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Abstract. In this paper, we prove the characterization of the weighted modular inequalities for
the fractional maximal operator Mα (0 � α < n) on the Orlicz-Lorentz spaces by atomic de-
composition which induces a sufficient condition of the boundedness for this operator on the
Orlicz-Lorentz spaces. And we also find the characterization of the weighted modular inequal-
ities for the fractional integral operator Iα (0 < α < n) on the Orlicz-Lorentz spaces in certain
case which leads to a sufficient condition of the boundedness for Iα (0 < α < n) .

1. Introduction

Let M (X ,μ) be the class of all measurable and almost everywhere finite func-
tions on X . For f ∈ M (X ,μ) , a nonincreasing rearrangement of f is a nonincreasing
function f ∗ on R+ ≡ (0,+∞) that is equimeasurable with | f | . The rearrangement f ∗
is defined by the equality (see [1])

f ∗μ(t) = inf{s : λ μ
f (s) � t}, 0 < t < ∞,

where
λ μ

f (s) = μ{x ∈ X : | f (x)| > s}, s � 0.

When (X ,μ) = (Rn,udx) (u is a weight in Rn ), we denote λ μ
f = λ u

f , f ∗μ = f ∗u , espe-
cially, f ∗1 = f ∗ . We say φ : [0,∞) → [0,∞) is a Young function if φ is nondecreasing
and convex with φ(0) = 0, and limx→∞ φ(x) = ∞. An N -function φ is a continu-
ous Young function such that φ(x) = 0 if and only if x = 0 and limx→0 φ(x)/x = 0,
limx→∞ φ(x)/x = +∞ . The Young conjugate φ̃ of Young function φ is defined by

φ̃ (x) = sup
y�0

{xy−φ(y)}, x � 0.

The Orlicz-Lorentz spaces Λφ
X(w) (see [18], [19]; if there is no ambiguity, the notation

Λφ
μ(w) may be adopted) associated to the Young function φ and a weight w on R+
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(nonnegative locally integrable function in R+ ), is the set of f ∈ M (X ,μ) such that
for some λ > 0, we have I(λ f ) < ∞ , where

I( f ) =
∫ ∞

0
φ( f ∗μ(t))w(t)dt,

and we let

‖ f‖Λφ
X (w) = inf

{
ε : I

( f
ε

)
� 1

}
.

If w(t) = 1, then Λφ
X (w) = Lφ (X ,μ) is an Orlicz space (see [23], [15]); if φ(t) =

t p (1 � p < ∞), then Λφ
X(w) = Λp

X (w) is a Lorentz space (see [16], [17] and [4]). If

(X ,μ) = (Rn,dx) , we denote Λφ
X(w) = Λφ (w) , and if (X ,μ) = (R+,wdx) , we write

Lφ (X ,μ) = Lφ (w).
Given an arbitrary function G : [0,∞) → [0,∞) , we say that G satisfies condition

Δ2 , in symbol G ∈ Δ2 whenever supt>0
G(2t)
G(t) < ∞. A Young function F is said to

satisfy Δ′ (resp. ∇′ ) condition (e.g., see [10] or [25]), in symbol F ∈ Δ′ (resp. F ∈ ∇′ )
if there exists C > 0 such that

F(xy) � CF(x)F(y) (resp. F(xy) � CF(x)F(y)), ∀ x, y � 0.

Clearly if G ∈ Δ′ then G ∈ Δ2 .
If w is a weight in R+ and φ is a Young function, then we denote w ∈ Bφ if there

exists a positive constant C such that∫ ∞

0
φ(S f (x))w(x)dx �

∫ ∞

0
φ(C f (x))w(x)dx (1.1)

for all monotone decreasing non-negative functions, where S is Hardy operator defined
as

S f (x) =
1
x

∫ x

0
f (t)dt, x ∈ [0,∞).

The characterization of (1.1) was obtained in [13] and [14]. When φ(t) = t p ( p � 0),
Bφ = Bp (e.g., see [4]).

Let us introduce the fractional maximal operator and the fractional integral opera-
tor. In this paper all cubes Q considered have their sides parallel to the coordinate axis.
The fractional maximal operator Mα (0 � α < n) is defined as

Mα f (x) = sup
x∈Q

{
|Q| α

n −1
∫

Q
| f (y)|dy

∣∣∣Q is a cube

}
.

The fractional integral operator Iα (0 � α < n) is defined as

Iα f (x) =
∫

Rn

f (y)
|x− y|n−α dy, x ∈ Rn, 0 < α < n.

In [3], Bloom and Kerman presented the Hardy-type modular inequality in the Or-
licz spaces and got the boundedness of Hardy-Littlewood maximal operator in Orlicz
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spaces. Heinig and Lai [13] studied the weighted modular inequalities for Hardy-type
operators on monotone functions. Li [14] obtained a kind of characterization of strong
Hardy-type modular inequality which is different from that of [13]. Sawyer [27] had
a dual method to study inequalities on monotone decreasing functions from which the
boundedness of Hardy-Littlewood maximal operator on the weighted Lorentz spaces
are obtained. In [7] Kamińska and Mastyło found the conditions for boundedness of
Hardy-Littlewood maximal operator in some class of Orlicz-Lorentz spaces. Koki-
lashvili [9] studied weighted inequalities for fractional maximal functions and frac-
tional integrals in the classical Lorentz spaces. Cianchi and Edmunds in [6] got the
the boundedness of fractional integration and special singular operators in the classical
Lorentz spaces. Rakotondratsimba [24] gave the characterization of the boundedness
of fractional maximal operator in the weighted Lorentz spaces. Concerning the convo-
lution operator on Lorentz spaces and Orlicz spaces there are a lot of results and readers
may refer to, e.g., [20], [21], [22], [12] and so on.

The paper is divided into three sections. Section 2 mainly contains characteri-
zation of the modular inequalities for the fractional maximal operator on the Orlicz-
Lorentz spaces, Theorem 2 and Theorem 3, which generalize the corresponding results
of Rakotondratsimba [24]. Proposition 2 gives another characterization under the re-
verse doubling condition for certain weights. In Section 3 Theorem 4 displays the
characterization of the modular inequalities for the fractional integral operator on the
Orlicz-Lorentz spaces and Theorem 5 yields a sufficient condition for the fractional in-
tegral operator to be bounded on the Orlicz-Lorentz spaces, which fills the gap in this
aspect. The methods are also applicable to the singular integral operator.

In the sequel, we will always denote W (t) =
∫ x
0 w(t)dt if w is a weight on R+ and

C, C1, · · · denote positive constants but need not be the same at different occurrences.

2. Fractional maximal operator on Orlicz-Lorentz spaces

We shall need an atomic decomposition of dyadic tent spaces associated to the
Orlicz-Lorentz spaces whose idea is similar to Soria [29]. Let X be the set (0,∞)n

minus the dyadic points z = (zi)i ∈ 2kZn , σ be a locally finite positive measure on
X , X̃ = X ×2Z and a closed dyadic cube be a product of n intervals [xi,xi +2k] with
x = (xi)i ∈ 2kZn for some k ∈ Z . For each x ∈ X , we write

Γ̃(x) =
⋃

x∈Q(y,2k)

{(y,2k)},

where Q[y,2k] is the unique dyadic cube which contains y and with length 2k . Also

Ω̂ = X̃\(⋃{Γ̃(x)|x ∈ Ωc})
for each set Ω ⊂ X . Thus

(y,2k) ∈ Ω̂ ⇔ Q[y,2k] ⊂ Ω.

The functional A∞ is given by

(A∞ f̃ )(x) = sup{| f̃ (y,2k)| ∣∣(y,2k) ∈ Γ̃(x)}
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where f̃ is a measurable function of X̃ . Now, for each measurable function f̃ (y,2k) in
X̃ and a cube Q[0,R] = (0,R)n, R > 0, define that

f̃ ∈ T φ ,dya
dσ (w)[Q[0,R]]

if f̃ (y,2k) is supported by (̂0,R)n , and the set {(A∞ f̃ )(·) > λ} , λ > 0, is a union of
dyadic cubes and

∫ ∞
0 φ
(
(A∞ f̃ )∗σ (t)

)
w(t)dt < ∞.

The following lemma is an easy consequence of well-known dyadic cubes proper-
ties. It is the key of atomic decomposition of T

φ1,dya
dσ (w1)[Q[0,R]] (R > 0) .

LEMMA 1. For each bounded open set Ω =
⋃

Q∈I Q ⊂ X (with Q being dyadic
cubes) one can find a sequence of (maximal) dyadic cubes (Qi)i (Qi ∈I ) with pairwise
disjoint interiors and such that Ω =

⋃
i Qi and Ω̂ =

⋃
i Q̂i .

In this section we always suppose that the Young functions are N -functions and
the measures are locally finite. Furthermore, some restrictions on φ1,φ2,w1 are done:

(i) φ2 ∈ Δ′, φ1 ◦φ−1
2 ∈ Δ′ ;

(ii) there exists a constant C > 0 such that

φ1 ◦φ−1
2

( n

∑
i=1

xi

)
� C

n

∑
i=1

φ1 ◦φ−1
2 (xi);

(iii) w1 ∈ Bφ1 , and

n

∑
i=1

φ2 ◦φ−1
1 (W1(ai)) � Cφ2 ◦φ−1

1

(
W1

( n

∑
i=1

ai

))
,

for all ai > 0, n ∈ Z+ .
To prove Proposition 1 which contains all philosophy of weighted inequality for

dyadic fractional maximal operator in Theorem 1, the atomic decomposition of
T

φ1,dya
dσ (w1)[Q[0, R]] (R > 0) is needed.

LEMMA 2. Let the growth conditions (i)–(iii) be assumed. Then for every con-
stant B1 > 0 there is a constant B2 > 0 such that for all f̃ ∈T

φ1,dya
dσ (w1)[Q[0, R]] (R >

0) one can get λ j, dyadic cubes Qj , and functions ã j(y,2k) with disjoint supports such
that

|ã j(y,2k)| � 1
φ−1(W1(|Qj|σ ))

χQ̂ j
(y,2 j), (2.1)

f̃ (y,2k) = ∑
j

λ j ã j(y,2k) a.e., (2.2)

and

φ−1
2

(
B1 ∑

j
φ2(λ j)

)
� φ−1

1

[∫ ∞

0
φ1(B2(A∞ f̃ )∗σ (t))w1(t)dt

]
. (2.3)
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Proof. Take f̃ ∈T φ1,dya
dσ (w1)[Q[0,R]] (R > 0) . For j∈N , let Ω j = {x|(A∞ f̃ )(x)>

2 j}. Then

∞ >

∫ ∞

0
φ1
(
(A∞ f̃ )∗σ (t)

)
w1(t)dt =

∫ ∞

0
W1(λ σ

φ1(A∞ f̃ )(t))dt

�
∫ φ1(2 j)

0
W1(λ σ

φ1(A∞ f̃ )(t))dt � φ1(2 j)W1(|Ω j|σ ),

which implies that
W1(|Ω j|σ ) < ∞. (2.4)

Furthermore,
Ω̂ j+1 ⊂ Ω̂ j (2.5)

f̃ (y,2k) � 2 j+1 on Ω̂c
j+1. (2.6)

Since Ω j =
⋃

Q∈I Q ⊂ (0,R)n, then by Lemma 1

Ω j =
⋃
i

Qi j and ∑
i

χQi j = χΩ j , (2.7)

Ω̂ j =
⋃
i

Q̂i j and ∑
i

χQ̂i j
= χΩ̂ j

. (2.8)

Now define
λi j = 2 j+1φ−1

1 (W1(|Qi j|σ )), (2.9)

and

ãi j(y,2k) = 2−( j+1) 1

φ−1
1 (W1(|Qi j|σ ))

f̃ (y,2k)× χQ̂i j−Ω̂ j+1
(y,2k), (2.10)

which are well defined by (2.4) and W1(|Qi j|σ ) > 0 rooted in the condition w1 ∈ Bφ1 .
Due to the supports of ãi j , Ẽi j =Q̂i j − Ω̂ j+1 , almost disjoint,

|ãi j(y,2k)| � 1

φ−1
1 (W1(|Qi j|σ ))

χQ̂i j
(y,2k). (2.11)

By the definition of λi j and ãi j(y,2k) we obtain

f̃ (y,2k) = ∑
i, j

λi j ãi j(y,2k), a.e..

On the other hand, in view of φ2 ∈ Δ′ and

∑
i

φ2 ◦φ−1
1 (W1(ai)) � Cφ2 ◦φ−1

1

(
W1

(
∑
i

ai

))
,
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it follows that

φ−1
2

(
B1∑

i, j
φ2(λi j

)
� φ−1

2

[
B1 ∑

i, j
φ2(2 j+1φ−1

1 (W1(|Qi j|σ )))
]

� φ−1
2

[
C∑

i, j

φ2(2 j+1)φ2 ◦φ−1
1 (W1(|Qi j|σ ))

]
� φ−1

2

[
C∑

j

φ2(2 j+1)φ2 ◦φ−1
1 (W1(Ω j|σ ))

]
� φ−1

2

[
C∑

j

φ2(2 j−1)φ2 ◦φ−1
1 (W1(|A∞ f̃ > 2 j|σ ))

]
.

Moreover, by the conditions

φ1 ◦φ−1
2

( n

∑
i=1

xi

)
� C

n

∑
i=1

φ1 ◦φ−1
2 (xi)

and φ1 ◦φ−1
2 ∈ Δ′ , there holds that

φ−1
2

[
C∑

j
φ2(2 j−1)φ2 ◦φ−1

1 (W1(|A∞ f̃ > 2 j|σ ))
]

= φ−1
1 ◦φ1 ◦φ−1

2

[
C∑

j

φ2(2 j−1)φ2 ◦φ−1
1 (W1(|A∞ f̃ > 2 j|σ ))

]
� φ−1

1

(
C∑

j

φ1 ◦φ−1
2

[
φ2(2 j−1)φ2 ◦φ−1

1 (W1(|A∞ f̃ > 2 j|σ ))
])

� φ−1
1

(
C∑

j

φ1(2 j−1)W1(|A∞ f̃ > 2 j|σ )
)
.

� φ−1
1

[
C∑

j

∫ φ1(2 j)

φ1(2 j−1)
W1(λ σ

φ1(A∞ f̃ )(t))dt
]

= φ−1
1

[
C
∫ ∞

0
W1(λ σ

φ1(A∞ f̃ )(t))dt
]

= φ−1
1

[
C
∫ ∞

0
φ1((A∞ f̃ )∗σ (t))w1(t)dt

]
� φ−1

1

[∫ ∞

0
φ1(B2(A∞ f̃ )∗σ (t))w1(t)dt

]
,

which completes the proof. �
To get main results of the paper, we bring in the following two operators. The

dyadic version of the maximal operator Mα is defined as

Mα f (x) = sup
x∈Q

{
|Q| α

n −1
∫

Q
| f (y)|dσ(y)

∣∣∣Q is a closed dyadic cube

}
and the operator M

Q[0,R]
α is defined by

(M Q[0,R]
α f dσ)(x) = sup

x∈Q

{
|Q| α

n −1
∫

Q
| f (y)|dσ(y)∣∣∣Q is a closed dyadic cube with Q ⊂ Q[0,R]

}
.
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PROPOSITION 1. Suppose there exists a constant C > 0 such that

φ−1
1

(
1
x

)
φ−1

1 (x) � C (2.12)

for all 0 < x < ∞ besides the assumptions of (i)–(iii). Then there exists a constant
C > 0 and for every constant B1 > 0 there exists a constant B2 > 0 such that for all
f ∈ Λφ1

dσ (w1) and all R > 0 there exist λ j > 0 , dyadic cubes Qj satisfying

φ2(M
Q[0,R]
α f dσ)χQ[0,R] � C∑

j
φ2(λ j)φ2 ◦φ−1

1

( 1
W1(|Qj|σ )

)
φ2(Mα χQjdσ)χQj

(2.13)
and

φ−1
2

(
B1 ∑

j

φ2(λ j)
)

� φ−1
1

(∫ ∞

0
φ1 (B2 f ∗σ (t))w1(t)dt

)
. (2.14)

Proof. Let f ∈ Λφ1
dσ (w1) and R > 0. For x ∈ Q[0,R] ,

(M Q[0,R]
α f dσ)(x) = sup

{
|Q[y,2k]| α

n −1
∫

Q[y,2k]
| f (z)|dσ(z)

∣∣∣x ∈ Q[y,2k] ⊂ Q[0,R]
}

= sup
{

Θ̃(y,2k) f̃ (y,2k)
∣∣x ∈ Q[y,2k] ⊂ Q[0,R]

}
,

where
Θ̃(y,2k) = |Q[y,2k]| α

n −1
∫

Q[y,2k]
dσ(z)

and

f̃ (y,2k) =

{
|Q[y,2k]|−1

σ
∫
Q[y,2k] | f (z)|dσ(z), if [y,2k] ∈ Q̂[0,R],

0, else.

Thus f̃ ∈ T φ1,dya
dσ (w1)[Q[0,R]]. Indeed,

A∞ f̃ � Nσ f , (2.15)

where Nσ f (x) = supQ[y,2k]�x |Q[y,2k]|−1
σ
∫
Q[y,2k] | f (z)|dσ(z). On the other hand, the con-

ditions φ2 ∈ Δ′ and φ1 ◦φ−1
2 ∈ Δ′ implies φ1 ∈ Δ2 . So from (5.13 ) of [24]

(Nσ f )∗σ (t)) � C2

t

∫ t

0
f ∗σ (t),

φ1 ∈ Δ2 , w1 ∈ Bφ1 and (2.15), we know that∫ ∞

0
φ1((A∞ f̃ )∗σ (t))w1(t)dt �

∫ ∞

0
φ1((Nσ f )∗σ (t))w1(t)dt

�
∫ ∞

0
φ1

(
C2

1
t

∫ t

0
f ∗σ (t)dt

)
w1(t)dt

�
∫ ∞

0
φ1(C2C3 f ∗σ (t))w1(t)dt < ∞. (2.16)
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Furthermore, it is obvious that the support of A∞ f̃ is contained in Q̂[0,R] and the set
{A∞ f̃ (·) > λ} is a union of dyadic cubes. So the above assertion is true. Consequently
by the condition φ2 ∈ Δ′ , (2.2) and (2.1) of Lemma 2, the definition of Θ̃ and (2.12), it
follows that

φ2(M
Q[0,R]
α f dσ)χQ[0,R] � φ2(Θ̃(y,2k) f̃ (y,2k)) � Cφ2(Θ̃(y,2k))φ2( f̃ (y,2k))

� Cφ2(Θ̃(y,2k))∑
j

φ2(λ j)φ2(ã j(y,2k))

� C∑
j

φ2(λ j)φ2

( 1

φ−1
1 (W1(|Qj|σ ))

)
φ2(Θ̃(y,2k))χ̃Q̂ j

(y,2 j)

� C∑
j

φ2(λ j)φ2

( 1

φ−1
1 (W1(|Qj|σ ))

)
φ2(Mα χQjdσ)χ̃Q̂ j

(y,2 j)

� C∑
j

φ2(λ j)φ2 ◦φ−1
1

( 1
W1(|Qj|σ )

)
φ2(Mα χQjdσ)χ̃Q̂ j

(y,2 j).

On the other hand, by (2.3) and (2.16), we obtain

φ−1
2

(
B1 ∑

j
φ2(λ j)

)
� φ−1

1

[∫ ∞

0
φ1(C(A∞ f̃ )∗σ (t))w1(t)dt

]
� φ−1

1

[∫ ∞

0
φ1(B2 f ∗σ (t))w1(t)dt

]
. �

One of the main results in this section, Theorem 2, is based on the characteriza-
tion of the weighted modular inequalities for the dyadic version Mα of the maximal
operator Mα , which is the following:

THEOREM 1. (a) Suppose there is a constant C > 0 such that

φ−1
2

(∫ ∞

0
φ2 ((Mα f dσ)∗ω (t))w2(t)dt

)
� φ−1

1

(∫ ∞

0
φ1 (C f ∗σ (t))w1(t)dt

)
(2.17)

for all f ∈ Λφ1
dσ (w1) , then there exists a constant A > 0 such that for all dyadic cubes

Q

φ−1
2

(∫ ∞

0
φ2 (((Mα χQdσ)χQ)∗ω (t))w2(t)dt

)
� φ−1

1

(∫ ∞

0
φ1 (A(χQ)∗σ (t))w1(t)dt

)
.

(2.18)
(b) For the converse, assume w2 ∈ B1 besides the conditions (i)–(iii) and (2.12).

So the test conditions (2.18) implies (2.17).

Proof. The part (a) is evident. To prove Part (b) of Theorem 1, by translation and
reflection, it is sufficient to verify that there exists a constant C > 0 such that

φ−1
2

(∫ ∞

0
φ2

(
(M Q[0,R]

α f dσ χQ[0,R])
∗
ω (t)

)
w2(t)dt

)
� φ−1

1

(∫ ∞

0
φ1 (C f ∗σ (t))w1(t)dt

)
.

(2.19)
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Let f ∗∗μ (t) = 1
t

∫ t
0 f ∗μ(s)ds, t > 0. By (2.13), w2 ∈ B1, φ1 ◦ φ−1

2 ∈ Δ′ which implies

φ2 ◦φ−1
1 ∈ ∇′ , (2.18) and (2.14), (2.19) appears since

φ−1
2

(∫ ∞

0
φ2

(
(M Q[0,R]

α f dσ χQ[0,R])
∗
ω (t)

)
w2(t)dt

)
= φ−1

2

(∫ ∞

0

(
φ2(M

Q[0,R]
α f dσ χQ[0,R])

)∗
ω

(t)w2(t)dt

)
� φ−1

2

(∫ ∞

0

(
C∑

j
φ2(λ j)φ2 ◦φ−1

1

( 1
W1(|Qj|σ )

)
φ2(Mα χQdσ)χQj

)∗

ω

(t)w2(t)dt

)

� φ−1
2

(∫ ∞

0

(
C∑

j
φ2(λ j)φ2 ◦φ−1

1

( 1
W1(|Qj|σ )

)
φ2(Mα χQdσ)χQj

)∗∗

ω

(t)w2(t)dt

)

� φ−1
2

(
C∑

j
φ2(λ j)φ2 ◦φ−1

1

( 1
W1(|Qj|σ )

)∫ ∞

0
(φ2(Mα χQdσ)χQj )

∗
ω (t)w2(t)dt

)

� φ−1
2

(
C∑

j
φ2(λ j)φ2 ◦φ−1

1

( 1
W1(|Qj|σ )

)
φ2 ◦φ−1

1

(∫ ∞

0
φ1

(
A
(
χQj

)∗
σ

)
(t)w1(t)dt

))

= φ−1
2

(
Cφ2(A)∑

j
φ2(λ j)

)
� φ−1

1

(∫ ∞

0
φ1 (C f ∗σ (t))w1(t)dt

)
. �

For the fractional maximal operator on Orlicz-Lorentz spaces, we have the follow-
ing results.

THEOREM 2. (a) If there is a constant C1 > 0 such that

φ−1
2

(∫ ∞

0
φ2 ((Mα f dσ)∗u(t))w2(t)dt

)
� φ−1

1

(∫ ∞

0
φ1 (C1 f ∗σ (t))w1(t)dt

)
(2.20)

for all f ∈ Λφ1
dσ (w1) , then there exists a constant C2 > 0 such that for all cubes Q

φ−1
2

(∫ ∞

0
φ2 (((Mα χQdσ)χQ)∗u(t))w2(t)dt

)
� φ−1

1

(∫ ∞

0
φ1 (C2(χQ)∗σ (t))w1(t)dt

)
.

(2.21)
(b) On the contrary, assume w2 ∈ B1 ∩ Bφ2 besides the conditions (i)–(iii) and

(2.12). Then the test condition (2.21) implies (2.20).

Proof. We only need to prove the part (b). Due to the monotone convergence
theorem, it suffices that we can find a constant C > 0 such that

φ−1
2

(∫ ∞

0
φ2

(
(M2N

α f dσ)∗u(t)
)

w2(t)dt

)
� φ−1

1

(∫ ∞

0
φ1 (C f ∗σ (t))w1(t)dt

)
, (2.22)
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where truncated maximal function MR is defined by

MR
α f (x) = sup

x∈Q

{
|Q| α

n −1
∫

Q
| f (y)|dy

∣∣∣|Q| 1
n � R

}
.

To get (2.22), the first point is Lemma 2 of [26]

(M2N

α g)(x) � C1

∫
[−2N+2,2N+2]n

(zMαg)(x)
dz

2n(N+3) , (2.23)

where C1 > 0 does not depend on x,z and N ∈ N , and zMα is defined as

(zMα f )(x) = sup
x∈Q

{
|Q| α

n −1
∫

Q
| f (y)|dy

∣∣∣Q− z a closed dyadic cube

}
.

The second point is

φ−1
2

(∫ ∞

0
φ2 ((zMα f dσ)∗u(t))w2(t)dt

)
� φ−1

1

(∫ ∞

0
φ1 (C f ∗σ (t))w1(t)dt

)
(2.24)

for all f � 0, and all z ∈ Rn .
For the time being we assume (2.24). Then by (2.23)

φ−1
2

(∫ ∞

0
φ2

(
(M2N

α f dσ)∗u(t)
)

w2(t)dt

)
� φ−1

2

(∫ ∞

0
φ2

((
C1

∫
[−2N+2,2N+2]n

(zMα f )(·) dz

2n(N+3)

)∗

u
(t)
)

w2(t)dt

)
� φ−1

2

(∫ ∞

0
φ2

((
C1

∫
[−2N+2,2N+2]n

(zMα f )(·) dz

2n(N+3)

)∗∗

u
(t)
)

w2(t)dt

)
� φ−1

2

(∫ ∞

0
φ2

(
C1

∫
[−2N+2,2N+2]n

(zMα f )∗∗u (t)
dz

2n(N+3)

)
w2(t)dt

)
.

By Jensen’s inequality, the assumption w2 ∈ Bφ2 and (2.24), it follows that the right
hand side of the last inequality is

� φ−1
2

(∫ ∞

0
C1

∫
[−2N+2,2N+2]n

φ2 ((zMα f )∗∗u (t))
dz

2n(N+3) w2(t)dt

)
� φ−1

2

(∫
[−2N+2,2N+2]n

dz

2n(N+3)

∫ ∞

0
φ2 (C(zMα f )∗u(t))w2(t)dt

)
� φ−1

1

(∫ ∞

0
φ1 (C f ∗σ (t))w1(t)dt

)
.

This completes the proof of (2.22).
Now we begin to prove (2.24). Due to the following equality:∫

{zMα f dσ>λ}
u(y)dy =

∫
{Mα f (·+z)dσ(·+z)>λ}

u(y+ z)dy
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we know that

φ−1
2

(∫ ∞

0
φ2 ((zMα f dσ)∗u(t))w2(t)dt

)
= φ−1

2

(∫ ∞

0
φ2

(
(Mα f (·+ z)dσz)∗u(·+z)(t)

)
w2(t)dt

)
. (2.25)

On the other hand, by (2.21) we get that

φ−1
2

(∫ ∞

0
φ2

(
((MαdσzχQ)χQ)∗u(·+z)(t)

)
w2(t)dt

)
� φ−1

2

(∫ ∞

0
φ2

(
((MαdσzχQ)χQ)∗u(·+z)(t)

)
w2(t)dt

)
= φ−1

2

(∫ ∞

0
φ2 (((Mαdσ χQ+z)χQ+z)∗u(t))w2(t)dt

)
� φ−1

1

(∫ ∞

0
φ1 (A(χQ+z)∗σ (t))w1(t)dt

)
� φ−1

1

(∫ ∞

0
φ1

(
A(χQ)∗dσz

(t)
)

w1(t)dt

)
with dσz(·) = σ(·+ z). (2.26)

So by (2.25), (2.26) and Theorem 2.4 we obtain that

φ−1
2

(∫ ∞

0
φ2 ((zMα f dσ)∗u(t))w2(t)dt

)
� φ−1

1

(∫ ∞

0
φ1
(
A( f (·+ z))∗σz

(t)
)
w1(t)dt

)
= φ−1

1

(∫ ∞

0
φ1 (A f ∗σ (t))w1(t)dt

)
. �

REMARK 1. Let 0 < p2 � p1 < ∞ , φ1(t) = t p1 and φ2(t) = t p2 . Then B1∩Bφ2 =
B1 and (i), (ii), (2.12) are naturally true. Furthermore, Section 4 of [5] proves that (iii)
can be established for some kinds of weights w1 . So Theorem 2 is generalization of
Theorem 2.1 of [24].

Let σ ∈ RDρ (ρ > 0) indicate that there is c > 0 such that∫
Q1

w(y)dy∫
Q w(y)dy

� c

( |Q1|
|Q|

)ρ

for all cubes Q1 and Q with Q1 ⊂ Q . Observing that

(Mα χQdσ)χQ � C|Q| α
n −1

∫
Q

σ(y)dy

for all cubes (see (3.1) of [24]), we get

PROPOSITION 2. Suppose σ ∈ RDρ with 1− α
n � ρ . Then condition (2.21) in

Theorem 2.5 can be substituted by

φ−1
2

(
φ2

(
|Q| α

n −1
∫

Q
σ(y)dy

)
W2(|Q|u)

)
� φ−1

1 (CW1(|Q|σ ))
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for all cubes Q.

The next theorem generalizes Corollary 2.7 of [24] by using Orlicz-Lorentz spaces
replacing classical Lorentz spaces.

THEOREM 3. (a) Suppose there is a constant C > 0 such that

φ−1
2

(∫ ∞

0
φ2 ((Mα f )∗u(t))w2(t)dt

)
� φ−1

1

(∫ ∞

0
φ1 (C f ∗v (t))w1(t)dt

)
(2.27)

for all f ∈ Λφ1
dσ (w1) . Then there exists a constant A > 0 such that for all cubes

φ−1
2

(
φ2(|Q| α

n )W2(|Q|u)
)

� Aφ−1
1 (W1(|Q|v)). (2.28)

(b) For the converse, suppose v ∈ At (t � 1) , and ψ1,ψ2 are N -functions with
ψ1 = φ1 ◦G, ψ2 = φ2 ◦G where G(s) = s1/t besides the assumptions (i)–(iii), (2.12)
and w2 ∈ B1∩Bφ2 . Then (2.28) implies (2.27 ).

Proof. The part (a) is obvious. We only prove the part (b). In view of v ∈ At , we
get by using the characterization of At

Mα f � C(Nαt,v f t )
1
t ,

where

Nλ ,v f (x) = sup
x∈Q

{
|Q| α

n

(∫
Q

v(z)dz
)−1 ∫

Q
| f (y)|v(y)dy

∣∣∣Q is a cube

}
.

Now in the light of G(s) = s1/t , ψ1 = φ1 ◦G , ψ2 = φ2 ◦G , the proof of

φ−1
2

(∫ ∞

0
φ2 ((Mα f )∗u(t))w2(t)dt

)
� φ−1

1

(∫ ∞

0
φ1 (C f ∗v (t))w1(t)dt

)
is reduced to

ψ−1
2

(∫ ∞

0
ψ2 ((Nαt,vg)∗u(t))w2(t)dt

)
� ψ−1

1

(∫ ∞

0
ψ1 (Cg∗v(t))w1(t)dt

)
for all g � 0.

As in Theorem 2, to obtain the last inequality, the idea is also to prove the corresponding
dyadic version

ψ−1
2

(∫ ∞

0
ψ2 ((Nαt,vg)∗u(t))w2(t)dt

)
� ψ−1

1

(∫ ∞

0
ψ1 (Cg∗v(t))w1(t)dt

)
for all g � 0.

The above modular inequality is based on

ψ2(N
Q[0,R]

αt,v g)(·)χQ[0,R](·) � C∑
j

ψ2(λ j)ψ2 ◦ψ−1
1

( 1
W1(|Qj|σ )

)
ψ2(|Qj| αt

n )χQj ,

(2.29)
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and

ψ−1
2 (∑

j

ψ2(λ j)) � ψ−1
1

(∫ ∞

0
ψ1 (Cg∗v(t))w1(t)dt

)
. (2.30)

Here λ j > 0 and the Qj ’s are dyadic cubes and N
Q[0,R]

λ ,v is the maximal operator de-
fined as Nλ ,v by means of dyadic cubes Q⊂Q[0,R] = (0,R)n. (2.29) and (2.30) can be
obtained by atomic decomposition of a suitable tent space as in the proof of Proposition
2.3. Now, we have by (2.29) and the condition w2 ∈ B1

ψ−1
2

(∫ ∞

0
ψ2
(
((Nαt,vg)χQj )

∗
u(t)
)
w2(t)dt

)
= ψ−1

2

(∫ ∞

0

(
ψ2((Nαt,vg)χQj )

)∗
u
(t)w2(t)dt

)
� ψ−1

2

(∫ ∞

0
C

(
∑
j

ψ2(λ j)ψ2 ◦ψ−1
1

( 1
W1(|Qj|σ )

)
ψ2(|Qj| αt

n )χQj

)∗

u

(t)w2(t)dt

)

� ψ−1
2

(∫ ∞

0
C

(
∑
j

ψ2(λ j)ψ2 ◦ψ−1
1

( 1
W1(|Qj|σ )

)
ψ2(|Qj| αt

n )χQj

)∗∗

u

(t)w2(t)dt

)

� ψ−1
2

(
C∑

j
ψ2(λ j)ψ2 ◦ψ−1

1

( 1
W1(|Qj|σ )

)
ψ2(|Qj| αt

n )
∫ ∞

0

(
χQj

)∗
u
(t)w2(t)dt

)

= ψ−1
2

(
C∑

j
ψ2(λ j)ψ2 ◦ψ−1

1

( 1
W1(|Qj|σ )

)
ψ2(|Qj| αt

n )W2(|Qj|u)
)

. (2.31)

Furthermore, (2.28) implies

φ2(|Q| α
n )W2(|Q|u) � Aφ2 ◦φ−1

1 (W1(|Q|v))

for all cubes. Thus by the condition φ2 ◦φ−1
1 ∈ ∇′ we get

ψ2 ◦ψ−1
1

( 1
W1(|Qj|σ )

)
ψ2(|Qj| αt

n )W2(|Qj|u)

= φ2 ◦φ−1
1

( 1
W1(|Qj|σ )

)
φ2(|Qj| α

n )W2(|Qj|u)

� A′φ2 ◦φ−1
1

( 1
W1(|Qj|σ )

)
φ2 ◦φ−1

1 (W1(|Q|v)) � A′′φ2 ◦φ−1
1 (1). (2.32)

(2.32), together with (2.30), leads to

ψ−1
2

(
C∑

j

ψ2(λ j)ψ2 ◦ψ−1
1

( 1
W1(|Qj|σ )

)
ψ2(|Qj| αt

n )W2(|Qj|u)
)

� ψ−1
1

(∫ ∞

0
ψ1 (Cg∗v(t))w1(t)dt

)
,
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which combined with (2.31) completes the proof. �

Some papers, e.g. [3], [8] and [11], gave the comparison between norm and mod-
ular inequalities: norm inequalities are weaker than modular inequalities. So we get a
sufficient condition for Mα to be bounded on Orlicz-Lorentz spaces.

COROLLARY 1. Suppose v ∈ At (t � 1) , and ψ1,ψ2 are N -functions with ψ1 =
φ1 ◦G,ψ2 = φ2 ◦G where G(s) = s1/t besides the assumptions (i)–(iii), (2.12) and
w2 ∈ B1∩Bφ2 . Then (2.28) implies that Mα is bounded from Λφ1

v (w1) into Λφ2
u (w2) .

3. Fractional integral operator on Orlicz-Lorentz spaces

Let φ be an N -function, w1, w2 two weights on (0,∞) . Consider the characteri-
zation of the following modular inequality∫ ∞

0
φ ((Iα f )∗(t))w2(t)dt �

∫ ∞

0
φ (C f ∗(t))w1(t)dt. (3.1)

In the light of the evaluation (see [N1] or [Sa2])

(Iα f )∗(t) � C

(
t−1+α/n

∫ t

0
f ∗(τ)dt +

∫ ∞

t
f ∗(τ)τ−1+α/ndτ

)
� (Iα f̃ )∗(t) (3.2)

for all 0 < t < ∞ , where f̃ (x) = f (A|x|n) with A the volume of the n -dimensional unit
ball.

Due to the evaluation (3.2), (3.1) is equivalent to

∫ ∞

0
φ
(

t−1+α/n
∫ t

0
f ∗(τ)dt +

∫ ∞

t
f ∗(τ)τ−1+α/ndτ

)
w2(t)dt �

∫ ∞

0
φ (C f ∗(t))w1(t)dt.

(3.3)
If φ ∈ Δ2 which implies that φ(x+ y) � C(φ(x)+ φ(y)), 0 < x, y < ∞ , then it is easy
to find that (3.3) is equivalent to∫ ∞

0
φ
(

t−1+α/n
∫ t

0
f ∗(τ)dt

)
w2(t)dt �

∫ ∞

0
φ (C1 f ∗(t))w1(t)dt (3.4)

and ∫ ∞

0
φ
(∫ ∞

t
f ∗(τ)τ−1+α/ndτ

)
w2(t)dt �

∫ ∞

0
φ (C2 f ∗(t))w1(t)dt. (3.5)

To obtain the characterization of (3.4) and (3.5), we introduce the following con-
cept. A strictly increasing positive sequence {x j} j∈Z is called a covering sequence if

the sequence is of the form {x j} j=∞
j=−∞ or of the form {x j} j=M

j=N , where M and/ or N is
finite. In the latter case we define xM+1 = ∞ and/ or xN−1 = 0. Thanks to Corollaries
3.5–3.6 of [13], we obtain
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LEMMA 3. Let φ be an N -function, φ , φ̃ ∈ Δ2 . Then (3.4) holds if and only if
there exists a constant B > 0 such that for all decreasing sequences {ε j} j∈Z and the
covering sequence {x j} satisfying W1(x j) = 2 j ,

∑
j

∫ x j+1

x j

φ
[ε j

B
xα/n

]
w2(x)dx � ∑

j

φ(ε j)
∫ x j+1

x j

w1(y)dy (3.6)

holds, and

∑
j

∫ x j+1

x j

φ

[
x−1+α/n

B

∥∥∥ iχ(x j−1,x j)

ε jW1

∥∥∥
Lφ̃ (ε jw1)

]
w2(x)dx � ∑

j

1
ε j

(3.7)

is satisfied for all positive sequences {ε j} and all covering sequences {x j} where
i(x) = x .

LEMMA 4. Let φ be an N -function, φ , φ̃ ∈ Δ2 . Then (3.5) holds if and only if
there exists a constant B > 0 such that

∑
j

∫ x j

x j−1

φ

[
1
B

∥∥∥k(·,x j)χ(x j ,x j+1)

ε jW1

∥∥∥
Lφ̃ (ε jw1)

]
w2(x)dx � ∑

j

1
ε j

(3.8)

and

∑
j

∫ x j

x j−1

φ
[
k(x j,x)

B

∥∥∥χ(x j ,x j+1)

ε jW1

∥∥∥
Lφ̃ (ε jw1)

]
w2(x)dx � ∑

j

1
ε j

(3.9)

holds for all positive sequences {ε j} j∈Z and all covering sequences {x j} j∈Z . Here
k(y,x) = yα/n− xα/n.

Combining (3.3) with Lemmas 3-4 induces the next result.

THEOREM 4. Let φ be an N -function, φ , φ̃ ∈ Δ2 . Then (3.1) holds if and only if
(3.6)–(3.9) hold.

As we pointed out that norm inequalities are weaker than modular inequalities, the
following result holds.

THEOREM 5. Let φ be an N -function, φ , φ̃ ∈ Δ2 . If (3.6)–(3.9) hold, then Iα is
bounded from Λφ (w1) into Λφ (w2) .

Proof. By Lemmas 3–4, we obtain that the modular inequalities (3.4) and (3.5)
hold which imply that∥∥∥t−1+α/n

∫ t

0
f ∗(τ)dt

∥∥∥
Lφ (w2)

� C‖ f ∗‖Lφ (w1), (3.10)

and ∥∥∥∫ ∞

t
f ∗(τ)τ−1+α/ndτ

∥∥∥
Lφ (w2)

� C‖ f ∗‖Lφ (w1). (3.11)
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Thus by (3.10), (3.11)

‖Iα f‖Λφ (w2) � C
∥∥∥t−1+α/n

∫ t

0
f ∗(τ)dt +

∫ ∞

t
f ∗(τ)τ−1+α/ndτ

∥∥∥
Lφ (w2)

� C
∥∥∥t−1+α/n

∫ t

0
f ∗(τ)dt

∥∥∥
Lφ (w2)

+C
∥∥∥∫ ∞

t
f ∗(τ)τ−1+α/ndτ

∥∥∥
Lφ (w2)

� C‖ f ∗‖Lφ (w1) = C‖ f‖Λφ (w1). �

The methods in this section also apply to the singular integral operator

S f (x) = lim
ε→0+

∫
|y|�ε

K(y)
|y|n f (x− y)dy, x ∈ Rn,

where K is an odd function on Rn which is homogeneous of degree 0 and satisfies
Dini-type condition on the unit sphere Sn−1 of Rn :∫ 1

0

ω(δ )
δ

dδ < ∞, with ω(δ ) = sup
x,y∈Sn−1,|x−y|�δ

|K(x)−K(y)|,

since

(S f )∗(t) � C

(
1
t

∫ t

0
f ∗(τ)dt +

∫ ∞

t

f ∗(τ)
τ

dτ
)

for all 0 < t < ∞ (see Theorem 16.12 of [2]).
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