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SOME REVERSE lp –TYPE INEQUALITIES INVOLVING

CERTAIN QUASI MONOTONE SEQUENCES

MIKHAIL K. POTAPOV, FATON M. BERISHA,
NIMETE SH. BERISHA AND RESHAD KADRIU

(Communicated by L. Leindler)

Abstract. In this paper, we give some lp -type inequalities about sequences satisfying certain
quasi monotone type properties. As special cases, reverse lp -type inequalities for non-negative
decreasing sequences are obtained. The inequalities are closely related to Copson’s and Leindler’s
inequalities, but the sign of the inequalities is reversed.

1. Introduction

For non-negative number sequences the following, classical inequalities of Hardy
and Littlewood, are well known [3, p. 255, Th 346].

Let {bν}∞
ν=1 be a sequence of non-negative numbers, α > 0, m and n positive

integers such that n < m . The following inequalities hold true:

m

∑
μ=n

μα−1
( m

∑
ν=μ

bν

)p

� C
m

∑
μ=n

μα−1(μbμ)p, (1.1)

m

∑
μ=n

μ−α−1
( μ

∑
ν=n

bν

)p

� C
m

∑
μ=n

μ−α−1(μbμ)p (1.2)

for p � 1; and

m

∑
μ=n

μα−1
( m

∑
ν=μ

bν

)p

� C
m

∑
μ=n

μα−1(μbμ)p, (1.3)

m

∑
μ=n

μ−α−1
( μ

∑
ν=n

bν

)p

� C
m

∑
μ=n

μ−α−1(μbμ)p (1.4)

for 0 < p � 1, where positive constant C depends only on numbers α and p , and does
not depend on integers m , n , and the sequence {bν}∞

ν=1 .
Closely related to these inequalities are classical Copson inequalities [1], Leindler’s

inequalities [5, 6, 7], and those proved or used in [8, 9, 10, 2].

Mathematics subject classification (2010): Primary 47A30; Secondary 26D15.
Keywords and phrases: lp -type, Copson, Leindler, inequalities, quasi, lacunary, geometrically, mono-

tone sequences.

c© � � , Zagreb
Paper MIA-18-96

1245

http://dx.doi.org/10.7153/mia-18-96


1246 M. K. POTAPOV, F. M. BERISHA, N. SH. BERISHA AND R. KADRIU

In the paper we prove some related inequalities which involve non-negative se-
quences satisfying certain monotone-type properties. As special cases, inequalities con-
verse to (1.1), (1.2), (1.3) and (1.4) for the case of non-negative monotone decreasing
number sequences are deduced.

In order to prove the inequalities we need the following

THEOREM 1.1. Let {bν}∞
ν=1 be a sequence of non-negative numbers, 0 < α < β ,

m and n positive integers such that n < m. Then the following inequality holds

( m

∑
μ=n

bβ
μ

)1/β
�

( m

∑
μ=n

bα
μ

)1/α
.

The proof of the theorem is due to Jensen [3, p. 28, Th. 19].
We call a number sequence {aν}∞

ν=1 non-negative monotone decreasing (or in-
creasing), and denote it by aν ↓ (or aν ↑ ), if for each positive integer ν the following
conditions are satisfied

1. aν � 0,

2. aν+1 � aν (or aν+1 � aν , respectively).

We call a number sequence {λν}∞
ν=1 quasi lacunary monotone if it is a non-

negative monotone sequence (i.e., λν ↓ or λν ↑ ) and there are positive constants K1

and K2 such that for each positive integer ν the following condition is satisfied

K1λ2ν � λ2ν+1 � K2λ2ν .

Finally, we call a non-negative number sequence {λμ}∞
μ=1 quasi geometrically

increasing if there is a positive constant K such that for each positive integer m the
following condition is satisfied

m

∑
μ=1

λμ � Kλm.

2. Inequalities for quasi monotone sequences

In this section we give several reverse inequalities of lp -type involving non-negative
decreasing sequences, quasi lacunary monotone sequences or quasi geometrically in-
creasing sequences.

THEOREM 2.1. Let a sequence {aν}∞
ν=1 be such that aν ↓ , {λμ}∞

μ=1 and {γν}∞
ν=1

be lacunary monotone sequences, m and n positive integers such that m � 16n. If
p � 1 , then the following inequality holds

m

∑
μ=n

λμ

( μ

∑
ν=n

aνγν

)p

� C
m

∑
μ=4n

λμ(μaμγμ)p. (2.1)
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If, in addition, {2μλ2μ}∞
μ=1 is a quasi geometrically increasing sequence, then the

following inequality holds

m

∑
μ=n

λμ

( m

∑
ν=μ

aνγν

)p

� C
m

∑
μ=8n

λμ(μaμγμ)p. (2.2)

Here and later on C and Ci will denote positive constants depending only on p and
the sequences {λμ}∞

μ=1 and {γν}∞
ν=1 , and not depending on m, n and the sequence

{aν}∞
ν=1 .

THEOREM 2.2. Let a sequence {aν}∞
ν=1 be such that aν ↓ , {λμ}∞

μ=1 and {γν}∞
ν=1

be lacunary monotone sequences, m and n positive integers such that m � 4n. If
0 < p � 1 , then the following inequality holds

m

∑
μ=4n

λμ

( μ

∑
ν=4n

aνγν

)p

� C
m

∑
μ=n

λμ(μaμγμ)p. (2.3)

If, in addition, {2μλ2μ}∞
μ=1 is a quasi geometrically increasing sequence, then the

following inequality holds

m

∑
μ=4n

λμ

( m

∑
ν=μ

aνγν

)p

� C
m

∑
μ=n

λμ(μaμγμ)p. (2.4)

3. Proof of Theorem 2.1

We prove inequality (2.2). For given n and m we choose positive integers N
and M such that 2N−1 < n � 2N and 2M � m < 2M+1 . Then the following inequality
holds

I =
m

∑
μ=n

λμ

( m

∑
ν=μ

aνγν

)p

�
2M

∑
μ=2N

λμ

( 2M

∑
ν=μ

aνγν

)p

.

By splitting the first sum into blocks of length 2i , we obtain

I �
M

∑
i=N+1

2i

∑
μ=2i−1+1

λμ

( 2M

∑
ν=μ

aνγν

)p

.

By bounding the third sum from below, taking into account that {λμ}∞
μ=1 is a quasi

lacunary monotone sequence, we have

I �
M

∑
i=N+1

( 2M

∑
ν=2i

aνγν

)p 2i

∑
μ=2i−1+1

λμ � C1

M

∑
i=N+1

2i−1λ2i−1

( 2M

∑
ν=2i

aνγν

)p

,

where C1 depends only on the sequence {λμ}∞
μ=1 . Now, we split the second sum into

blocks of length 2i−1 , remove the terms with index i = M , and taking into consideration
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that aν ↓ and {λμ}∞
μ=1 , {γν}∞

ν=1 are lacunary monotone sequences, we get

I � C2

M−1

∑
i=N+1

2iλ2i

(M−1

∑
j=i

a2 j+1

2 j+1

∑
ν=2 j+1

γν

)p

� C3

M−1

∑
i=N+1

2iλ2i

(M−1

∑
j=i

a2 j+12 jγ2 j

)p

.

By applying Theorem 1.1 to this inequality taking into account that 1 � p , then chang-
ing the order of summation, we have

I � C3

M−1

∑
i=N+1

2iλ2i

M−1

∑
j=i

ap
2 j+12

jpγ p
2 j � C3

M−1

∑
j=N+1

ap
2 j+12

jpγ p
2 j

j

∑
i=N+1

2iλ2i

� C3

M−1

∑
j=N+1

ap
2 j+12

j(p+1)γ p
2 j λ2 j .

Since aν ↓ , taking into consideration that {γν}∞
ν=1 and {λμ}∞

μ=1 are quasi lacunary
monotone and quasi geometrically increasing sequences, respectively, we obtain

I � C4

M−1

∑
j=N+1

2 j+2

∑
μ=2 j+1+1

ap
μγ p

μ μ pλμ .

We rewrite the above inequality in the form

I � C4

2M+1

∑
μ=2N+2+1

λμ(μaμγμ)p,

and since 2N+2 < 8n , we obtain

I � C4

n

∑
μ=8n

λμ(μaμγμ)p.

Thus, we have proved inequality (2.2) assuming that N + 1 � M− 1. In fact, for
m � 16n we get 2N−1 < n � m

16 � 2M−3 , yielding that the condition N +1 � M−1 is
satisfied.

In order to prove inequality (2.1), put

J =
m

∑
μ=n

λμ

( μ

∑
ν=n

aνγν

)p

,

in a similar manner, but by making use of the fact that {λμ}∞
μ=1 is solely a quasi

lacunary monotone sequence (i.e. without a quasi geometrically increasing sequence
assumption), we obtain

J � C5

2M−1

∑
μ=2N+1

λμ(μaμγμ)p.
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Thus
2M−1

∑
μ=2N+1

λμ(μaμγμ)p � C6J. (3.1)

Since aν ↓ and {λμ}∞
μ=1 , {γν}∞

ν=1 are lacunary monotone sequences, we have

J1 =
2M+1

∑
μ=2M

λμ(μaμγμ)p � ap
2M

2M+1

∑
μ=2M

λμ(μaμγμ)p � C7

2M−1

∑
μ=2M−1

λμ(μaμγμ)p.

Hence, for N +1 � M−1 we obtain

J1 � C7

2M−1

∑
μ=2N+1

λμ(μaμγμ)p.

Thus, inequality (3.1) yields
J1 � C8J;

or
2M+1

∑
μ=2M

λμ(μaμγμ)p. � C8J. (3.2)

Adding inequalities (3.1) and (3.2) together, we obtain

2M+1

∑
μ=2N+1

λμ(μaμγμ)p � C9

m

∑
μ=n

λμ

( μ

∑
ν=n

aνγν

)p

.

Since 2N+1 � 4n , 2M+1 > m , the above inequality implies the inequality (2.1). This
completes the proof of Theorem 2.1.

4. Proof of Theorem 2.2

We prove the inequality (2.4). Let positive integers N and M be defined by the
inequalities 2N−1 < n � 2N and 2M � m < 2M+1 . This yields

I =
m

∑
μ=4n

λμ

( m

∑
ν=μ

aνγν

)p

�
2M+1

∑
μ=2N+1+1

λμ

(2M+1

∑
ν=μ

aνγν

)p

=
M

∑
i=N+1

2i+1

∑
μ=2i+1

λμ

(2M+1

∑
ν=μ

aνγν

)p

.

By bounding the third sum from above, taking into account that {λμ}∞
μ=1 is a quasi

lacunary monotone sequence, we get

I �
M

∑
i=N+1

( 2M+1

∑
ν=2i+1

aνγν

)p 2i+1

∑
μ=2i+1

λμ � C1

M

∑
i=N+1

2iλ2i

( 2M+1

∑
ν=2i+1

aνγν

)p

,
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where positive constant C1 depends only on the sequence {λμ}∞
μ=1 . Now, we split the

second sum into blocks of length 2 j and taking into consideration the fact that aν ↓ ,
and {γν}∞

ν=1 is a lacunary monotone sequences, we have

I � C1

M

∑
i=N+1

2iλ2i

( M

∑
j=i

a2 j

2 j+1

∑
ν=2 j+1

γν

)p

� C2

M

∑
i=N+1

2iλ2i

( M

∑
j=i

a2 j2 jγ2 j

)p

.

By applying Theorem 1.1 and then changing the order of summation, we obtain

I � C2

M

∑
i=N+1

2iλ2i

M

∑
j=i

ap
2 j2

jpγ p
2 j � C2

M

∑
j=N+1

ap
2 j2

jpγ p
2 j

j

∑
i=N+1

2iλ2i .

Further, the fact that {λμ}∞
μ=1 is a quasi geometrically increasing sequence yields

I � C3

M

∑
j=N+1

ap
2 j2

jpγ p
2 j2

jλ2 j .

Since aν ↓ , taking into consideration that {γν}∞
ν=1 and {λμ}∞

μ=1 are quasi lacunary
monotone sequences, we get

ap
2 j2

j(p+1)γ p
2 j λ2 j � C4

2 j

∑
μ=2 j−1+1

ap
μγ p

μ μ pλμ .

Therefore,

I � C5

M

∑
j=N+1

2 j

∑
μ=2 j−1+1

λμ(μaμγμ)p = C5

2M

∑
μ=2N+1

λμ(μaμγμ)p.

where positive constant C5 does not depend on N and M . Since 2M � m and 2N +1 >
m , we obtain

I � C5

m

∑
μ=n

λμ(μaμγμ)p,

which proves inequality (2.4).
Inequality (2.3) can be proved in an analogous way, but without a quasi geometri-

cally increasing assumption for the sequence {2μλ2μ}∞
μ=1 .

5. Inequalities for non-negative decreasing sequences

For α,λ ∈ R put

λμ = μα−1 (μ = 1,2, . . .),

γν = νλ (ν = 1,2, . . .).
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Obviously, the obtained sequences {μα−1}∞
μ=1 and {νλ}∞

ν=1 are both quasi lacunary
monotone sequences.

If, in addition, α > 0, then {2μ2μ(α−1)}∞
μ=1 is a quasi geometrically increasing

sequence.
By applying Theorems 2.1 and 2.2 for such sequences {λμ}∞

μ=1 and {γν}∞
ν=1 ,

we deduce the following lp -type inequalities for non-negative decreasing sequences,
which are converse to inequalities (1.1), (1.2), (1.3) and (1.4).

THEOREM 5.1. Let a sequence {aν}∞
ν=1 be such that aν ↓ , and α > 0 , λ ∈ R ,

m and n positive integers such that m � 16n. If p � 1 , then the following inequalities
hold

m

∑
μ=n

μα−1
( m

∑
ν=μ

aννλ
)p

� C
m

∑
μ=8n

μα−1(aμ μλ+1)p,

m

∑
μ=n

μ−α−1
( μ

∑
ν=n

aννλ
)p

� C
m

∑
μ=4n

μ−α−1(aμ μλ+1)p.

Hereafter C denotes positive constant depending only on α , λ and p, and not depend-
ing on m, n and the sequence {aν}∞

ν=1 .

THEOREM 5.2. Let a sequence {aν}∞
ν=1 be such that aν ↓ , and α > 0 , λ ∈R , m

and n positive integers such that m � 4n. If 0 < p � 1 , then the following inequalities
hold

m

∑
μ=4n

μα−1
( m

∑
ν=μ

aννλ
)p

� C
m

∑
μ=n

μα−1(aμ μλ+1)p,

m

∑
μ=4n

μ−α−1
( μ

∑
ν=4n

aννλ
)p

� C
m

∑
μ=n

μ−α−1(aμ μλ+1)p.

Note that Theorems 5.1 and 5.2 given above imply several inequalities proved
earlier [3, 4, 11].

Namely the following Corollaries are simple consequences of these theorems and
the inequalities (1.1), (1.2), (1.3) and (1.4).

COROLLARY 5.1. Let a sequence {aν}∞
ν=1 be such that aν ↓ , α > 0 , λ ∈ R ,

and n a positive integer. If p > 0 , then the following inequalities hold

n

∑
μ=1

μα−1
( n

∑
ν=μ

aννλ
)p

� C
n

∑
μ=1

μα−1(aμ μλ+1)p,

n

∑
μ=1

μ−α−1
( μ

∑
ν=1

aννλ
)p

� C
n

∑
μ=1

μ−α−1(aμ μλ+1)p.
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COROLLARY 5.2. Let a sequence {aν}∞
ν=1 be such that aν ↓ , α > 0 , λ ∈ R ,

and n a positive integer. If p � 1 , then the following asymptotic equivalences hold
n

∑
μ=1

μα−1
( n

∑
ν=μ

aννλ
)p

�
n

∑
μ=1

μα−1(aμ μλ+1)p,

n

∑
μ=1

μ−α−1
( μ

∑
ν=1

aννλ
)p

�
n

∑
μ=1

μ−α−1(aμ μλ+1)p.
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Nëna Terezë 5, 10000 Prishtina, Kosovo
e-mail: faton.berisha@uni-pr.edu

Nimete Sh. Berisha
Faculty of Economics, University of Prishtina

e-mail: nimete.berisha@uni-pr.edu

Reshad Kadriu
College “Business”

Prishtina

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


