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A HILBERT–TYPE INEQUALITY
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(Communicated by J. Pečarić)

Abstract. There are many versions of inequalities due to Hilbert and Hardy. Many extensions
to nontrivial cases are now available. We present and derive a new Hilbert-type inequality for
both sums and integrals. In our setup, the matrix elements associated with the quadratic form are
ratios of differences of powers of an increasing function. This inequality contains some known
results as special cases.

1. Introduction

In this note we present a Hilbert-type inequality for sums and integrals. There is
a vast literature on Hilbert-Hardy inequalitiies, and their various forms and extensions.
An excellent introduction can be found in the book by Hardy, Littlewood and Polya
(1988). For recent developments the reader may consult Handley (2006), Yang (2009,
2011), Krnić et. al. (2012) and the references therein.

The basic inequality for sums is of the form∣∣∣∣∣ ∑
1� j,k�m

c1 jc2kd jk

∣∣∣∣∣� π(∑c2
1 j)

1/2(∑c2
2 j)

1/2, (1)

where d jk = 1/( j−k) , j �= k (with d j j = 0) or d jk = 1/( j+k). Here {c1 j} and {c2 j}
are assumed to be real valued. The inequality is valid when m = ∞ . Integral versions of
these results mirror the discrete ones. The cases where d jk are of the form 1/(λ j −λk)
or 1/(λ j + λk) were developed by Montgomery and Vaughan (1974). There are other
extensions where the kernel d jk is homogeneous or nonhomogeneous satisfying certain
properties so that sums can be approximated by integrals (Yang (2011), Krnić (2012)).

We consider here the case when d jk is of the form

d jk = [(λ jλk)(1−α)/2α−1(λ α
j −λ α

k )/(λ j −λk)][(λ̇ jλ̇k)1/2a jk], |α| < 2, (2)

where a jk = 1/(λ j + λk + f ) , or more generally of the form

d jk = L(λ j,λk)[(λ̇ jλ̇k)1/2a jk], (3)
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where f is a nonnegative constant, λ j = λ ( j) , λ̇ j = λ̇ ( j) , λ is a nonnegative strictly
increasing function with derivative λ̇ . Note that (2) is a special case of (3) with

L(x,y) = (xy)(1−α)/2α−1[(xα − yα)/(x− y)], |α| < 2. (4)

and we will show that inequality (1) holds for this form when |α| � 1. The inequality
also holds for the case when 1 < |α| < 2, but the constant on the right hand side is
then πR(|α|) , where R is defined in Theorem 1, instead of π . We note in passing that
R(1) = 1.

We also address the issue of near singularity of d jk . If λ (x0) = 0 for some 0 <
x0 � 1/2, then under reasonable condition an inequality of the type in (1) may hold
(Theorem 1 in Section 2). But, the case for 1/2 < x0 < 1 is different. If x0 is close
to 1 with f = 0, then d11 can be quite large. The constant obtainable from Hilbert-
type inequality in such a case should depend on x0 , whereby the constant is π when
x0 = 1/2, but approaches infinity as x0 approaches 1. We obtain an expression for
such a constant in Theorem 4.

We first obtain a Hilbert-type inequality for d jk under conditions on L and apply
this result to the specific case when L is of the form (4). We write down the integral
versions of the discrete case. We also deal with the issue of near singularity as discussed
in the last paragraph. Section 2 states the main results and the necessary auxiliary
lemmas. Section 3 contains the proofs.

2. The main results

Let λ (x) be a strictly increasing nonnegative function on [0,∞) or on [x0,∞) with
0 < x0 < 1. In the latter case we assume λ (x0) = 0. For both cases, we assume that
λ (∞) = ∞. Let D be a m×m matrix whose element ( j,k) is as given in (3). We will
assume that for some 1 � β < 2, the kernel L satisfies the following

|L(x1,x2)| � max(x1,x2)β−1/(x1x2)(β−1)/2. (5)

There are general results for obtaining Hilbert-type inequality where the “kernel”
of the quadratic form satisfies certain conditions (Yang (2011), Krnić (2012)). However,
such conditions are not necessarily true when d jk is as given in (3) or more specifically
in (4). However, upper bounds of the kernel such as the one given in (5) may have
desirable properties whereby sums can be approximated by integrals (Theorem 1) in
order to get a Hilbert-type inequality. When L is of the form given in (4), we need
to obtain an upper bound for it and then apply Theorem 1 in order to get the desired
result. It turns out that the upper bounds are of different type for the cases |α| � 1 and
1 < |α| < 2. This will be discussed below in detail.

Our main result holds under one of the conditions given below. Either condition 1
or condition 2 is sufficient to give us an inequality similar to (1) except that the constant
now is πR(β ) .

CONDITION 1. For any positive constant h, the functions ψ1(x) = λ (x)−β/2(h+
λ (x))−1λ̇ (x) and ψ2(x) = λ (x)β/2−1(h+λ (x))−1λ̇ (x) are non-increasingwhen x > 0.
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CONDITION 2. The functions ψ1 and ψ2 are convex when x > x0 and 0 < x0 �
1/2 .

REMARK 1. When β = 1, ψ1 = ψ2 = λ−1/2(h+ λ )−1λ̇ = ψ0 , say. In this case
Conditions 1 and 2 become simpler since we need to check montonicity or convexity
of only one function ψ0 .

In the results below, the sequences of real numbers {c1 j : j = 1, ...,m} and {c2 j :
j = 1, ...,m} , where m can be infinity, are assumed to be of unit length, i.e., ∑c2

1 j =
∑c2

2 j = 1 .

THEOREM 1. Assume that λ is a strictly increasing nonnegative function on
[x0,∞) . If x0 � 0 , then assume that condition 1 holds. If 0 < x0 � 1/2 , then assume
that condition 2 holds. Let d jk be as given in (3) with the kernel L satisfying inequality

(5). Define R(β ) = (2/π)
∫ 1/2
0 z−β/2(1− z)β/2−1dz. Then∣∣∣∣∣ ∑

1� j,k�m

c1 jc2kd jk

∣∣∣∣∣� πR(β ) (6)

It is fairly easy to see that R , which is proportional to the incomplete Beta function,
is increasing in β with R(1) = 1 and it approaches ∞ as β → 2. The result stated here
is supposed to be true for any positive integer m and for m = ∞ . However, when β = 2
and m finite, it is of course possible to get a finite bound that depend on m . We will
now briefly discuss the case for integral inequalities for which the proofs are similar as
in the discrete case, but a bit easier since, unlike in the discrete case, no effort is needed
to approximate sums by integrals. We will assume without loss of generality that λ is
nonnegative and increasing on the interval [0,n] , where n can be a finite real number
or infinity. Let

d(x,y) = L(λ (x),λ (y))[(λ̇ (x)λ̇ (y))1/2/(λ (x)+ λ (y)+ f )],

where L can be bounded as in (5).

THEOREM 2. Let f1 and f2 be square integrable on the interval [0,n] with
∫

f 2
1 =∫

f 2
2 = 1 , where n could be infinity. Assume that Condition 1 holds. Then we have∣∣∣∣

∫ ∫
f1(x) f2(y)d(x,y)dxdy

∣∣∣∣� πR(β ).

For the remainder of the Section we will look at {d jk} as given in (2). For this
case, the kernel L is of the form as stated in (4). Note that when α = 0, L(x,y) =
(xy)1/2| log(x/y)| and L is identically equal to 1 when |α| = 1. Lemma 2 given below
points out that inequality (5) is true the kernel L . More specifically we have

L(λ j,λk) �
{

1 |α| � 1
max(λ j,λk)|α |−1/(λ jλk)(|α |−1)/2 1 < |α| < 2.

.

In other words, the case for |α| � 1 corresponds to β = 1 in (5). Whereas the case for
1 < |α| < 2 corresponds to β = |α| .
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REMARK 2. When |α|� 1, we have ψ1 = ψ2 . In such a case, Conditions 1 and 2
become simpler since we need to check montonicity or convexity of only one function
ψ0 as stated in Remark 1.

THEOREM 3. Assume that λ is a strictly increasing nonnegative function on
[x0,∞) . If x0 � 0 , then assume that either Condition 1 or Condition 2 holds. If
0 < x0 � 1/2 , then assume that Condition 2 holds. Let d jk be as given in (3) with
the kernel L of the form in (4). Then

a) inequality (6) holds with the constant πR(1) = π for any |α| � 1 ,
b) inequality (6) holds with the constant πR(|α|), for any 1 < |α| < 2 .

We will state now an immediate consequence of Theorem 3 when λ (x) = (x−
x0)θ , θ > 0. When |α| � 1, we can take β = 1 in inequality (5) and, in this case, the
functions ψ0 is non-increasing and convex on (x0,∞) when θ � 2. When 1 < |α|< 2,
we can take β = |α| , and ψ1 and ψ2 are non-increasing and convex if θ � 2/|α| .

COROLLARY 1. Let λ (x) = (x− x0)θ , θ > 0 , x0 � 1/2. Let d jk be as given in
(3) with the kernel L of the form in (4). Then

a) inequality (6) holds with the constant πR(1) = π for any |α| � 1 , as long as
θ � 2 ,

b) inequality (6) holds with the constant πR(|α|), 1 < |α| < 2 , as long as θ �
2/|α| .

Theorem 1 states that when λ (x0) = 0 for 0 < x0 < 1, convexity of ψ1 and ψ2 is
enough to get a Hilbert-type inequality if x0 � 1/2 and |α| � 1. For instance, if d jk

is of the form 1/( j + k− 2x0) with x0 � 1/2, we know that Hilbert inequality holds.
What happens when 1/2 < x0 < 1? We will address this type of issue for when d jk is
of the form in (3) with L as in (4) for the case |α| � 1.

THEOREM 4. Let λ (x) be a strictly increasing nonnegative function and that the
function ψ0 = λ−1/2(h + λ )−1λ̇ is convex on (x0,∞) for any positive constant h.
Moreover assume that (1− x0)λ̇1/λ1 � π/4 . Let d jk be as given in (3) with the
kernel L of the form in (4). Then for any |α| � 1 , we have

∣∣∣∣∣ ∑
1� j,k�m

c1 jc2kd jk

∣∣∣∣∣� π [1+(1/2)(x0−1/2)(1− x0)−1].

REMARK 3. Note that when x0 = 1/2, the constant on the right hand side equals
π . However, the constant grows to infinity as x0 approaches 1. When λ (x) = (x−x0)θ ,
the function ψ0 stated in Remark 1 is convex on (x0,∞) as long as θ � 2 and |α| � 1.
In this case, (1− x0)λ̇1/λ1 � π/4 if θ � π/2.

The proof of Theorem 3 depends crucially on the following two Lemmas.
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LEMMA 1. For any 0 < x � 1 the following holds

α−1(1− xα)/(1− x) �
{

x−(1−α)/2 0 � α � 1
1 1 < α < 2

For notational convenience let us denote

L0(x1,x2;α) = (x1x2)(1−α)/2α−1(xα
1 − xα

2 )/(x1− x2).

Clearly L0 is nonnegative with x1,x2 � 0. As a consequence of the last Lemma we get
the following.

LEMMA 2. For any x1 > 0 , x2 > 0 , we have

L0(x1,x2;α) �
{

1 |α| � 1
max(x1,x2)|α |−1/(x1x2)(|α |−1)/2 1 < |α| < 2

3. The proofs

Proof of Theorem 1. We will follow the usual arguments used in proving the
Hilbert inequality. Let g jk = a jk max(λ j,λk)β−1/(λ jλk)(β−1)/2 , where a jk = (λ j +
λk + f )−1. We apply the Cauchy-Schwartz inequality for the double sum

∣∣∑c1 jc2kd jk

∣∣2 �
∣∣∣∑(|c1 j|λ 1/4

j g1/2
jk λ̇ 1/2

k λ−1/4
k )(|c2k|λ 1/4

k g1/2
jk λ̇ 1/2

j λ−1/4
j )

∣∣∣2
�
(

∑
j

c2
1 jλ

1/2
j ∑

k

g jkλ̇kλ−1/2
k

)(
∑
k

c2
2kλ 1/2

k ∑
j

g jkλ̇ jλ
−1/2
j

)
.

Since g jk = gk j , it is enough to obtain approximation for any of the two inner sums in

the last expression and show that ∑k g jkλ̇kλ−1/2
k � λ−1/2

j πR(β ) . Note that

∑
k

g jkλ̇kλ−1/2
k � λ (β−1)/2

j ∑
k� j−1

λ−β/2
k λ̇k(λ j + λk + f )−1

+ λ−(β−1)/2
j ∑

k� j

λ β/2−1
k λ̇k(λ j + λk + f )−1

= J1 + J2, say.

If Condition 1 holds then

J1 � λ (β−1)/2
j

∫ j−1

0
λ (x)−β/2λ̇ (x)(λ j + λ (x)+ f )−1dx

= λ (β−1)/2
j

∫ λ ( j−1)

λ (0)
u−β/2(λ j +u+ f )−1du

� λ−1/2
j

∫ T

0
u−β/2(1+u)−1du,



1258 P. BURMAN

where T = λ ( j−1)/(λ ( j)+ f ) . Now

J2 � λ−(β−1)/2
j

∫ ∞

j−1
λ (x)β/2−1λ̇ (x)(λ j + λ (x)+ f )−1dx

= λ−(β−1)/2
j

∫ ∞

λ ( j−1)
uβ/2−1(λ j +u+ f )−1du

� λ−1/2
j

∫ ∞

T
uβ/2−1(1+u)−1du

= λ−1/2
j

∫ 1/T

0
u−β/2(1+u)−1du,

Hence

J1 + J2 � λ−1/2
j

∫ T

0
u−β/2(1+u)−1du+ λ−1/2

j

∫ 1/T

0
u−β/2(1+u)−1du

= λ−1/2
j γ(T ),

with

γ(T ) =
∫ T

0
u−β/2(1+u)−1du+

∫ 1/T

0
u−β/2(1+u)−1du

Now the function γ(T ) , 0 < T � 1, is increasing in T . Hence,

J1 + J2 � λ−1/2
j γ(T ) � λ−1/2

j γ(1) = λ−1/2
j 2

∫ 1

0
u−β/2(1+u)−1

= λ−1/2
j 2

∫ 1/2

0
z−β/2(1− z)β/2−1dz

= λ−1/2
j πR(β ).

When Condition (2) holds, the arguments are basically the same except that we can now
use the convexity of ψ1 and ψ2 to bound J1 by an integral over [.5, j− .5] and J2 by
an integral over [ j− .5,∞) . �

Proof of Theorem 2. The proof is omitted since it basically follows the arguments
given in the proof of Theorem 1. �

Proofs of Theorem 3 and Corollary 1. The proofs are omitted since they are im-
mediate consequences of Theorem 1 and Lemma 2. �

Proof of Theorem 4. The proof is very similar to that in Theorem 1. The only
difference is how the terms J1 and J2 are approximated. Note that due to Lemma 2,
for the case for |α| � 1, the upper bound of L(x,y) is equal to 1, i.e., we can take
β = 1 in J1 and J2 in the proof of Theorem 1. First note that the function γ(x) =
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λ (x)−1/2λ̇ (x)(λ j + λ (x))−1 is decreasing and convex when x > x0 . Let J = J1 + J2

and denote x−1/2/(1+ x) by γ0 . When j � 2, we have

J = ∑
k�1

λ−1/2
k λ̇k(λ j + λk +2 f )−1 � ∑

k�1

γ(k)

= γ(1)+ ∑
k�2

γ(k) � (2(1− x0))−1
∫ 2−x0

x0

γ(x)+
∫ ∞

1.5
γ(x)dx

= λ−1/2
j

[
(2(1− x0))−1

∫ λ (2−x0)/λ j

0
γ0 +

∫ ∞

λ (1.5)/λ j

γ0

]

� λ−1/2
j

[
(2(1− x0))−1

∫ λ (2−x0)/λ j

0
γ0−

∫ λ (2−x0)/λ j

0
γ0 +

∫ ∞

0
γ0

]

� λ−1/2
j

[
(x0− .5)(1− x0))−1

∫ 1

0
γ0 +

∫ ∞

0
γ0

]

= λ−1/2
j [(x0− .5)(1− x0))−1π/2+ π ] = λ−1/2

j π [(1/2)(x0− .5)(1− x0))−1 +1].

When j = 1, the argument is a bit different. Note that

J � γ(1)+ ∑
k�2

γ(k) � γ(1)+
∫ ∞

1.5
� γ(1)−

∫ λ1

0
γ +

∫ ∞

x0

γ

= γ(1)−λ−1/2
1 π/2+ λ−1/2

1 π = λ−1/2
1 [γ(1)λ 1/2

1 −π/2+ π ].

Since γ(1)λ 1/2
1 = (1/2)λ̇1/λ1 � (1− x0)−1π/4 by assumption, we have

γ(1)λ 1/2
1 −π/2 � (π/4)(1− x0)−1−π/2 = (π/2)(x0− .5)(1− x0)−1.

The result now follows. �

Proof of Lemma 1. Note that the result clearly holds when x = 0 or x = 1. So we
will prove the result when 0 < x < 1.

Case 0 � α < 1: We will show the result for α > 0 since the case for α = 0
follows by letting α go to zero. Note that

α−1(1− xα)/(1− x) = α−1 ∑
0�t<∞

(
α

t +1

)
(−1)t(1− x)t = ∑

0�t<∞
at(1− x)t , (7)

where

at = α−1
(

α
t +1

)
(−1)t .

Let bt =
(−(1−α)/2

t

)
(−1)t . Note that a0 = b0 = 1, a1 = b1 = (1−α)/2 and that both

at and bt are positive. Clearly our result will be proved if we can show that at � bt for
all t, since

α−1(1− xα)/(1− x) � ∑
0�t<∞

bt(1− x)t = x−(1−α)/2.
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We will show that at � bt , by using the method of induction. Assume that the result is
true for all indices up to t and we will show that the result holds for t +1. Note that

at+1 = at(t +1−α)/(t +2), bt+1 = bt(t +(1−α)/2)/(t +1).

Now

(t +(1−α)/2)/(t +1)− (t +1−α)/(t +2) = (t/2)(t +1)−1(t +2)−1(1+ α) > 0.

This shows that at+1 < bt+1 and the proof is concluded.
Case 1 < α < 2: Note that the expansion in (7) is still valid for any x < 1 and that

a0 = 1 and at < 0 for all t � 1. Hence the result follows as the right hand side in (7)
bounded above by 1. �

Proof of Lemma 2. Since L0(x1,x2;α) = L0(x1,x2; |α|) , it is enough to verify the
result when α is nonnegative. The result is trivially true when x1 = x2 and when α = 1.
Let us assume that x1 > x2 . When 0 < α < 1, using Lemma 1 we get

α−1(xα
1 − xα

2 )/(x1 − x2) = xα−1
1 (1− (x2/x1)α)/(1− (x2/x1)) (8)

� xα−1
1 α(x2/x1)−(1−α)/2 = α(x1x2)−(1−α)/2.

The case for α = 0 follows from the above by letting α go to zero. When 1 < α < 2,
and x1 > x2 , the quantity on the right hand side in (8) can be bounded above by 1 using
Lemma 1 and the result follows. �
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