . . ,n− 1 and Aen = Ben , so A satisfies as-
sumption (a) from Theorem 2.1. Moreover, if B satisfies the same assumption, then
BPn−1 = 0 for every Pn−1 ∈ Πn−1 and if, additionally, B satisfies assumption (c) , then
using the representation of Lemma 1.4 for the n -convex function en , we conclude that
Ben � 0. Now, since ρn(·,d) is an n -concave function, we conclude that Aρn(·,d) � 0,
i. e. A satisfies assumption (b) as well. In conclusion, for the given A and B conditions
(a)–(c) are equivalent to

(i) Bei = 0 for i = 0,1, . . . ,n−1,

(ii) Bwn(·,d) � 0 for every d ∈ [c,b] ,

i. e. the same conditions as for the linear operator A in Theorem 1.3. An arbitrary
continuous n -convex function f on [c,b] can be extended to a continuous function
f ∈ K c

n+1([a,b]) with Kf = 0 by defining f = g on [a,c] , where g is an arbitrary n -
concave function such that g(c) = f (c) . Then (7) yields A f � 0 � B f , which gives the
“if” part of Theorem 1.3. The “only if” part is immediate since wn(·,d) , ei and −ei

for i = 0,1, . . . ,n−1 are all continuous n -convex functions.

As we can see from the proof of Theorem 2.1, the function F is approximated
well by functions Fm on [a,c] and by functions Gk on [c,b] . The polynomials P̃n−1

and Qn−1 are different, but if F (and, hence, f as well) satisfies sufficiently strong
regularity properties at c , then these two polynomials can be chosen equal, i. e. one
polynomial can be used in approximation of F over the whole interval [a,b] . If this
is the case, then we can obtain a result similar to Theorem 2.1, but without the middle
part in (7).

The next lemma shows that it is enough to assume that F(n−2) is continuous at c .
Since F is n -concave on [a,c] and n -convex on [c,b] , F (n−2) exists and is continuous
on the open intervals (a,c) and (c,b) , so the additional requirement is that the same
property holds at point c as well.

LEMMA 2.3. Let n � 2 and let the function Fm,k be of the form

Fm,k(x) = Pn−1(x)+
m

∑
i=1

αiρn(x,xi)+
k

∑
j=1

β jwn(x,y j), (10)

where Pn−1 ∈ Πn−1 , αi ( i = 1, . . . ,m) and β j ( j = 1, . . . ,k ) are real constants and
a � x1 < · · · < xm < c < y1 < · · ·yk � b.
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(a) A necessary and sufficient condition for Fm,k to be n-concave on [a,c] and n-
convex on [c,b] is that αi � 0 ( i = 1, . . . ,m) and β j � 0 ( j = 1, . . . ,k ).

(b) Every function F ∈ C([a,b])∩Cn−2((a,b)) that is n-concave on [a,c] and n-
convex on [c,b] is the uniform limit of a sequence of functions Fm,k as m → ∞
and k → ∞ , where the Fm,k ’s are of the form (10) with real constants αi � 0
( i = 1, . . . ,m) and β j � 0 ( j = 1, . . . ,k ).

Proof. See Appendix. �
The following theorem gives necessary and sufficient conditions for inequality of

type (6) to hold and it is based on Lemma 2.3.

THEOREM 2.4. Let n � 2 and let A : C([a,c]) → S(D) and B : C([c,b]) → S(D)
be two linear and continuous operators. Then, the inequality

A f � B f

holds for every continuous f ∈ K c
n+1([a,b])∩Cn−2((a,b)) if and only if the operators

A and B satisfy:

(ã) Aei = Bei for i = 0,1, . . . ,n,

(b̃) Aρn(·,d) � 0 for every d ∈ [a,c] ,

(c̃) Bwn(·,d) � 0 for every d ∈ [c,b] .

Proof. Assume that (ã)–(c̃) hold and let f ∈ K c
n+1([a,b])∩Cn−2((a,b)) be con-

tinuous with F = f −Kf en/n! as in Definition 1.1. By Lemma 2.3, the function F given
by (4) can be obtained as a uniform limit of functions of the form (10) with αi � 0 and
β j � 0. Assumption (ã) yields APn−1 = BPn−1 . Moreover, since Awn(·,y j) = A0 = 0
for y j ∈ [c,b] and Bρn(·,xi) = B0 = 0 for xi ∈ [a,c] , we have

AFm,k = APn−1 +
m

∑
i=1

αiAρn(·,xi) � APn−1 = BPn−1

� BPn−1 +
k

∑
j=1

βiBwn(·,y j) = BFm,k.

By taking limits we conclude AF � BF , so

A f = AF +
Kf

n!
Aen � BF +

Kf

n!
Ben = B f .

On the other hand, assume (6) holds for every continuous f ∈ K c
n+1([a,b])∩

Cn−2((a,b)) . Since both ei and −ei for i = 0,1, . . . ,n− 1 belong to K c
n+1([a,b])∩

Cn−2((a,b)) , we conclude that both Aei � Bei and A(−ei) � B(−ei) , so (ã) holds.
Furthermore, ρn(·,xi),wn(·,y j) ∈Cn−2((a,b)) and analogously as in the proof of The-
orem 2.1 we conclude that both (b̃) and (c̃) hold. �
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REMARK 2.5. Condition (a) is stronger than condition (ã) , which is reflected
in inequalities (7) being stronger than inequality (6) with the middle term squeezed
in between in (7). On the other hand, Theorems 2.1 and 2.4 represent separate results
since it is possible to construct linear operators A and B that satisfy conditions (ã)–(c̃)
and such that there exists an i , 0 � i � n−2, such that Aei = Bei �= 0.

For example, let n = 3, b = −a > 0, c = 0, xi ∈ [a,0] ( i = 1, . . . ,m), yi = −xi

and let the operators A and B be given by

A f =
m

∑
i=1

pi f (xi), B f =
m

∑
i=1

pi f (yi).

Notice that

Ae0 = Be0 =
m

∑
i=1

pi, Ae1 = −Be1 =
m

∑
i=1

pixi, Ae2 = Be2 =
m

∑
i=1

pix
2
i .

If pi ’s are such that Ae1 = 0, then (ã) holds. Furthermore, if pi ’s and xi ’s are such
that the condition

m

∑
i=1

pi(xi −d)− � 0 for every d ∈ [a,0]

holds, then also (b̃) and (c̃) hold. For example, all this holds for m = 2, p1 = 1,
x1 = −3, p2 = −3 and x2 = −1. Therefore, the linear operators

A f = f (−3)−3 f (−1)
B f = f (3)−3 f (1)

satisfy (ã)–(c̃) , but Ae0 = Be0 = −2 �= 0. Thus, A f � B f for every continuous f ∈
K

n,c
1 ([a,b]) , but there exists such an f such that (2.1) doesn’t hold. For example, the

constant function f (x) = u , where 0 �= u ∈ R , satisfies Kf = f ′′(0) = 0, so the middle
term in (2.1) is zero, while A f = B f = −2u �= 0.

Similar results hold for n = 1 as well, but with minor technical modifications.
Firstly, the functions ρn and wn for n = 1 are not continuous, so we need to require
that the linear operators A and B are defined on a larger class of functions that contains
them. More importantly, we also loose the “only if” parts of Theorems 2.1 and 2.4. Sec-
ondly, the representation in Lemma 2.3 assumes that F ∈Cn−2((a,b)) , an assumption
that is mute for n = 1 and can, actually, be ignored. Therefore, for simplicity of presen-
tation, we state the result for n = 1 in a separate theorem. As for notation, let C([u,v])
denote a linear space of functions such that C([u,v])⊂C([u,v]) and w1(·,d)∈C([u,v])
for d ∈ [u,v] (for example, C([u,v]) = { f +∑m

i=1 αiw1(·,xi) : f ∈C([u,v]),αi ∈ R,xi ∈
[u,v]} ).

THEOREM 2.6. Let A : C([a,c]) → S(D) and B : C([c,b]) → S(D) be two linear
and continuous operators. If
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(i) Ae0 = Be0 and Ae1 = Be1 ,

(ii) Aρ1(·,d) � 0 for every d ∈ [a,c] ,

(iii) Bw1(·,d) � 0 for every d ∈ (c,b] ,

then for every continuous f ∈ K c
2 ([a,b]) the following inequality holds

A f � B f . (11)

If, additionally,

(iv) Ae0 = Be0 = 0 ,

then for every constant Kf from Definition 1.1 the following inequalities hold

A f � Kf Ae1 = Kf Be1 � B f .

Proof. The function F = f −Kf e1 is continuous and it is non-increasing on [a,c]
and non-decreasing on [c,b] . Since a continuous function on a closed interval is uni-
formly continuous, for arbitrary ε > 0 there exist points a � x1 < x2 < .. . < xm � c <
y1 < .. . < yk � b such that the step function

g(x) = F(c)+
m

∑
i=1

αiρ1(x,xi)+
k

∑
j=1

β jw1(x,y j)

satisfies
max

a�x�b
|F(x)−g(x)|� ε,

where

αm = F(xm)−F(c) � 0,

αi = F(xi−1)−F(xi) � 0, i = m−1,m−2, . . .,2,

β1 = F(y1)−F(c) � 0,

β j = F(y j)−F(y j−1) � 0, j = 2,3, . . . ,k.

The rest of the proof follows the same lines as the proof of Theorem 2.4. �

REMARK 2.7. We, indeed, do not have the “only if” part in Theorem 2.6. For
example, if A and B are the linear operators

A f = 0 and B f = f−(d)− f (d) for some fixed d ∈ (c,b),

then A f = B f = 0 for every continuous f (so (11) holds), but Bw1(·,d) =−1 < 0 (i. e.
(iii) of Theorem 2.6 doesn’t hold).

REMARK 2.8. If (i)–(iii) of Theorem 2.6 hold and Aw1(·, x̃) = 0 for some a <
x̃ < c and Bρ1(·, ỹ) = 0 for some c < ỹ < b , then (iv) of Theorem 2.6 holds also.
Indeed, for every d we have w1(·,d)+ ρ1(·,d) = e0 , so

0 � Aρ1(·, x̃) = Ae0 = Be0 = Bw1(·, ỹ) � 0.
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3. Applications

We can obtain a probabilistic Levinson’s type inequality as a consequence of The-
orem 2.1.

COROLLARY 3.1. Let X ,Y : Ω→ [a,c] be two random variables such that Var[X ]
= Var[Y ] = C. Then, for every continuous f ∈ K c

3 ([a,b]) the inequalities

E[ f (X)]− f (E[X ]) � Kf

2
C � E[ f (Y )]− f (E[Y ])

hold.

Proof. Apply Theorem 2.1 to the linear operators

A f = E[ f (X)]− f (E[X ]),
B f = E[ f (Y )]− f (E[Y ]).

Since continuous functions on a segment are bounded, by the dominated convergence
theorem the linear operators A and B are continuous. Condition (a) holds since
Ae0 = Be0 = E[1]−1 = 0, Ae1 = E[X ]−E[X ] = 0 = E[Y ]−E[Y ] = B f , Ae2 = Var[X ]
and Be2 = Var[Y ] . Furthermore, the functions w2(·,d) (resp. ρ2(·,d)) for d ∈ [a,c]
(resp. d ∈ [c,b]) are convex (resp. concave), so (b) (resp. (c)) hold due to Jensen’s
inequality. �

We can get a generalization of the probabilistic Levinson type inequality from
Corollary 3.1 without the middle term as a corollary of Theorem 2.4.

COROLLARY 3.2. Let λ : [a,c] → R and μ : [c,b] → R be two functions of
bounded variation such that

xλ =
∫ c

a
xdλ (x) ∈ [a,c] and xμ =

∫ b

c
xdμ(x) ∈ [c,b].

Then, the inequality

∫ c

a
f (x)dλ (x)− f (xλ ) �

∫ b

c
f (x)dμ(x)− f (xμ)

holds for every continuous f ∈ K c
3 ([a,b]) if and only if λ and μ satisfy:

(i)
∫ c

a
dλ (x) =

∫ b

c
dμ(x) and

∫ c

a
x2 dλ (x)− x2

λ =
∫ b

c
x2 dμ(x)− x2

μ ,

(ii)
∫ d

a
(x−d)dλ (x) � (xλ −d)− = min{xλ −d,0} for every d ∈ [a,c],

(iii)
∫ b

d
(x−d)dμ(x) � (xμ −d)+ = max{xμ −d,0} for every d ∈ [c,b].
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Proof. Apply Theorem 2.4 to the linear operators A and B given by

A f =
∫ c

a
f (x)dλ (x)− f (xλ ),

B f =
∫ b

c
f (x)dμ(x)− f (xμ).

By the same argument as in the proof of Corollary 3.1, the operators A and B are
continuous. Conditions (ã)–(c̃) for these particular operators correspond to conditions
(i)–(iii) . �

Since the functions λ and μ in Corollary 3.3 do not need to generate probability
measures, that corollary is, indeed, a generalization of Corollary 3.1. For example, if
λ and μ satisfy the Jensen-Steffensen conditions (i. e. λ (a) � λ (x) � λ (c) for every
x∈ [a,c] and λ (a) < λ (c) ; μ(c) � μ(x) � μ(b) for every x∈ [c,b] and μ(c) < μ(b)),
then the Jensen-type inequality still holds for convex functions (see, e. g., [6]). Hence,
the convex functions w2(·,d) and −ρ2(·,d) satisfy the inequalities in (ii) and (iii) of
Corollary 3.3.

The following is another corollary of Theorem 2.4.

COROLLARY 3.3. Let λ : [a,c] → R and μ : [c,b] → R be two functions of
bounded variation and n � 2 . Then, the inequality

∫ c

a
f (x)dλ (x) �

∫ b

c
f (x)dμ(x)

holds for every continuous f ∈ K c
n+1([a,b])∩Cn−2((a,b)) if and only if λ and μ

satisfy:

(i)
∫ c

a
xi dλ (x) =

∫ b

c
xi dμ(x), for every i = 0,1, . . . ,n,

(ii)
∫ d

a
(x−d)n−1dλ (x) � 0 for every d ∈ [a,c],

(iii)
∫ b

d
(x−d)n−1 dμ(x) � 0 for every d ∈ [c,b].

Proof. Apply Theorem 2.4 to the linear operators A and B given by

A f =
∫ c

a
f (x)dλ (x),

B f =
∫ b

c
f (x)dμ(x).

By the same argument as in the proof of Corollary 3.1, the operators A and B are
continuous. Conditions (ã)–(c̃) for these particular operators correspond to conditions
(i)–(iii) . �

The following corollary is the discrete version of Corollary 3.3.
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COROLLARY 3.4. Let n∈N , n � 2 , and a � x1 < · · ·< xm � c � y1 < · · ·< yk �
b. Then, the inequality

m

∑
i=1

pi f (xi) �
k

∑
j=1

q j f (y j)

holds for every continuous f ∈ K c
n+1([a,b])∩Cn−2((a,b)) if and only if the sequences

p and q satisfy:

(i) ∑m
j=1 p jxi

j = ∑k
j=1 q jyi

j for every i = 0,1, . . . ,n,

(ii) ∑m
i=1 pi(xi −d)n−1

− � 0 for every d ∈ [a,c] ,

(iii) ∑k
j=1 q j(y j −d)n−1

+ � 0 for every d ∈ [c,b] .

Proof. Apply Theorem 2.4 to the linear operators

A f =
m

∑
i=1

pi f (xi) and B f =
k

∑
j=1

q j f (y j). (12)

�

REMARK 3.5. Popoviciu studied necessary and sufficient conditions on points xi

and weights pi for inequality ∑m
i=1 pm f (xm)� 0 to be valid for every n -convex function

f (see [7], [6]). In light of Remark 2.2, Corollary 3.4 is an extension of Popoviciu’s
results.

The version of Corollary 3.4 for n = 1 can be obtained as a corollary of Theorem
2.6.

COROLLARY 3.6. Let a � x1 � · · ·< xm < c < y1 < · · ·< yk � b, x p = ∑m
i=1 pixi ,

yq = ∑k
j=1 q jy j be such that:

(i) x p = yq ,

(ii) ∑m1
i=1 pi � 0 for every m1 = 1, . . . ,m−1 , and ∑m

i=1 pi = 0 ,

(iii) ∑k
j=k1

q j � 0 for every k1 = 2, . . . ,k , and ∑k
j=1 q j = 0 .

Then, the inequality

m

∑
i=1

pi f (xi) � Kf x p = Kf yq �
k

∑
j=1

q j f (y j) (13)

holds for every continuous f ∈ K c
2 ([a,b]) .
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Proof. Follows by applying Theorem 2.6 to the linear operators A and B given
by (12). Notice that Aw1(·,d) = 0 for d ∈ (xm,c) and Bρ1(·,d) = 0 for d ∈ (c,y1) ,
so, by Remark 2.8, Ae0 = ∑m

i=1 pi = 0 and Be0 = ∑k
j=1 q j = 0 are implied by the other

assumptions. �

A simple example when pi ’s and q j ’s satisfy assumptions (ii) and (iii) of Corol-
lary 3.6 is when m = 2m′ and k = 2k′ are even and pi = (−1)i , q j = (−1) j . Further-

more, if xi ’s and y j ’s are such that x p = ∑m′
i=1 (x2i − x2i−1) = ∑k′

j=1

(
y2 j − y2 j−1

)
= yq ,

then (i) holds as well and inequality (13) states

m′

∑
i=1

( f (x2i)− f (x2i−1)) � Kf x p = Kf yq �
k′

∑
j=1

(
f (y2 j)− f (y2 j−1)

)
.

4. Appendix

For the sake of clarity and completeness, in this section we will recall some of
the well known results that are frequently used in the paper, as well as give a rather
technical proof of Lemma 2.3. The stated results without explicitly cited source can be
found in, e. g., [6].

A k th order divided difference of a function f : I → R , where I is an interval in
R , at distinct points x0, . . . ,xk ∈ I is defined recursively by

[xi] f = f (xi), for i = 0, . . . ,k

and

[x0, . . . ,xk] f =
[x1, . . . ,xk] f − [x0, . . . ,xk−1] f

xk − x0
.

The value [x0, . . . ,xk] f is independent of the order of the points x0, . . . ,xk . If Pk ∈ Πk ,
then [x0, . . . ,xk]Pk is equal to the coefficient of Pk in front of xk .

A function f : I → R is called n -convex if [x0, . . . ,xn] f � 0 for all choices of
n+1 distinct points x0, . . . ,xn ∈ I . A function f is said to be n -concave if the function
− f is n -convex. If f (n) exists, then f is n -convex if and only if f (n) � 0. More
precisely, differentiability properties of n -convex functions and connection between
various orders of convexity are described in the following lemma.

LEMMA 4.1. Let f : (a,b) → R and n � 2 . Then, the following statements are
equivalent:

(i) f is n-convex,

(ii) f (k) exists and is (n− k)-convex for 0 � k � n−2 ,

(iii) f (n−1)
+ exists on (a,b) and it is right-continuous and non-decreasing,

(iv) f (n−1)
− exists on (a,b) and it is left-continuous and non-decreasing.
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If f is n -convex, then f (n−1)
− � f (n−1)

+ and f (n−1)
− (x) �= f (n−1)

+ (x) for at most
countably many points x . Moreover, for any point d outside this countable set and any

g such that f (n−1)
− � g � f (n−1)

+ it holds f (n−2)(x) = f (n−2)(d)+
∫ x
d g(t)dt.

The class of 3-convex functions at a point was introduced in [1]. There it was
proven that a function is 3-convex on an interval if and only if it is 3-convex at every
point of its interior, which justifies the name. From statement (ii) of Lemma 4.1 we
can deduce that this property transfers to (n+ 1)-convex functions, i. e. a function is
(n+ 1)-convex on an interval if and only if it is (n + 1)-convex at every point of its
interior. In [1] it was also shown that if f ′′−(c) and f ′′+(c) exist for f ∈ K c

3 (I) , then
Kf from Definiton 1.1 satisfies f ′′−(c) � Kf � f ′′+(c) (moreover, any constant from the
interval [ f ′′−(c), f ′′+(c)] can be taken for Kf ). Again, due to Lemma 4.1 (ii) , we can

see that this property transfers to f ∈ K c
n+1(I) , i. e. if f (n)

− (c) and f (n)
+ (c) exist, then

f (n)
− (c) � Kf � f (n)

+ (c) .
Let us also mention that an n -convex function f , n � 2, on the closed interval

[a,b] can have discontinuities only at the edges, a and b , and only in a certain direction.
More precisely, it holds (−1)n( f+(a)− f (a)) � 0 and f−(b) � f (b) . Consequently,
f ∈ K c

n+1([a,b]) can have discontinuities only at a , c and b and their directions can
be derived from the aforementioned discontinuity properties of n -convex functions.

Proof of Lemma 2.3. The intuitive idea of the proof is simple – the goal is to

construct a step function that approximates F (n−1)
+ well enough so that, after integrating

it n−1 times, we get a uniformly good approximation of F .

Firstly, due to the assumptions, F (n−1)
+ exists on (a,c) , where it is non-increasing,

and on (c,b) , where it is non-decreasing. Furthermore, for every x,x′ ∈ (a,c) and
y,y′ ∈ (c,b) it holds

∫ x′

x
F (n−1)

+ (t)dt = F (n−2)(x′)−F(n−2)(x), (14)∫ y

y′
F (n−1)

+ (t)dt = F (n−2)(y)−F(n−2)(y′). (15)

Since F (n−2) is continuous at c , the limits x′ → c in (14) and y′ → c in (15) exist. The
limit limt↗c F (n−1)

+ (t) (resp. limt↘c F (n−1)
+ (t)) can be −∞ , but then the integral (14)

(resp. (15)) with x′ = c (resp. y′ = c) exists and is finite as an improper integral. In
conclusion,∫ y

x
F (n−1)

+ (t)dt = F (n−2)(y)−F(n−2)(x), for every x,y ∈ (a,b), (16)

with, potentially, improper integral(s) at c . Furthermore, due to the properties of F (n−1)
+

mentioned above, it is easy to see that for arbitrary ε1 > 0 there exist a constant γ and
points x̃ < c and ỹ > c sufficiently close to c such that

∫ ỹ

x̃

∣∣∣F(n−1)
+ (t)− γ

∣∣∣ dt < ε1, (17)
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where γ = min{F(n−1)
+ (x̃),F (n−1)

+ (ỹ)}. Let us now define the step function

gn−1(x) = γ +
m

∑
i=1

α̃iρ1(x,xi)+
k

∑
j=1

β̃ jw1(x,y j), (18)

where

α̃i = F(n−1)
+ (xi)−F(n−1)

+ (xi+1) � 0, i = 1, . . . ,m−1

α̃m = F(n−1)
+ (xm)− γ � 0

β̃1 = F(n−1)
+ (y1)− γ � 0

β̃ j = F(n−1)
+ (y j)−F(n−1)

+ (y j−1) � 0, j = 2, . . . ,k.

The points xi ’s and y j ’s will suitably be chosen later (so that gn−1 will be a “good” ap-

proximation of F(n−1)
+ ). Furthermore, let us define, recursively, for l = n−2, . . . ,1,0:

gl(x) =
∫ x

c
gl+1(t)dt +F(l)(c) (19)

= Pn−1−l(x)+
1

(n− l)!

(
m

∑
i=1

α̃iρn−l(x,xi)+
k

∑
j=1

β̃ jwn−l(x,y j)

)
.

Since gn−1 will be a “good” approximation of F(n−1)
+ , by construction (19) the function

gl will be a “good” approximation of F (l) . Notice, also, that g( j)
l = gl+ j and g0 is a

function of the form (10) with αi = α̃i/n! and βi = β̃i/n! .
Let ε2 > 0 be arbitrary and let us now choose the points y1,y2, . . . recursively by

the following algorithm: set y1 = ỹ , where ỹ is from (17). If y j is chosen, let

y j+1 = inf
yi<y<b

{y : F (n−1)
+ (y)−F(n−1)

+ (y j) � ε2}. (20)

Since F (n−1)
+ is right-continuous and non-increasing on (c,b) we have

|F (n−1)
+ (y j)−F(n−1)

+ (y)| � ε2 for all y ∈ [y j,y j+1), (21)

F (n−1)
+ (y j+1)−F(n−1)

+ (y j) � ε2. (22)

Due to (22), if limt↗b F(n−1)
+ (t) is finite, then the procedure (20) will stop after finitely

many steps at some yk−1 and, in that case, set yk = b . Otherwise, if limt↗b F (n−1)
+ (t) =

∞ , then for sufficiently large k the point yk can be arbitrarily close to b .

If limt↘a F (n−1)
+ (t) is finite, then set x1 = a . Otherwise, if limt↘a F(n−1)

+ (t) = ∞ ,
the point x1 will suitably be chosen later (and such to be sufficiently close to a ). Let us
now choose the points x2,x3, . . . recursively by the following rule: if xi is chosen, let

xi+1 = inf
xi<x<c

{x : F(n−1)
+ (xi)−F(n−1)

+ (x) � ε2}. (23)
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Again, the following holds

|F(n−1)
+ (xi)−F(n−1)

+ (x)| � ε2 for all x ∈ [xi,xi+1), (24)

F(n−1)
+ (xi)−F(n−1)

+ (xi+1) � ε2. (25)

Due to (25), after finitely many steps of the form (23) we will reach a point xm−1 such

that x̃ from (17) satisfies F (n−1)
+ (xm−1)−F(n−1)

+ (x̃) � ε2 . Set xm = x̃ and stop. Notice
now that, due to (17), (21) and (24), for every x ∈ [x1,yk] one has

|F (n−2)(x)−gn−2(x)| =
∣∣∣∣
∫ x

c

(
F (n−1)

+ (t)−gn−1(t)
)

dt

∣∣∣∣
�
∫ xm

x1

∣∣∣F(n−1)
+ (t)−gn−1(t)

∣∣∣ dt +
∫ y1

xm

∣∣∣F (n−1)
+ (t)−gn−1(t)

∣∣∣ dt

+
∫ yk

y1

∣∣∣F(n−1)
+ (t)−gn−1(t)

∣∣∣ dt

� ε2(xm − x1 + yk − y1)+ ε1 � ε3,

where the last inequality holds for arbitrary ε3 > 0 when we choose ε1 and ε2 suf-
ficiently small. In a similar way, it can now be shown by induction that for every
x ∈ [x1,yk] and i = n−3,n−4, . . .,1,0,

|F (i)(x)−gi(x)| =
∣∣∣∣
∫ x

c

(
F (i+1)(t)−gi+1(t)

)
dt

∣∣∣∣� ε3(b−a)n−2−i. (26)

If x1 = a and yk = b , then ‖F −g0‖� ε3(b−a)n−2 by (26) and this finishes the proof.

Otherwise, if limt↗b F (n−1)
+ (t) = ∞ or limt↘a F (n−1)

+ (t) , we will use some properties
of Taylor’s expansion and polynomials.

Let Pyk,n−2 ∈ Πn−2 denote Taylor’s polynomial of F at yk of degree n− 2, i. e.

P(i)
yk,n−2(yk) = F (i)(yk) for i = 0,1, . . . ,n− 2. Due to (16), the remainder in Taylor’s

expansion can be written in the integral form, i. e. for every x ∈ (a,b) it holds

F(x) = Pyk,n−2(x)+
1

(n−2)!

∫ x

yk

(x− t)n−2F(n−1)
+ (t)dt.

Let us also denote by Pn−1 the polynomial

Pn−1(x) = Pyk,n−2(x)+F(n−2)
+ (yk)(x− yk)n−1

=
n−2

∑
i=0

F(i)(yk)
i!

(x− yk)
i +F(n−2)

+ (yk)(x− yk)n−1.

We have

F(x) = Pn−1(x)+
1

(n−2)!

∫ x

yk

(x− t)n−2(F (n−1)
+ (t)−F(n−1)

+ (yk))dt (27)
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since
∫ x
yk

(x− t)n−2 dt = (n−2)!(x− yk)n−1. It is easy to see that the mapping hyk(x) =∫ x
yk

(x− t)n−2(F (n−1)
+ (t)−F(n−1)

+ (yk))dt is monotone on [yk,b] with hyk(yk) = 0. Since
F is continuous at b , the limit x → b in (27) exists and the integral

∫ b

yk

(x− t)n−2(F (n−1)
+ (t)−F(n−1)

+ (yk))dt (28)

is finite. Moreover, since we can choose yk arbitrarily close to b , by the dominated
convergence theorem integral (28) can be arbitrarily small. Therefore, for arbitrary
ε4 > 0, we can choose yk such that for every x ∈ [yk,b] it holds

|F(x)−Pn−1(x)| =
∣∣∣∣ 1
(n−2)!

∫ x

yk

(x− t)n−2(F (n−1)
+ (t)−F(n−1)

+ (yk))dt

∣∣∣∣
�
∣∣∣∣ 1
(n−2)!

∫ b

yk

(b− t)n−2(F (n−1)
+ (t)−F(n−1)

+ (yk))dt

∣∣∣∣< ε4.

By construction, for x ∈ [yk,b] we have g0(x) = Pn−1(x) + ∑k
j=1 β j(x− y j)n−1 ,

i. e. g0 on the interval [yk,b] is a polynomial in Πn−1 . Furthermore, by construction

g0 ∈ C(n−2)([a,b]) and g(n−1)
0 (yk) = gn−1(yk) = F (n−1)

+ (yk) . Therefore, for x ∈ [yk,b]
it holds

g0(x) =
n−2

∑
i=0

g(i)
0 (yk)

i!
(x− yk)

i +F(n−1)
+ (yk)(x− yk)n−1.

From (26) we conclude |F (i)(yk)− g(i)
0 (yk)| � ε3(b− a)n−2−i . Therefore, for every

x ∈ [yk,b] we have

|P(x)−g0(x)| � ε3(b−a)n−2
n−2

∑
i=0

1
i!

and

|F(x)−g0(x)| � |F(x)−P(x)|+ |P(x)−g0(x)| � ε4 + ε3(b−a)n−2
n−2

∑
i=0

1
i!

. (29)

In the same way we can show that we can choose x1 sufficiently close to a such that
(29) holds for every x ∈ [a,x1] . Finally, for sufficiently small ε3 and ε4 , from (26) and
(29) we conclude that for arbitrary ε > 0 we can construct g0 of the form (10) such
that

|F(x)−g0(x)| � ε

for every x ∈ [a,b] . �
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