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GENERALIZED ROLEWICZ THEOREM

FOR CONVEXITY OF HIGHER ORDER

ZOLTÁN BOROS AND NOÉMI NAGY

(Communicated by Z. Páles)

Abstract. In this paper we prove that if a real function f satisfies the inequality [x0,x1, . . . ,xn+1; f ]
+ϕ(xn+1−x0) � 0 for all x0 < x1 < ... < xn < xn+1 with some fixed positive integer n and non-
negative function ϕ fulfilling limh→0+ ϕ(h) = 0 , then f is convex of order n , i.e., f satisfies
the former inequality with ϕ = 0 as well.

1. Introduction

In 1979 S. Rolewicz [16, Lemma 4] proved that every absolutely continuous func-
tion f : R → R which satisfies the inequality

f (tx+(1− t)y) � t f (x)+ (1− t) f (y)+C|x− y|2+p (1)

for every x,y ∈ R , t ∈ [0,1] , with a fixed non-negative real number C and a fixed
positive real number p , has to be convex.

Later, in a series of papers (see [17] and the references therein), S. Rolewicz in-
vestigated continuous real functions f satisfying the functional inequality

f (tx+(1− t)y) � t f (x)+ (1− t) f (y)+Ct(1− t)α(|x− y|) (2)

or
f (tx+(1− t)y) � t f (x)+ (1− t) f (y)+Cα(|x− y|) (3)

for every x,y ∈ R , t ∈ [0,1] , with a non-negative constant C and a nondecreasing
function α : [0,+∞[→ [0,+∞] fulfilling limt→0+ (α(t)/t) = 0 . In this generality, in-
equality (3) may have solutions that do not satisfy any inequality of the form (2) (even if
we allow different C and α ) (cf. also [18]). As a generalization of his aforementioned
theorem, S. Rolewicz proved that under the additional assumption

lim
t→0+

α(t)
t2

= 0 , (4)
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every continuous solution f of inequality (3) or (2) is convex.
In this paper we deal with the analogue of (2) for convex functions of higher order,

on open intervals, without regularity assumptions. In particular, our method can be
applied to prove Rolewicz’s theorem without any regularity condition.

Let I ⊂ R be an interval, n ∈ N and x0 , x1 , . . . , xn , xn+1 be distinct points in I .
Denote by [x0 , x1 , . . . , xn , xn+1 ; f ] the divided difference of f at x0 , x1 , . . . , xn , xn+1

defined by the recurrence

[x0 ; f ] = f (x0) ,

[x0 , x1 , . . . , xn+1 ; f ] =
[x1 , x2 , . . . , xn , xn+1 ; f ]− [x0 , x1 , . . . , xn ; f ]

xn+1− x0
, n ∈ N .

Following Hopf [9] and Popoviciu [14], a function f : I → R is called convex of order
n if

[x0 , x1 , . . . , xn+1 ; f ] � 0

for all x0 < x1 < .. . < xn < xn+1 in I . It is well known (and easy to verify) that
convexity of order 1 coincides with the ordinary convexity. Several results on convex
functions of order n are collected, among others, in [8, 10, 12, 14, 15, 19, 20].

As one may easily verify, introducing x0 = x , x2 = y and x1 = tx+(1− t)y , we
obtain t = x2−x1

x2−x0
, 1− t = x1−x0

x2−x0
, while the inequality (2) can be rewritten as

0 � [x0 , x1 , x2 ; f ]+C
α(|x2− x0|)
(x2− x0)2 .

The purpose of this paper is to establish the following theorem.

THEOREM 1. Let I ⊂R be an open interval, ν(I) denote the length of the interval
I , n∈N , and JI =]0,ν(I)[ . Let the function ϕ : JI → [0,+∞[ satisfy limt→0+ ϕ(t)= 0 .
If a function f : I → R satisfies the inequality

[x0 , x1 , . . . , xn , xn+1 ; f ]+ ϕ(xn+1− x0) � 0 (5)

for all x j ∈ I ( j = 0 , 1 , . . . , n , n+1) such that x0 < x1 < .. . < xn < xn+1 , then f is
convex of order n .

The proof of this theorem is elaborated in Section 3. Some related concepts and
results are presented in Section 2. These tools are incorporated in the main argument.

2. Tools and related statements

In order to prove our main result we need the following notions.
We use the concept of difference operators Δn+1

h defined by the following recur-
sion:

Δ1
h f (x) = f (x+h)− f (x) for x ∈ I , h ∈ R such that x+h∈ I ,

Δn+1
h f (x) = Δ1

h Δn
h f (x) for x ∈ I , h ∈ R such that x+(n+1)h∈ I .



ROLEWICZ THEOREM FOR CONVEXITY OF HIGHER ORDER 1277

The notion of higher-order Jensen-convexity is due to T. Popoviciu ([13, 14]): A
function f : I → R is called Jensen-convex of order n (where n ∈ N), if

Δn+1
h f (x) � 0 for all x ∈ I , h � 0 such that x+(n+1)h∈ I .

For properties of functions satisfying the above inequality, see e.g. [1, 2, 14], [10,
Chapter XV], [15, VIII.83], and the references therein. Generalizations of Jensen-
convexity of order n to higher-dimensional domains were investigated by R. Ger [4, 5].

It is clear that differences can be expressed in terms of divided differences, thus
convex functions of order n are also Jensen-convex of order n . It was observed by
T. Popoviciu [13] that the converse of this implication also holds for continuous func-
tions. Z. Ciesielski [3, Theorem 1] proved that the continuity of a Jensen-convex func-
tion of order n (on an open interval) follows from its boundedness on any set of positive
measure. Combining these results we can establish the following corollary.

PROPOSITION 1. Let I be an open interval, n ∈ N , and suppose that f : I → R

is Jensen-convex of order n . If f is bounded on a set E ⊂ I of positive measure, then
f is convex of order n .

A local characterization of Jensen-convexity of higher order was elaborated by
A. Gilányi and Zs. Páles in a somewhat more general context. Let T = (t1 , . . . , tn+1) ,
where t1 , . . . , tn+1 are fixed positive numbers. For f : I → R , x ∈ I and h > 0 such
that x+(t1 + . . .+ tn+1)h ∈ I , let

ΔT
h f (x) := Δt1h . . .Δtn+1h f (x) .

We say that f : I → R is T -convex if ΔT
h f (x) � 0 for all x ∈ I , h > 0 such that

x +(t1 + . . . + tn+1)h ∈ I . Clearly, T -convexity and cT -convexity are equivalent for
c > 0 . In the case t1 = . . . = tn+1 = 1 the notion of T -convexity is obviously the same
as Jensen-convexity of order n .

The lower T -Dinghas interval derivative of f : I → R at ξ ∈ I is defined by

DT f (ξ ) := liminf
(x ,h)→(ξ ,0)

x�ξ�x+(t1+...+tn+1)h

ΔT
h f (x)

(t1h) . . .(tn+1h)
.

Accordingly, if n denotes a positive integer, the n -th order lower Dinghas interval
derivative of f : I → R at ξ ∈ I is defined by

Dn f (ξ ) := liminf
(x ,h)→(ξ ,0)
x�ξ�x+nh

Δn
h f (x)
hn .

Gilányi and Páles [7, Corollary 1] proved a strong connection between the above
two concepts. Namely, they established that a function f : I → R is T -convex if, and
only if, DT f (ξ ) � 0 for every ξ ∈ I . Considering the particular case when t1 = . . . =
tn+1 = 1 , one obtains the following statement:

PROPOSITION 2. A function f : I →R is Jensen-convex of order n if, and only if,
Dn+1 f (ξ ) � 0 for every ξ ∈ I .
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3. Proof of the main theorem

We prove Theorem 1 in this section.

Proof. Let us consider x ∈ I and a positive real number h such that x+(n+1)h∈
I . Applying our assumption (5) for

xi = x+ i ·h (i = 0,1, . . . ,n,n+1),

we have
[x , x+h , . . . , x+(n+1)h ; f ]+ ϕ ((n+1)h) � 0 . (6)

According to a well-known identity [10, Lemma 15.2.5], the first term above satisfies

[x , x+h , . . . , x+(n+1)h ; f ] =
Δn+1

h f (x)
(n+1)!hn+1 .

Taking this representation into consideration, inequality (6) can be written as

Δn+1
h f (x)
hn+1 � −(n+1)!ϕ ((n+1)h) . (7)

Now let ξ ∈ I be arbitrary and let us take the liminf on both sides of (7) as h tends to
0 and x tends to ξ such that x � ξ � x+(n+1)h . We obtain

Dn+1 f (ξ ) � 0.

Applying Proposition 2, we get that the function f is Jensen-convex of order n .
On the other hand, we can show that f is locally bounded. Let δ > 0 such that

ϕ(t) < 1 for 0 < t < δ . Let y0 ∈ I be arbitrarily fixed and r > 0 such that 2r < δ and
I0 :=]y0 − r , y0 + r[⊂ I . Then, for arbitrary x j ∈ I0 ( j = 0,1, . . . ,n,n + 1) fulfilling
x0 < x1 < .. . < xn < xn+1 , from (5) we get

[x0 , . . . , xn+1 ; f ] � −ϕ (xn+1− x0) > −1 .

Defining the function g : I0 → R as g(x) = f (x)+ xn+1 and using the linearity of the
divided differences (cf. [6, Lemma 2]), we get that

[x0 , . . . , xn+1 ; g] = [x0 , . . . , xn+1 ; f ]+
[
x0 , . . . , xn+1 ; xn+1] .

Moreover it is easy to show (cf. [6, Lemma 3]) that [x0 , . . . , xn ; xn] = 1 for all n ∈ N

and distinct points x0 , . . . , xn ∈ R , i.e.

[x0 , . . . , xn+1 ; g] � −1+1 = 0 .

Thus g : I0 → R is convex of order n .
Using [10, Theorem 15.8.1] we can state that g is continuous (it is even contin-

uously differentiable if n > 1), thus g and therefore also f is bounded on any closed
subinterval of I0 . Applying Proposition 1, we obtain that f is convex of order n . �
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4. Convex functions of higher order on vector spaces

In this section R
m
+ denotes the set of those x∈R

m whose first non-zero coordinate
is positive:

R
m
+ =

m⋃
i=1

{x = (x1 , . . . , xm) ∈ R
m |x1 = . . . = xi−1 = 0 , xi > 0} .

Then R
m = R

m
+∪(−R

m
+
)∪{0} . For x , y ∈ R

m we write x > y if x−y∈ R
m
+ and x < y

if y > x . Then for any x,y ∈ R
m we have either x = y , or x < y , or x > y . If x > y

and α ∈ R is positive, then αx > αy , and if α < 0 , then αx < αy . We write

sgn(x) =

⎧⎪⎨
⎪⎩

1 if x > 0,

0 if x = 0,

−1 if x < 0.

Let D⊂R
m be a convex set and f : D→R be a function. Let x0 , x1 , . . . , xn , xn+1

∈ D be distinct collinear points. Put

h =
sgn(xn+1− x0)
‖xn+1− x0‖ (xn+1− x0) ,

thus h > 0 . Since x0 , x1 , . . . , xn , xn+1 are collinear, they may be represented in the
form

xi = x0 + λih , i = 0 , 1 , . . . , n , n+1

(obviously, with λ0 = 0). The divided difference [x0 , x1 , . . . , xn , xn+1 ; f ] of f at the
points x0 , x1 , . . . , xn , xn+1 is defined by the recurrence (see [11], [13], or [4]):

[x0 ; f ] = f (x0) ,

[x0 , x1 , . . . , xn , xn+1 ; f ] =
[x1 , x2 , . . . , xn+1 ; f ]− [x0 , x1 , . . . , xn ; f ]

λn+1−λ0
, n ∈ N .

This shows that the divided difference [x0 , x1 , . . . , xn+1 ; f ] depends on the differences
of the λ ’s rather than on the λ ’s themselves.

Let n , m∈N and D⊂R
m be an open convex set. We say that a function f : D→R

is convex of order n if f satisfies the inequality

[x0 , x1 , . . . , xn , xn+1 ; f ] � 0

for all x j ∈D ( j = 0 , 1 , . . . , n , n+1) such that x0 < x1 < .. . < xn < xn+1 are collinear
points.

Using this generalization we can state the following theorem:

THEOREM 2. Let D ⊂ R
m be an open and convex set, ν(D) denote the diameter

of the set D, n , m ∈ N , JD =]0,ν(D)[ . Let the function ϕ : JD → [0,+∞[ satisfy
limt→0+ ϕ(t) = 0 . If a function f : D → R satisfies the inequality

[x0 , x1 , . . . , xn , xn+1 ; f ]+ ϕ(‖xn+1− x0‖) � 0 (8)
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for all x j ∈D ( j = 0 , 1 , . . . , n , n+1) such that x0 < x1 < .. . < xn < xn+1 are collinear
points, then f is convex of order n .

Proof. Let y0 , y1 , . . . , yn , yn+1 ∈ D be arbitrary collinear points which fulfil the
relations y0 < y1 < .. . < yn < yn+1 . Now let us consider the unit vector

h =
yn+1− y0

‖yn+1− y0‖ ∈ R
m

and λ 0 , λ 1 , . . . , λ n , λ n+1 ∈ R such that

yi = y0 + λ i ·h
for all i = 0 , 1 , . . . , n , n+1. Since the mapping Ψ : R→R

m defined by the expression
Ψ(λ ) = y0 + λ · h (for all λ ∈ R) is continuous and preserves convex combinations,

there exists an open interval I such that λ i ∈ I for every i = 0 , 1 , . . . , n , n + 1 and
Ψ(λ ) ∈ D for every λ ∈ I . From what we established above it follows that 0 = λ 0 <

λ 1 < .. . < λ n < λ n+1 . Furthermore define the function g : I → R as

g(λ ) = f (y0 + λh) .

Using induction on the number of the points, we can show that for every λ0 < λ1 <
.. . < λn with λi ∈ I and xi = y0 + λih (i = 0,1, . . . ,n) the equality

[λ0 , λ1 , . . . , λn−1 , λn ; g] = [x0 , x1 , . . . , xn−1 , xn ; f ] (9)

holds. Namely, in case n = 0 (that is, when we have only one point) we have

[λ0 ; g] = g(λ0) = f (y0 + λ0h) = f (x0) = [x0 ; f ] .

Suppose that (9) holds for every n+1 successive points. Then

[λ0 , λ1 , . . . , λn , λn+1 ; g] =
[λ1 , λ2 , . . . , λn , λn+1 ; g]− [λ0 , λ1 , . . . , λn−1 , λn ; g]

λn+1−λ0

=
[x1 , x2 , . . . , xn , xn+1 ; f ]− [x0 , x1 , . . . , xn−1 , xn ; f ]

λn+1−λ0

= [x0 , x1 , . . . , xn , xn+1 ; f ].

Now let λ0 < λ1 < .. . < λn < λn+1 such that λi ∈ I for (i = 0,1, . . . ,n,n + 1)
and let xi = y0 + λih for (i = 0,1, . . . ,n,n+1) . Then x j ∈ D ( j = 0 , 1 , . . . , n , n+1)
such that x0 < x1 < .. . < xn < xn+1 are collinear points. Thus inequality (8) holds.
Observing

‖xn+1− x0‖ = ‖(λn+1−λ0)h‖ = (λn+1−λ0) · ‖h‖ = λn+1−λ0

and applying the identity (9), we obtain

0 � [x0 , x1 , . . . , xn , xn+1 ; f ]+ ϕ(‖xn+1− x0‖)
= [λ0 , λ1 , . . . , λn , λn+1 ; g]+ ϕ(λn+1−λ0) .
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Hence using Theorem 1 we can see that g is convex of order n . In particular, we have

0 �
[
λ 0 , λ 1 , . . . , λ n , λ n+1 ; g

]
= [y0 , y1 , . . . , yn , yn+1 ; f ] .

As y0 , y1 , . . . , yn , yn+1 ∈D were arbitrary collinear points fulfilling the relations y0 <
y1 < .. . < yn < yn+1 , we have proved that f is convex of order n . �
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