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A DUAL MINKOWSKI TYPE INEQUALITY
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(Communicated by H. Martini)

Abstract. The Orlicz Brunn-Minkowski theory was developed by Lutwak, Yang and Zhang. It
is an extension of the Lp Brunn-Minkowski theory. In this paper, a new function on the set of
star bodies is introduced. A dual Minkowski type inequality about this function is established.
Some properties of the new function are presented.

1. Introduction

Recently, Lutwak, Yang and Zhang introduced the definitions of Orlicz projection
body and Orlicz centroid body. It was shown (see [22, 23]) that a study of the Orlicz
Petty projection inequality and Orlicz centroid inequality leads to the Orlicz Brunn-
Minkowski theory which is a natural extension of the Lp Brunn-Minkowski theory
(see [5, 7, 8, 9, 19, 20, 21, 25, 26]), and they define a corresponding Orlicz addition of
convex bodies and provide a general framework for the Orlicz Brunn-Minkowski theory
(see [3, 28]). Recently the Orlicz Brunn-Minkowski theory has developed rapidly. The
Minkowski inequality is one of the centerpieces of the Brunn-Minkowski theory (cf.
[1]). The work of C. Haberl, E. Lutwak, D. Yang and G. Zhang([6]) solved the even
Orlicz Minkowski problem. The above cited work made it possible that the author
of [29] introduced Orlicz mixed volumes and established the Orlicz John ellipsoids.
For more information on these theories see, e.g., [12, 13, 14, 15, 16, 17, 24] and the
references therein.

It is the aim of this paper to define a new function on the set of star bodies and
to study the properties of it. We also establish a dual Minkowski type inequality about
this function.

Let C be the class of functions ψ : (0,∞) → (0,∞) such that ψ is convex, and
lim
t→0

ψ(t) = ∞ , lim
t→∞

ψ(t) = 0, and if ψ is strictly convex, then ψ ∈ C0 ⊂ C . Let S n

denotes the set of star bodies in R
n and S n

0 denotes the set of star bodies that contain
the origin in their interiors.

Define a function Vψ : S n
0 ×S n

0 → (0,∞) by

Vψ(K,L) = inf

{
λ > 0 :

1
n|K|

∫
Sn−1

ρ(K,u)nψ
(

λ ρ(L,u)
ρ(K,u)

)
dS(u) � 1

}
, (1)
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where K,L ∈ S n
0 , ρ(K,u) , ρ(L,u) are radial functions of K and L , S(·) is the spher-

ical Lebesgue measure, and |K| denotes the volume of K .
Note that the following homogeneity properties hold:
For an arbitrary constant c > 0,

Vψ(cK,L) = cVψ(K,L),

and

Vψ(K,cL) =
1
c
Vψ(K,L).

In particular, when ψ(t) = t−p , t > 0 and p � 1, the function Vψ(K,L) is the
normalization of the Lp dual mixed volume, i.e.,

Vψ(K,L) =
(

Ṽ−p(K,L)
|K|

) 1
p

.

We study the properties of the function Vψ(K,L) and show that Vψ(K,L) is bounded
and continuous about K,L and ψ . We also obtain a dual Minkowski type inequality:

THEOREM. Let ψ ∈ C0 with ψ(cψ) = 1 and K,L ∈ S n
0 . Then

Vψ(K,L)n � |cψK||L|−1,

with equality if and only if K and L are homothets.

The paper is organized as follows. In section 2, we will give various concepts and
basic properties of the dual Lp Brunn-Minkowski theory. In section 3, we discuss some
basic properties of the new function and give the proof of the main theorem.

2. Preliminaries

In this section we will give some necessary background materials. Good refer-
ences are the books of Gardner ([2]), Gruber ([4]) and Schneider ([27]).

Let B denote the unit ball and Sn−1 denote the unit sphere in Euclidean n -dimen-
sional space R

n . Let GL(n) be the general linear group of R
n .

A set K in R
n is called star-shaped with respect to a point z∈K if the intersection

of every line through z with K is a line segment. The radial function ρ(K, ·) : Sn−1 →R

of a star-shaped set K in R
n is defined by

ρ(K,u) = max{λ � 0 : λu ∈ K}.
If the radial function is positive and continuous, then K is called a star body.
It follows from the definition of the radial function that the following facts hold

(see [10]):
If K,L ∈ S n

0 , then:
(i) ρ(TK,u) = ρ(K,T−1u) , where T ∈ GL(n) , and T−1 is the inverse of T ;
(ii) For c > 0, ρ(K,cu) = 1/cρ(K,u);
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(iii) If K ⊂ L , then ρ(K,u) � ρ(L,u) .
For K ∈ S n

0 , define rK , RK as follows:

rK = min
u∈Sn−1

ρ(K,u) and RK = max
u∈Sn−1

ρ(K,u).

For p � 1, K,L ∈ S n
0 and ε > 0, the Lp harmonic radial combination K+̃ε �L ,

which is a star body, is defined by

ρ(K+̃ε �L, ·)−p = ρ(K, ·)−p + ερ(L, ·)−p. (2)

The dual Lp mixed volume Ṽ−p(K,L) of the star bodies K,L ∈ S n
0 was defined

in [18]:

− n
p
Ṽ−p(K,L) = lim

ε→0+

|K+̃ε �L|− |K|
ε

.

If we let K = L , then the dual Lp mixed volume is the ordinary volume, that is,

Ṽ−p(K,K) = |K|.

The polar coordinate formula for volume gives the following integral representa-
tion of the dual Lp mixed volume Ṽ−p(K,L) of the star bodies K,L :

Ṽ−p(K,L) =
1
n

∫
Sn−1

ρ(K,u)n+pρ(L,u)−pdS(u). (3)

The Hölder inequality (see [11]) and (3) yields the dual Lp Minkowski inequality:
If K,L ∈ S n

0 , p � 1, then

Ṽ−p(K,L)n � |K|n+p|L|−p,

with equality if and only if K and L are dilates.

3. The main results

We will give some properties of the function Vψ . At first we give a definition.

DEFINITION 1. For K,L ∈ S n
0 and ε > 0, ψ ∈ C , define the harmonic combi-

nation K+̃ψ ε �L ∈ S n
0 by

ρ(K+̃ψ ε �L, ·) = ρ(K, ·)ψ−1
[

ψ(1)+ εψ
(

ρ(L, ·)
ρ(K, ·)

)]
. (4)

Note that when ψ(t) = t−p , t > 0 and p � 1, (4) is just (3).
Combined with the definition of the harmonic combination and the fact that ρ(TK,u)

= ρ(K,T−1u) (where T ∈ GL(n) , and T−1 is the inverse of T ), we have
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LEMMA 3.1. Suppose that ψ ∈ C , K,L ∈ S n
0 and ε > 0 . Then, for T ∈ GL(n) ,

T (K+̃ψε �L) = TK+̃ψ ε �TL.

Proof. From the definition of the harmonic combination (4), we have

ρ(TK+̃ψε �TL,u) = ρ(TK,u)ψ−1
[

ψ(1)+ εψ
(

ρ(TL,u)
ρ(TK,u)

)]

= ρ(K,T−1u)ψ−1
[

ψ(1)+ εψ
(

ρ(L,T−1u)
ρ(K,T−1u)

)]

= ρ(K+̃ψε �L,T−1u)
= ρ(T (K+̃ψε �L),u),

which completes the proof. �

LEMMA 3.2. Suppose that ψ ∈ C , K,L ∈ S n
0 and ε > 0 . Then

lim
ε→0

V (K+̃ψ ε �L)−V(K)
ε

= α
∫

Sn−1
ρ(K,u)nψ

(
ρ(L,u)
ρ(K,u)

)
dS(u),

where α = (ψ−1)′r(ψ(1)).

Proof. From (4) and the polar coordinate formula for volume, we have

V (K+̃ψ ε �L) =
1
n

∫
Sn−1

ρ(K+̃ψε �L,u)ndS(u)

=
1
n

∫
Sn−1

ρ(K,u)n
[

ψ−1
(

ψ(1)+ εψ
(

ρ(L,u)
ρ(K,u)

))]n

dS(u)

=
1
n

∫
Sn−1

ρ(K,u)n
[
1+ ε(ψ−1)′r(ψ(1))ψ

(
ρ(L,u)
ρ(K,u)

)
+o(ε2)

]n

dS(u)

=
1
n

∫
Sn−1

ρ(K,u)n
[
1+nε(ψ−1)′r(ψ(1))ψ

(
ρ(L,u)
ρ(K,u)

)
+o(ε2)

]
dS(u),

which completes the proof. �
From our assumption that ψ is strictly decreasing on (0,∞) , it follows that the

function

λ →
∫

Sn−1
ρ(K,u)nψ

(
λ ρ(L,u)
ρ(K,u)

)
dS(u)

is strictly decreasing on (0,∞) . Then from (1) we have

LEMMA 3.3. Suppose that ψ ∈ C and K,L ∈ S n
0 , λ > 0 . Then

1
n|K|

∫
Sn−1

ρ(K,u)nψ
(

λ ρ(L,u)
ρ(K,u)

)
dS(u) = 1
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if and only if
Vψ(K,L) = λ .

Since ψ is strictly decreasing and convex on (0,∞) , and lim
t→0

ψ(t)= ∞ , lim
t→∞

ψ(t)=

0, there exists a real number 0 < cψ < ∞ such that ψ(cψ ) = 1.
The next lemma shows that Vψ is bounded.

LEMMA 3.4. Let ψ ∈ C and K,L ∈ S n
0 . We have

cψ rK

RL
� Vψ(K,L) � cψRK

rL
.

Proof. Let ψ(cψ ) = 1. By Lemma 3.3, the monotonicity of ψ and the polar
coordinate formula for volume, we have

ψ(cψ ) = 1 =
1

n|K|
∫

Sn−1
ρ(K,u)nψ

(
Vψ(K,L)ρ(L,u)

ρ(K,u)

)
dS(u)

� 1
n|K|

∫
Sn−1

ρ(K,u)nψ
(Vψ(K,L) max

u∈Sn−1
ρ(L,u)

min
u∈Sn−1

ρ(K,u)

)
dS(u)

=
1

n|K|
∫

Sn−1
ρ(K,u)nψ

(
Vψ(K,L)RL

rK

)
dS(u)

= ψ
(

Vψ(K,L)RL

rK

)
1

n|K|
∫

Sn−1
ρ(K,u)ndS(u)

= ψ
(

Vψ(K,L)RL

rK

)
,

and then
Vψ(K,L) � cψrK

RL
.

Using the analogous method, we obtain the upper bound on Vψ(K,L) by

Vψ(K,L) � cψRK

rL
. �

Next, we will show that Vψ(K,L) is continuous with respect to K and L .

LEMMA 3.5. If ψ ∈ C , Ki, Li ∈ S n
0 , and

Ki → K ∈ S n
0 , Li → L ∈ S n

0 ,

then
Vψ(Ki,Li) →Vψ(K,L).

Proof. Suppose that Vψ(Ki,Li) = λi . Then Lemma 3.4 shows that

cψ rKi

RLi

� Vψ(Ki,Li) � cψRKi

rLi

.
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Since Ki → K ∈ S n
0 and Li → L ∈ S n

0 , then rKi → rK > 0, rLi → rL > 0 and
RKi → RK < ∞ , RLi → RL < ∞ . Then there exist a and b such that

0 < a � λi � b < ∞,

for all i .
To prove that the bounded sequence {λi} converges to Vψ(K,L) , we show that

every convergent subsequence converges to Vψ(K,L) . Denote an arbitrary convergent
subsequence of {λi} by {λi} as well. Suppose that for this subsequence λi → λ0,
then we have 0 < a � λ0 � b < ∞. Let Li = λiLi . Then we have Li → λ0L. From the
definition of the function Vψ , we know that

λ−1
i Vψ(Ki,Li) = Vψ(Ki,λiLi) = Vψ(Ki,Li) = 1.

Then, by Lemma 3.3, we have

1 =
1

n|Ki|
∫

Sn−1
ρ(Ki,u)nψ

(
ρ(Li,u)
ρ(Ki,u)

)
dS(u)

=
1

n|Ki|
∫

Sn−1
ρ(Ki,u)nψ

(
ρ(λiLi,u)
ρ(Ki,u)

)
dS(u),

for all i .
While Ki →K and Li → λ0L imply that ρKi → ρK , ρLi

→ ρλ0L uniformly on Sn−1

to use the continuity of ψ and λi → λ0 , we get

1
n|K|

∫
Sn−1

ρ(K,u)nψ
(

ρ(λ0L,u)
ρ(K,u)

)
dS(u) = 1,

which implies that Vψ(K,λ0L) = 1. Then we have Vψ(K,L) = λ0 from the definition
of Vψ . This completes the proof. �

The following lemma shows that Vψ is also continuous with respect to ψ . We say
that the sequence ψi → ψ ∈ C for ψi ∈ C provided that

max
t∈I

|ψi(t)−ψ(t)| → 0,

for every compact interval I ⊂ R.

LEMMA 3.6. If ψ ∈ C , K,L ∈ S n
0 , then

ψi → ψ ∈ C ⇒ Vψi(K,L) →Vψ(K,L).

Proof. Let Vψi(K,L) = λi . Lemma 3.4 gives

cψi rK

RL
� λi �

cψiRK

rL
.
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Since ψi → ψ , we have c(ψi) → c(ψ) ∈ (0,∞) . Thus there exist a and b such
that

0 < a � λi � b < ∞, for all i .

To prove that the bounded sequence {λi} converges to Vψ(K,L) , we show that
every subsequence converges to Vψ(K,L) . Denote an arbitrary convergent subsequence
of {λi} by {λi} as well. Suppose that for this subsequence λi → λ0.

Since 0 < a � λi � b < ∞ and Vψi(K,L) = λi , from Lemma 3.3 it follows that

1
n|K|

∫
Sn−1

ρ(K,u)nψi

(
λiρ(L,u)
ρ(K,u)

)
dS(u) = 1.

Together with the fact that ψi → ψ ∈ C and λi → λ0 ∈ (0,∞) , we have

1
n|K|

∫
Sn−1

ρ(K,u)nψ
(

λ0ρ(L,u)
ρ(K,u)

)
dS(u) = 1.

This shows
Vψ(K,L) = λ0.

Then we obtain the conclusion

Vψi(K,L) →Vψ(K,L). �

Let O(n) denote the group of rotations. Our next lemma shows that Vψ(K,L) is
invariant under rotation.

LEMMA 3.7. Let ψ ∈ C , Ki,Li ∈ S n
0 and T ∈ O(n) . Then

Vψ(TK,L) = Vψ(K,T−1L).

Proof. From (1) and the fact that the spherical Lebesgue measure is rotation in-
variant, we have

Vψ(TK,L) = inf

{
λ > 0 :

1
n|TK|

∫
Sn−1

ρ(TK,u)nψ
(

λ ρ(L,u)
ρ(TK,u)

)
dS(u) � 1

}

= inf

{
λ > 0 :

1
n|K|

∫
Sn−1

ρ(K,T−1u)nψ
(

λ ρ(L,u)
ρ(K,T−1u)

)
dS(u) � 1

}

= inf

{
λ > 0 :

1
n|K|

∫
Sn−1

ρ(K,u)nψ
(

λ ρ(L,Tu)
ρ(K,u)

)
dS(Tu) � 1

}

= inf

{
λ > 0 :

1
n|K|

∫
Sn−1

ρ(K,u)nψ
(

λ ρ(L,Tu)
ρ(K,u)

)
dS(u) � 1

}

= inf

{
λ > 0 :

1
n|K|

∫
Sn−1

ρ(K,u)nψ
(

λ ρ(T−1L,u)
ρ(K,u)

)
dS(u) � 1

}

= Vψ(K,T−1L),

which completes the proof. �
In the following, we will establish a dual Minkowski type inequality.
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THEOREM. Let ψ ∈ C0 with ψ(cψ) = 1 and K,L ∈ S n
0 . Then

Vψ(K,L)n � |cψK||L|−1,

with equality if and only if K and L are homothets.

Proof. By Lemma 3.3, Jessen’s inequality and Hölder’s inequality (see [11]), we
have

ψ(cψ) = 1 =
1

n|K|
∫

Sn−1
ρ(K,u)nψ

(
Vψ(K,L)ρ(L,u)

ρ(K,u)

)
dS(u)

� ψ
(

1
n|K|

∫
Sn−1

ρ(K,u)n
(

Vψ(K,L)ρ(L,u)
ρ(K,u)

)
dS(u)

)

= ψ
(

Vψ(K,L)
n|K|

∫
Sn−1

ρ(K,u)n−1ρ(L,u)dS(u)
)

� ψ
(

Vψ(K,L)|K| n−1
n |L| 1

n

|K|
)

.

Then the monotonicity of ψ implies that

Vψ(K,L)n � |cψK||L|−1.

The equality condition follows from the equality conditions for Jessen’s inequality
and Hölder’s inequality. Note that if ψ is strictly convex, then Jessen’s inequality
implies that the first inequality is strict unless ψ is constant, that is, ρ(L,u)/ρ(K,u) is
constant for all u . This implies that K and L are homothets.

An immediate consequence of the condition that equality holds in Hölder’s in-
equality is that K and L are homothets. �
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352, (2012), 517–542.
[8] C. HABERL, F. SCHUSTER, Asymmetric affine Lp Sobolev inequalities, J. Funct. Anal., 257, (2009),

641–658.
[9] C. HABERL, F. SCHUSTER, General Lp affine isoperimetric inequalities, J. Differential Geom., 83,

(2009), 1–26.



A DUAL MINKOWSKI TYPE INEQUALITY 1243

[10] G. HANSEN, H. MARTINI, Dispensable points, radial functions, and boundaries of starshaped sets,
Acta Sci. Math. (Szeged), 80, (2014), 689–699.
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