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COMPACTNESS FOR THE COMMUTATOR OF THE
PARAMETERIZED AREA INTEGRAL IN THE MORREY SPACE

YANPING CHEN AND HONG WANG

(Communicated by B. Opic)

Abstract. In this paper the authors prove that the commutator [b, NE ] is a compact operator in

the Morrey space LP* (R™) for 1 < p < o and 0 < A < n, if and only if b € VMO(R"), the
BMO (R") -closure of CZ° (R"), where ‘ug denotes the parameterized area integral.

1. Introduction

The parameterized area integral is defined by

1
° dydt \?

p o 2 ay
r)= ([T RO )

- Qy—2)
)= [ @

where Q satisfies the following conditions:
(a) Q is homogeneous function of degree zero on R™\ {0}, i.e.

where

Q(tx) = Q(x) for any 7 >0 and x € R"\ {0}. (L.1)
(b) Q has mean zero on §" !, i.e.
. Q(x)do(x') =0. (1.2)
where $"~! denotes the unit sphere in R" equipped with the Lebesgue measure do .
On the other hand, if taking
0P (x) == Q) X[ P <y (), 0<p <n,

@ (x):=t"p(x/t), t>0,
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then we can write

= dydi\ ?
ire= ([T [ e esoP )

of (x) :=17"9P (x/1), 1>0.
Before stating some results, let us recall some definitions and notations.

where

DEFINITION 1.1. ([1]) Let X and Y be Banach spaces and V' be a subset of X .
Then operator T : V ——Y is said to be a compact operator if T is continuous and maps
bounded subsets of V into strongly pre-compact subsets of Y.

DEFINITION 1.2. ([2]) Suppose that Q(x') € L4(S"~!) for g > 1. Then the inte-
gral modulus @,(8) of continuity of order ¢ of Q is defined by

a,8)= s ([ 10(e)-aw)faow) ),

lltll<8
where T denotes the rotation on R” and ||7|| := sup |7x' —x/|. The function Q is

Xesn—1
said to satisfy the L?— Dini condition, if

/IMd6<oo
o O

Let b € Lj,.(R") and 0 < p < n, we define the commutator [b, ;,Lg | as follows:

1
Q-2 ? dydt )7
b / / / b(x)—b )dz| —5—
bl = ([ e e~
In [2], the authors gave the L? compactness of the commutator [b, [.15 ].
THEOREM A. ([2]) Let Q satisfies (1.1), (1.2) and
C
Q) — Q)| < 71Y C >0, y>1, ¥y es L. (1.3)
(log 7=57)

If n/2 < p <n and [b,u§] is a compact operator in LP(R") for 1 < p < o, then
beVMO(R").

THEOREM B. ([2]) Let Q € L*(S"") satisfy (1.1), (1.2) and
1
/ @(H\loga)“d&m, c>2. (1.4)
0

If n/2<p <n, be VMOR"), then [b,uf] is a compact operator in LP(R") for
I <p<oo.

For p € (1,%), A € (0,n), we give the definition of the Morrey space L’*(R")
as follows.

LPM(R) := {f € Lige(®") | fllpa <o},
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where

1 »
fll,2:= sup (—/ flx pdx)
171 veRrr>0 \ 7t B(w)| @I

and B(y,r) denotes the ball centered at y and with radius r > 0. The space becomes
a Banach space with norm |- ||, ;. Moreover, if 2 =0 and A = n, then LP*(R") and
LP"(R™) coincide with the space LP(R") and L= (R"), respectively.

Therefore, an interesting question arise naturally. That is, is true the conclusion
in Theorem A and Theorem B if replacing the L”(R") by LP**(IR")? In this paper we
will give a positive answer to above question. Now we state our results as follows.

THEOREM 1.1. Let Q satisfies (1.1), (1.2) and (1.3). If 5 < p <n and [b,ug} is
a compact operator in LP*(R") for 0 < A <n, 1 < p < oo, then b € VMO(R").

THEOREM 1.2. Let Q € L>(S"™Y) satisfies (1.1), (1.2) and (1.4). If 5<p<n,
b € VMO(R"), then [b,uf] is a compact operator in LP*(R") for 0 <A <n, 1 <
p < 0.

It is easy to see that the condition (1.3) implies (1.4), so we may get the following
corollary immediately.

COROLLARY 1.1. Let Q satisfy (1.1), (1.2) and (1.3). If 5 <p <n, 0 <A <n,
1 < p <o, then b, uf] is a compact operator in LP*(R") ifand only if b€ VMO(R™).

Throughout this paper the letter C will stand for a positive constant which is inde-
pendent of the essential variables and not necessarily the same one in each occurrence.

Moreover, |E| denotes the Lebesgue measure of the measurable set E in R”. As usual,
for p>1, p’ = p/(p—1) denotes the dual exponent of p.

2. Lemmas

Let us begin with some lemmas, which will be used in the proof of the main results.

LEMMA 2.1. ([10]) For f € BMO(R"), then f € VMO(R") if and only if f
satisfies the following three conditions:

(i) lir% sup M(f,0) =0.
“7VQl=a

(ii) lim sup M(f,0Q) =0.
“T70l=a

(iii) }i_I};M(ﬁx—i—Q) =0, for each Q, where M(f,0) = @fg\f(x) — foldx.

LEMMA 2.2. ([4]) Let 1<p <o, 0< A < n. If the subset G in LP"*(R") satisfies
the following conditions:

sup || fl[pa < e, (2.1)
feG

|1|im0Hf(-+y) —f()ll,,=0 uniformly in f€G, (2.2)
y—?

lim H fxEﬁH —0 uniformly in f€G, (2.3)
ﬁ—wo [7,2.
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where Eg = {x € R" : |x| > B}, then G is a strongly pre-compact set in LPA(R™).

3. The proof of Theorem 1.1

By Theorem 1.3 in [5], we get b € BMO(R"). Without loss of generality, we
may assume ||b||pyo = 1. By Lemma 2.1, to prove that b € VMO(R"), it suffices
to show that b must satisfy the conditions (i), (ii) and (iii) in Lemma 2.1. First, we
show that if that b does not satisfy the condition (i) of Lemma 2.1, then [b, ,ng | is not

a compact operator in LP* (R”) By the assumption, there exist a constant 11 > 0 and
a sequence of cubes {Q;(y;,d;)}7.; with hm d; =0, where d; is the diameter of the

cube {Q;(yj,d;)}, such that for every j
1
M(b.0)) = o [ 160) = bo,ldy > . (3.1)
‘Qj| 0;
Define the function sequence {f;}7_; by

[i0) = 10517 P [sgn(b(y) — b)) — oo, (v),  J=1.2,... (3:2)

where ¢y = @ fQj sgn(b(y) —bg;)dy. Then {f;} satisfies the following properties:

suppfj C Qj, (3.3)
F10)(B() ~bg,) >0, (3.4)

L nfj(y)dy =0, (3.5)
O <200, P vy € o). (3.6)

n [4], the authors proved that {|/fj[,2}7-, is bounded uniformly. Then by the L7 A
boundedness of [b,[,LS , if { b7/~‘s fl}j:l is not a pre-compact set in L? A(R"), then

[b,u§] is not a compact operator in LP*(R") (see Definition 1.1). Consequently, it
suffices to show that there exists a subsequence {[b, u_’g’ 1fi }::1 which has no any con-

vergence subsequence in L”* (R").
From now on, for 1 <i< 8, A; denotes the positive constants depending only on
Q. p,n,A,y,m and A, (1 <k <i). Since Q satisfies (1.2), then there exists an A; such

that 0 <A; <1 and
2C
G({x’ es QW) > %}) > 0.
(log A_l)
By the condition (1.3), it is easy to see that

A::{x es" Q) > L}
(log )"
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is a closed set. Then (see [3])

C
2 )Y'

if ¥ €A,y € 8" satisfying [x' —y/| <Ay, then Q(y) > q
OgA_l

(3.7)

Taking A, > 2/Ay, for x € (A20;)°N{x: (x—y;)" € A}, by (3.1)—(3.4) and similar to
the estimate of (4.4) in [2], we have that

|[b, 18] £ (%)
1, A
>cnlo;|r

- 114 )bl )T
x=yj| "= Clo; |7 [b(x) = bo, | [x = y;| | log )

(3.8)
On the other hand, by (3.6), and similar to the proof of (4.7) in [2], we get
P —-n L/‘*’L —n L,Jri 3.9
| (6.1 £5@)] < Cle—ys| " [b) = b, | Q777 +Clv =y [y (3:9)
By |bap — bo|<Cl|b|[mo = C, we get
; 1
P
b(x) — by, |Pdx ) < C2/Pk|Q;|7. 3.10
</2"d./<|x—yj|<2k“d.f’ (%) = bo| ) 2] (3.10)

For u > A, by (3.9) and (3.10), we get

</|X—)">ud» |[b.115] ff(x)’pdx> ’
<C’QJ’ </x—yj>udj |x_yj|np dx o

1
’f,,+% (/ _ dx) !
‘xfyj‘>udj ’x—yj’"p

ﬁufn(lfl/p).

+C|Q;

< A3|Q;

For @ > u > A;, by (3.8) and (3.10), we get

1
P
(/ b, 150 )
udj<|x—y;|<wd .
&d0 )
udj<|x7yj|<wdj |x—yj’

1A b(x)—bo.|”
p’+"1’ (/ ’ ( ) Q/| ypdx>
=y |>ud; )

o=y (10g bl

A
np _A5 (logu)l—yu—n+n/p| Qj

>Cn|Q;

(3.12)

==

—C|o;

S (- o g, 5,
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By (3.11) and (3.12), we get there exist Ag > Ay, B=B(Q,p,n,A,n,A3,A4,As) > 1, Ag
such that

A
w (3.13)

1
b,ul] fi(x)|Pd )P > alos
</Aﬁdj<|xyj|<BA6dj | [ ”S] f/(x)} X 8|Qj

and
1

Pl £.() [P r_As
</|x}’j|>BA6dj | [b"uS] i (x)} dx) <

Then using similar argumentations as in the proof of Theorem 1 in [3], we can show
that [b, ,u_’; ] is not a compact operator in LP*(R").

(3.14)

Similarly, we may show that if b does not satisfy conditions (ii) or (iii) in Lemma
2.1, then [b, uf] is not a compact operator in LP*(R").

4. The proof of Theorem 1.2

Suppose that F is an arbitrary bounded set in L7 (R™), that is, there exists a
constant D > 0 such that [|f]|, <D for every f € F. It is well known that (see [8],
[L1])

1[b, 15111l .2 < CllbllBroll f1lpa- (4.1)

Thus [b, uf] is continuous in LP*(R"). Let G = {[b,uf|f : f € F} if b € Cj(R") and
G= {[b,uf1f: f € F} if b€ VMO(R"). So, by Definition 1.1, it suffices to prove that
for any bounded set F in LP*(R"), G is a strongly pre-compact set in LP*(R"). We
first show that if (2.1)~(2.3) hold uniformly in G, then (2.1)—(2.3) hold also uniformly
in G and thus[b, uf] is a compact operator in LP*(R").

Actually, assume that b € VMO(RR"), then for any £ > 0 there exists b® € Cy’(R")
such that ||b — b%||pmo < €. By

|[bnu§]f(x) - [bgnu_sﬁ‘)]f(x)‘

1
( ) £ o e 2 dyd[ )2
([ S (=19 - 6P| S
and (4.1), we get
||[b’”§)} - [bg’!'l“g)]||L”~7L4>LI’#7L < ||[b_b8hu§)]||LI’7LHLpl\C8 (42)

By Minkowski’s inequality and (4.2), for any fixed f € F

supl|[b. 5] 71,1 < sup [[6%. 5] 71, 5 +CDe < o=
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By Minkowski’s inequality, (4,1) and (4.2), for any fixed f € F

tim [[[6.] £C+2) = 0.1 10

éllmou[b bS] (42,

+ fim o= 5%, SOl 2

+ Jim ([0, 08 £+2) = (0.8 £,
< 2CDe.

Similarly, by Minkowski’s inequality, (4.1) and (4.2), for any fixed f € F

é%)’[b)ug]fxEﬁHp’ Jim H ¢ uf fxEﬁH N ﬂL[}igf:oH[b—bff,uf]f)cEﬁHmA

< CDS.

Thus (2.1)—(2.3) hold uniformly for G. Therefore, by Lemma 2.2, we know G is
a strongly pre-compact set in LP* (R") and then [b,ug ] is a compact operator in
LPA(R™).

So, it suffices to prove that (2.1)—(2.3) hold uniformly in G. Without loss of the
generality, we can assume ||b||gyo = 1. By (4.1), we have

sup 116,18 1f 11 p 2 <C Il 8mol £ 5.2 SCD < eo. (4.3)

The estimate (4.3) shows that (2.1) holds for the commutator [b, u_‘; ] in G uniformly.
Now we discuss (2.3). For any € > 0, g > 1 there exists A > 0 such that

1
< dr a

Suppose that suppb C {z: |z| < n} for some 1 >0 and B = max{2A4,4n}. Thus, for
any x satisfying |x| > B and every f € F,

|[b, 11 f (%)) | )
(sl g gt vonnosd 555)
S z]<n
— 2 dydr \'?
— (/ /\x y<t b <t y(yfﬂb( ) f(2)dz %thzp)

lsl<n

Since 2(n—p) <nand |x—z| < |x—y|+|y—z| <2t. For 1 < g < p <o, by Minkowski’s
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inequality and Q € L*(S"~!), we have

|[b,u§’]f< )| s
Q(y—2)[> dydt )
<cf e[, ;
lz<n @I ( —zl/2 Jly—z <t [y — 22(1=P) gt 1H2p :
gC/ x—z|™" dz
‘m\ "I f(2)] 45)

1/
<C</|Z =2 )|qu) '

1/q
<C(/ ZI‘”qf(x—Z)lqu> |
lz|>B-n

Then by Minkowski’s inequality and (4.5), we have

! 1/p
<r7 /B(S,,) b, 151 (x)%{y:y>l3}(x)|de>

o\ (4.6)
<Clflpa( [, Wmar)
< CDe.

(4.6) shows that (2.3) holds for the commutator [b,u_’; | in G uniformly. Finally, to
finish the proof of Theorem 1.2, it remains to show (2.2) holds for the the commutator
[b,uf] in G uniformly. We need to prove that for any fixed € > 0, if |v| is sufficiently
small depended only on &, then for every f € F,

116, u81f (- +v) = b, 181 ()l < Ce

To do this, for any v € R", by the proof of Theorem 4 in [2], we have

2 dydr \'?
) y
|[b,,u5}f(x—|—v) [b nuS (/ /|x y‘<t X, aya | t"+2p+1> 9

where

tsor) = | Q072 40— () f(2) d

a—yl<t [y —2["P

B /| L0V ) (@) f () de.

yv—z|<t |[y+v—2z|"P

Forany 0 < e < % and v € R", write I(x,v,y,7) as

Qv —
M) = [ g S ) b)) d:
[x—z[>2€ |v| \y—z|” p
[y—z|<t,[y+v—z|>t

Qb+v—2)
\x—z\>2% Mo fy+v—zrP

[y—z|=t, |y+v—z|<t

+ (b(z) =b(x+v))f(z)dz
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Qy—z) Qu+v—2) ) b L p
+/\x 2|52 |v], [y—zl <, [y-+v—z] <t (y—z|"P ly+v—z|n—P (b(x+v)=b(2))f(2)dz

/ Q(yi_f)(b(x)—b()H- ) f(z)dz
x— Z\>28 v, |y—z|<t

[y —z|—P
Q-2 oy
/\x z\<2£ V], [y—z|<t |y—Z|"7P (b( ) b(Z))f(Z)dZ
Q(y+v—2z)
/x et svesias v — e ) TP A2z

6
2 .XVy,

Further we use the estimates for J;,1 < i< 6 from [2]. Since

1 1
dydt \? v 1f(2)]
L vy ) <c/ PEVEL,,
(/ /\x y\<t‘ )| n+2p+l |xfz|>2é|v| |x_Z|n+%

(see, [2] p- 291), by Minkowski’s inequality, for any s € R"”, r > 0, we have

P 1
dydt |2 »
I XV Y, 2 dx
( /sr / /\x y|<,¢‘1 "y )| n+2p+1 )
1
1 p I
<cv%<7/ / @l dx)’
™ JB(s,r) |/ |x—z|>2€|v| ‘x_z|n+§
1
1 1 1 i
<ot [, (5 ) re-ora) a:
l[>2& ] |z|"t2 NI JB(sr)

< C||fll,22"% < CDe.

h dydt
2 a4y
</0 /\X—ym 1y (x,v,,1)] m) <CDe. (4.7)

2

Thus we get

(S

Similarly, we can get

B dydr
2_ay
(/o /‘xiy‘q | (x,v,9,1)] m) <CDe. (4.8)

2

1
dydt \?
2 ay
(/ /Ixqu\hxvy» )| n+2p+1)

< C|v|p_7/ . ‘f( )|2 dz
be—2l>22 v| |x — 2|/ 2P

+c/| ot ‘f(z)|| i
x—z|>2¢€ |y _ X—2
lx —z|"(log ] )

Nl—

Since
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where 6 < min{1,n(A —2),2p —n,0 —2}(0 > 2, see Lemma 2.2 in [6] and [11]),
(see, [2] p. 293). Then for any fixed s € R", r > 0, we have
P 1
2z P
dx)

dydt
L(x,v,y,1)]?
( /S,r / /|xy\<t|3xvy 2l m2p+1
1
< CvP—"/2<L/ / _ @l dz de>F
h r* JBsr) | Jx—z|>22 v |x — 2P /2
1
N
[ TN
|X*Z|>2€ [v| \x G

1
+C(7/1
r B(s,r) (log |x— Z\)
1
P
dx)

- 1 |f(x—2)
:cw’nﬂ(_/ / Mx=2)i,
M 7 oo | st P
PN
dx)

1 —
+C<7/ / o=l
™ JB(s,r) |/|z|>2¢ ||

2+6
kW(bg%)
1
1 1 P
ngp*”ﬂ/ 7<—/ xX—z pdx) dz
‘ ‘ |Z\>2%M |Z|71/2+P V}L B(s,r) |f( )|

1
1 1 P
+c/) —————————(——/) _ﬂx—@ﬁdQ dz
2>2% v " (1 Z|>2+6 r* JB(s.r)

Ogm
1 £1+9
<cC < CDe.
(22([’3) + (l+9)(log2)1+9> 1711y €

Therefore we get

1
“ dydt \?
2 ay
H</O /‘xfy‘q |1 (x, v, y,1)] m) <CDe. (4.9)
PA
For 14,
1
dydt \?
2 a4y o
(/ /Ix y|<t v, 3,1)] n+2p+l) < |b(X)—b(x—|—v)|Szé|V|f(x),
where
1
Q(y—z) 2 dydt )2
dz| —— | ,
28 V‘ </ /\x —y|<t /|x z|>2s vl ‘y_z| f( ) t2p+1

[y—z|<t

(see, [2] p. 296). For any fixed 1 < ¢ < p < oo, by the estimate of S° | |f()c) in [2], we
2€|v
get
L
Py () SCM(U f)(x) + C(M|£19(x)) 7 +CM [ (x).

22 |
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By the L”* boundedness of uf (see [7] and [11]) and ||(M (|f|‘1))1/‘1Hp;L ClIfllpa
(see [9]), we get
87 pr/l Cllfllpa

Now we give the estimate of I . Slnce b e Cy, wehave |b(x+v)—b(x)| < C|v|, then
for any s € R", r > 0, we have
P 1
2 r
dx)

/ / / ‘I )|2 dydt
x,,,
r* JB(s.r) my|<t 4V )

<%, Fll,5 < CIIIFl,2 < COI
g P

That is .
dyd \*
2 ay
H / /Ixy‘<t|l4xvy7 ) W) H A<cz)|v|. (4.10)
P

About Is, since |b(x) —b(z)| < Clx—z|, t > |x—2z|/2, 2n—2p <n, Q€ L*(S" 1), by
Minkowski’s inequality and the estimate of Js5 in [2], we get

1
dydt \?2 1f(2)]
Is(x,v,y,1) | <c/ ARSOA B
</ /|xy|< 506 v.2:0) ”*2"“) x—zl<2® v| [x — 2" !

(see, [2] p. 298). Then for any fixed s € R", r > 0, we get
2 1
2 P
dx)

1 i 2 dydt
7 I s Vs at a0 +1
(,JL /B(“) /0 /\X—y\<t‘ 5,051 2p+1
1
1 P N\?
gc(-l/ / TG dx>'
r* JB(s.r) | x—z|<2E ] |x —2]"
1
1 - PN
:C(_A/ [, M, dx)'
r* JB(sr) [ lz<2e ) |z
1
1 1 »
C/ —(—/ flx—z pdx) dz
|Z\<2%|v| |z|r171 rh B(s,r)| ( )|

< CD2% ).

1
5 dydt \?
Is(x,v,y, —
H / /Pfy\<f|5 )l t"+2p+l>

Similar to the estimate of I5, using the estimates |b(x+v) — b(z)| < Clx+v —z| and
2t > |x—y|+|y+v—z| > |x+v—2z| we get

1
dydt \? /()]
Is (x,v,y,1)[* ) < C/ — Lz
</ /Ix Y|<l| o) et l—a|<2% |y \x—f—v—zr%1

That is

‘ <CD2¢ v, (4.11)

B}
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Then for any s € R", r > 0, we get

p 1
! = , dydr |® \7?
L P Np_dvdr |*
(,A /l;(_y7r)/() /‘xiy‘<t\6(x,v7y7 )| e x)
1
1 b\l
<c<7/ / G/ dx)"
™ JB(s,r) |/J|x—z|<2€ |v| |X+V—Z|n
1
1 _ p >
(L =)
I | )

d<2e ] |z 4y
1
1 1 iz
C/ 7<—/ flx—z pdx) dz
<2z [z + v\ B<s,r>|( )

1
< CD(2%|v| + |v]).

That is

1
dydi \? i
(/ / |16 (x, v, y,t )|2 n+2p+1) <CD(2% |v|+ |v)). (4.12)
[x—y|<t

P

In (4.7)—(4.12), taking |v| sufficiently small depending on €, we can get

tim |5, 421F( ) = [0, 1§17 =0 uniformly in f € F

This says (2.2) holds for the commutator [b,u_’; ] in G uniformly and therefore we
complete the proof of Theorem 1.2.

Acknowledgement. The authors would like to express their deep gratitude to the
referee for giving many valuable suggestions.
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