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NEW MULTIPLICATIVE HIGHER ORDER

DYNAMIC INEQUALITIES OF OPIAL TYPE

SAFI S. RABIE, S. H. SAKER, D. O’REGAN AND R. P. AGARWAL

(Communicated by M. Bohner)

Abstract. In this paper, we prove some new multiplicative dynamic inequalities of Opial type on
a time scale T . The main results will be proved by using Hölder’s inequality, the chain rule and
some basic dynamic inequalities designed and proved for this purpose. As special cases, we will
derive some continuous and discrete inequalities from the main results.

1. Introduction

In [6] Bohner and Kaymakçalan proved some dynamic inequalities of Opial type
on time scales. In particular, they proved that if y : [0,h]∩T −→ R is delta differen-
tiable with y(0) = 0, then

∫ h

0
|y(t)+ yσ(t)|

∣∣∣y�(t)
∣∣∣�t � h

∫ h

0

∣∣∣y�(t)
∣∣∣2�t. (1.1)

For extensions and generalizations of (1.1), we refer the reader to the monograph [2]
and the recent papers [7, 8] and the references cited therein. There are a few inequalities
involving higher order derivatives established in the literature [3, 11, 15, 17]. In the
following, we recall some of these results that serve and motivate the contents of this
paper. In [17], the authors proved that if y : [a,b]T → R is delta differentiable n times
with yΔi

(a) = 0, for i = 0,1, . . . ,n− 1, and f is a positive rd-continuous function on
[a,b]T , then

∫ b

a
f (t) |y(t)|p

∣∣∣yΔn
(t)
∣∣∣q Δt �

(
q

p+q

)
(b−a)np

∫ b

a
f (t)

∣∣∣yΔn
(t)
∣∣∣p+q

Δt. (1.2)

In [3], the author proved that if y : [a,b]T → R is delta differentiable n times (n odd)
with yΔi

(a) = 0, for i = 0,1, . . . ,n−1, then

∫ b

a
|y(t)|Δt �

(∫ b

a

(∫ t

a
hp

n−1(t,σ(s))Δs

) q
p

Δt

)∫ b

a

∣∣∣yΔn
(t)
∣∣∣q Δt,
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where p, q > 1 and satisfy 1/p+1/q= 1 and hn(t,s) are the Taylor monomials which
will be defined later in Section 2. Also in [3] it is proved that if y : [a,b]T → R is delta
differentiable n times with yΔi

(a) = 0, for i = 0,1, . . . ,n−1, and
∣∣yΔn

(t)
∣∣ is increasing,

then ∫ b

a
|y(t)|

∣∣∣yΔn
(t)
∣∣∣Δt

� (b−a)
1
q

(∫ b

a

(∫ t

a
hp

n−1(t,σ(s))Δs

) 1
p

Δt

)(∫ b

a

∣∣∣yΔn
(t)
∣∣∣2q

Δt

) 1
q

, (1.3)

where p, q > 1 and satisfy 1/p+1/q = 1. As a generalization of (1.3) the authors in
[3], proved that if y : [a,b]T → R is delta differentiable n times with yΔm+i

(a) = 0, for
i = 0,1, . . . ,n−m−1, and

∣∣yΔn
(t)
∣∣ is increasing, then

∫ b

a

∣∣∣yΔm
(t)
∣∣∣ ∣∣∣yΔn

(t)
∣∣∣Δt

� (b−a)
1
q

(∫ b

a

(∫ t

a
hp

n−m−1(t,σ(s))Δs

) 1
p

Δt

)(∫ b

a

∣∣∣yΔn
(t)
∣∣∣2q

Δt

) 1
q

, (1.4)

where p, q > 1 and satisfy 1/p+ 1/q = 1. In [15], the authors proved that if r and
s are positive rd-continuous functions on [a,b]T such that s is nonincreasing, and y :
[a,b]T → R is delta differentiable n times with yΔi

(a) = 0, for i = 0,1, . . . ,n−1, then

∫ b

a
s(t) |y(t)|p

∣∣∣yΔn
(t)
∣∣∣Δt

� 1
p+1

(b−a)n−1
(∫ b

a
r1−γ(t)Δt

) 1+p
γ
(∫ b

a
r(t)(s(t))

p
p+1

∣∣∣yΔn
(t)
∣∣∣ν Δt

) 1+p
ν

, (1.5)

where p > 0 and 1/γ +1/ν = 1.
In [11], the authors extended the above results and proved some new dynamic

multiplicative inequalities by employing a chain rule of the form

[
n

∏
j=1

f j(t)

]Δ

=
n

∑
j=1

{[
j−1

∏
i=1

f σ
i (t)

]
f Δ
j (t)

[
n

∏
i= j+1

fi(t)

]}
, for t ∈ T.

In particular, they proved that if f j ∈C(l)
rd (T) are real-valued functions with f Δi

j (a) = 0
for all j = 1,2, . . . ,n+1 and i = 0,1, . . . , l , then

∫ b

a
q(t)

n+1

∑
j=1

∣∣∣∣∣
[

j−1

∏
i=1

f σ
i (t)

]
f Δl

j (t)

[
n+1

∏
i= j+1

fi(t)

]∣∣∣∣∣Δt

�
(

1
n+1

∫ b

a

(
q2(t)

∫ σ(t)

a
[hl−1(σ(s),σ(t))]2 Δs

)n

Δt

)1/2 n+1

∑
j=1

(∫ b

a

[
f Δl

j (t)
]2

Δt

) n+1
2

,
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where l, n ∈ N , a, b ∈ T and q ∈Crd(T) is a nonnegative real-valued function.
In this paper, we will prove some new multiplicative dynamic inequalities of

higher order of Opial type on time scales. The main results will be proved by using
Hölder’s inequality, a new chain rule, different from the one used in [1], and some new
dynamic inequalities designed and proved for this purpose. As special cases, when
T = R , our results contain some improved inequalities similar to those proved by Che-
ung in [9]. The paper is divided into two sections. In the next section, we present
some concepts related to the notion of time scales and the main results will be proved
in Section 3.

2. Preliminaries on time scales

In this section, for completeness, we recall the following concepts related to the
notion of time scales. For more details of time scale analysis we refer the reader books
by Bohner and Peterson [4], [5] which summarize and organize much of the time scale
calculus. A time scale T is an arbitrary nonempty closed subset of the real numbers R .
The three most popular examples of calculus on time scales are differential calculus,
difference calculus, and quantum calculus, i.e, when T = R, T = N and T = qN0 =
{qt : t ∈ N0} where q > 1. Without loss of generality, we assume that supT = ∞ , and
define the time scale interval [a,b]T by [a,b]T := [a,b]∩T . The forward jump operator
is defined by σ(t) := inf{s∈ T : s > t}. A function f : T →R is said to be right–dense
continuous (rd-continuous) provided f is continuous at right–dense points and at left–
dense points in T, left hand limits exist and are finite. The set of all such rd-continuous
functions is denoted by Crd(T). For any function f : T→R the notation f σ (t) denotes
f (σ(t)). We will refer to the (delta) integral which we can define as follows: If FΔ(t) =
f (t) , then the Cauchy (delta) integral of f is defined by

∫ t
a f (s)Δs := F(t)−F(a). It

can be shown (see [4]) that if g ∈Crd(T), then the Cauchy integral F(t) :=
∫ t
t0

g(s)Δs

exists, t0 ∈ T , and satisfies FΔ(t) = f (t) , t ∈ T. An infinite integral is defined as∫ ∞
a f (t)Δt = limb→∞

∫ b
a f (t)Δt. The integration by parts formula is given by

∫ b

a
u(t)vΔ(t)Δt = [u(t)v(t)]ba−

∫ b

a
uΔ(t)vσ (t)Δt. (2.1)

Now, we define the Taylor monomials or generalized polynomials as defined originally
by Agarwal and Bohner [1]. These types of monomials are important because they
are intimately related to Cauchy functions for certain dynamic equations which are
important in variations of constants formulas. The Taylor monomials hk : T×T → R ,
k ∈ N0 = N∪{0} , are defined recursively as follows: The function h0 is defined by
h0(t,s) = 1, for all s, t ∈ T , and given hk for k ∈ N0 , the function hk+1 is defined by

hk+1(t,s) =
∫ t

s
hk(τ,s)Δτ , for all s, t ∈ T.

If we let hΔ
k (t,s) denotes for each fixed s ∈ T , the derivative of hk(t,s) with respect to

t , then
hΔ

k (t,s) = hk−1(t,s), k ∈ N, t ∈ T,



36 SAFI S. RABIE, S. H. SAKER, D. O’REGAN AND R. P. AGARWAL

for each fixed s ∈ T . The above definition obviously implies h1(t,s) = t− s , for all s,
t ∈ T . In the following, we give some formulas of hk(t,s) as determined in [4]. In the
case when T = R , then σ(t) = t, μ(t) = 0, yΔ(t) = y

′
(t), and

hk(t,s) =
(t− s)k

k!
, for all s, t ∈ R. (2.2)

In the case when T = N , we see that σ(t) = t + 1, μ(t) = 1, yΔ(t) = Δy(t) = y(t +
1)− y(t), and

hk(n,s) :=
(n− s)(k)

k!
, k = 0,1,2, . . . , t > s, (2.3)

where t(k) = t(t−1) . . .(t−k+1) is the so-called falling function (see [12]). In general
for t � s , we have that hk(t,s) � 0, and

hk(t,s) � (t− s)k

k!
, for all t > s, k ∈ N0.

We also consider the Taylor monomials gk : T×T → R , k ∈ N0 = N∪{0} , which
are defined recursively as follows: The function g0 is defined by g0(t,s) = 1, for all
s,t ∈ T , and given gk for k ∈ N0 , the function gk+1 is defined by

gk+1(t,s) =
∫ t

s
gk(σ(τ),s)Δτ , for all s,t ∈ T.

If we let gΔ
k (t,s) denote for each fixed s ∈ T , the derivative of g(t,s) with respect to t ,

then
gΔ

k (t,s) = gk−1(σ(t),s), k ∈ N, t ∈ T,

for each fixed s ∈ T . From Theorem 1.112 in [4], we see that

hk(t,s) = (−1)kgk(s,t).

We denote by C(n)
rd (T) the space of all functions f ∈Crd(T) such that f Δi ∈Crd(T) for

i = 0,1, . . . ,n for n∈N . For the function f : T → R , we consider the second derivative
f Δ2

provided f Δ is delta differentiable on T with derivative f Δ2
= ( f Δ)Δ. Similarly,

we define the nth order derivative f Δn
= ( f Δn−1

)Δ. The Taylor formula that we will
need to prove the main results in this paper are adapted from [10] and states that if

f ∈C(n)
rd (T) and s ∈ T , then

f (t) =
n−1
∑

k=0
f Δk

(s)hk(t,s)+
∫ t
s hn−1(t,(σ(τ)) f Δn

(τ)Δτ. (2.4)

As a special case if m < n , then

f Δm
(t) =

n−m−1
∑

k=0
f Δk+m

(s)hk(t,s)+
∫ t
s hn−m−1(t,(σ(τ)) f Δn

(τ)Δτ.
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Also, in [1], the authors proved that if f is n -times differentiable on T
κn

, then

f (t) =
n−1
∑

k=0
(−1)k f Δk

(s)gk(s,t)+
∫ t
s (−1)n−1gn−1((σ(τ),t) f Δn

(τ)Δτ, (2.5)

where t ∈ T , s ∈ T
κn−1

. As a special case if m < n , then

f Δm
(t) =

n−m−1
∑

k=0
(−1)k f Δk+m (s)gk(t,s)+

∫ t
s (−1)n−m−1gn−m−1((σ(τ), t) f Δn

(τ)Δτ.

3. Main results

In this section, we will prove the main results and to do this we will need the
following chain rule

(xγ)Δ (t) = γ
1∫

0

[hxσ (t)+ (1−h)x(t)]γ−1 dhxΔ(t), (3.1)

which is a simple consequence of Keller’s chain rule [4, Theorem 1.90] and Hölder’s
inequality [4, Theorem 6.13]

∫ b

a
|u(t)v(t)|Δt �

[∫ b

a
|u(t)|γ Δt

] 1
γ
[∫ b

a
|v(t)|ν Δt

] 1
ν
, (3.2)

where γ > 1 and 1
ν + 1

γ = 1, a , b ∈ T and u, v ∈Crd(T , R) .

Throughout the paper, we assume that n � 1 is a fixed number and f ∈C(n)
rd ([a,b]∩

T) is a real-valued rd-continuous function and w is a positive rd-continuous weighted
function defined on [a,b]∩T . We also assume that and a, τ , b∈ T such that [a,τ]T =
[a,τ]∩T and [τ,b]T = [τ,b]∩T . The following two lemmas will be used in the proof
of our main results.

LEMMA 3.1. For any nonnegative rd-continuous function g and any λ > 0 , we
have that

b∫
a

g(t)

⎛
⎝ t∫

a

g(s)Δs

⎞
⎠

λ

Δt � 1
λ +1

⎛
⎝ b∫

a

g(t)Δt

⎞
⎠

λ+1

<

⎛
⎝ b∫

a

g(t)Δt

⎞
⎠

λ+1

. (3.3)

Proof. Let G(t) :=
t∫
a

g(s)Δs. Using the chain rule (3.1) and the fact that GΔ(t) >
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0, we see that

(
Gλ+1

)�
(t) = (λ +1)

1∫
0

[
h(G(t))σ +(1−h)G(t)

]λ
dhG�(t)

� (λ +1)g(t)
1∫

0

[hG(t)+ (1−h)G(t)]λ dh

= (λ +1)g(t)Gλ (t).

That is, (
Gλ+1

)�
(t) � (λ +1)g(t)Gλ (t). (3.4)

Integrating both sides of (3.4) from a to b and using the fact that G(a) = 0, we obtain

b∫
a

g(t)Gλ (t)Δt � 1
λ +1

b∫
a

(
(G(t))λ+1

)�
Δt =

1
λ +1

Gλ+1(b)

=
1

λ +1

⎛
⎝ b∫

a

g(t)Δt

⎞
⎠

λ+1

<

⎛
⎝ b∫

a

g(t)Δt

⎞
⎠

λ+1

,

which is the desired inequality (3.3). The proof is complete. �

LEMMA 3.2. For any nonnegative rd-continuous function g and any λ > 0 , we
have that

b∫
a

g(t)

⎛
⎝ b∫

t

g(s)Δs

⎞
⎠

λ

Δt �

⎛
⎝ b∫

a

g(t)Δt

⎞
⎠

λ+1

. (3.5)

Proof. Setting G(t) :=
b∫
t
g(s)Δs , we see that GΔ(t) = −g(t) and then

G(t) � G(a), for a � t.

This implies, for λ > 0, that

b∫
a

g(t)Gλ (t)Δt �
b∫

a

g(t)Gλ (a)Δt = Gλ (a)
b∫

a

g(t)Δt = G1+λ (a).

That is ∫ b

a
g(t)

⎛
⎝ b∫

t

g(s)Δs

⎞
⎠

λ

Δt �

⎛
⎝ b∫

a

g(t)Δt

⎞
⎠

λ+1

,

which is the desired inequality (3.5). The proof is complete. �



INEQUALITIES OF OPIAL’S TYPE ON TIME SCALES 39

LEMMA 3.3. Let q > 0 and p > 0 be such that p + q � 1 and let Ω(t) be a
nonnegative rd-continuous function. Then

∫ τ

a
Ω( p+q−1

p+q )p(t)
[∫ t

a
w(s)

∣∣∣ f Δn
(s)
∣∣∣p+q

Δs

] p
p+q

w
q

p+q (t)
∣∣∣ f Δn

(t)
∣∣∣q Δt

� H(τ)
∫ τ

a
w(t)

∣∣∣ f Δn
(t)
∣∣∣p+q

Δt, (3.6)

where

H(τ) :=
[∫ τ

a
Ωp+q−1(t)Δt

] p
p+q

. (3.7)

Proof. Applying Hölder’s inequality on the left hand side of the inequality (3.6)
with γ = 1/α p and ν = 1/αq where α = 1/(p+q) , we have that∫ τ

a
Ωp(1−α)(t)

[∫ t

a
w(s)

∣∣∣ f Δn
(s)
∣∣∣1/α

Δs

]α p

wαq(t)
∣∣∣ f Δn

(t)
∣∣∣q Δt

�
[∫ τ

a
Ω(1−α)/α(t)Δt

]α p
[∫ τ

a

(∫ t

a
w(s)

∣∣∣ f Δn
(s)
∣∣∣1/α

Δs

)p/q

w(t)
∣∣∣ f Δn

(t)
∣∣∣1/α

Δt

]αq

= H(τ)

[∫ τ

a

(∫ t

a
w(s)

∣∣∣ f Δn
(s)
∣∣∣1/α

Δs

)p/q

w(t)
∣∣∣ f Δn

(t)
∣∣∣1/α

Δt

]αq

.

Applying the inequality (3.3) in Lemma 3.1 on the term

∫ τ

a

(∫ t

a
w(s)

∣∣∣ f Δn
(s)
∣∣∣1/α

Δs

)p/q

w(t)
∣∣∣ f Δn

(t)
∣∣∣1/α

Δt,

with λ = p/q and g(t) = w(t)
∣∣ f Δn

(t)
∣∣1/α

, we see that

∫ τ

a
Ωp(1−α)(t)

[∫ t

a
w(s)

∣∣∣ f Δn
(s)
∣∣∣1/α

Δs

]α p

wαq(t)
∣∣∣ f Δn

(t)
∣∣∣q Δt

� H(τ)

[(∫ τ

a
w(t)

∣∣∣ f Δn
(t)
∣∣∣1/α

Δt

)1+ p
q
]αq

= H(τ)

[(∫ τ

a
w(t)

∣∣∣ f Δn
(t)
∣∣∣1/α

Δt

)1/αq
]αq

= H(τ)
∫ τ

a
w(t)

∣∣∣ f Δn
(t)
∣∣∣1/α

Δt.

Using α = 1/(p+q) , we see that

∫ τ

a
Ω( p+q−1

p+q )p(t)
[∫ t

a
w(s)

∣∣∣ f Δn
(s)
∣∣∣p+q

Δs

] p
p+q

w
q

p+q (t)
∣∣∣ f Δn

(t)
∣∣∣q Δt

� H(τ)
∫ τ

a
w(t)

∣∣∣ f Δn
(t)
∣∣∣p+q

Δt,
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which is the desired inequality (3.6). The proof is complete. �

LEMMA 3.4. Let q > 0 and p > 0 be such that p+ q � 1 , and let Λ(t) a non-
negative rd-continuous function. Then

∫ b

τ
Λ( p+q−1

p+q )p(t)
[∫ b

t
w(s)

∣∣∣ f Δn
(s)
∣∣∣p+q

Δs

] p
p+q

w
q

p+q (t)
∣∣∣ f Δn

(t)
∣∣∣q Δt

� G(τ)
∫ b

τ
w(t)

∣∣∣ f Δn
(t)
∣∣∣p+q

Δt, (3.8)

where

G(τ) :=
[∫ b

τ
Λp+q−1(t)Δt

] p
p+q

. (3.9)

Proof. Applying Hölder’s inequality on the left hand side of the inequality (3.8)
for γ = 1/α p and ν = 1/αq where α = 1/(p+q) , we have that

∫ b

τ
Λp(1−α)(t)

[∫ b

t
w(s)

∣∣∣ f Δn
(s)
∣∣∣1/α

Δs

]α p

wαq(t)
∣∣∣ f Δn

(t)
∣∣∣q Δt

�
[∫ b

τ
Λ(1−α)/α(t)Δt

]α p
[∫ b

τ

(∫ b

t
w(s)

∣∣∣ f Δn
(s)
∣∣∣1/α

Δs

)p/q

w(t)
∣∣∣ f Δn

(t)
∣∣∣1/α

Δt

]αq

= G(τ)

[∫ b

a

(∫ b

t
w(s)

∣∣∣ f Δn
(s)
∣∣∣1/α

Δs

)p/q

w(t)
∣∣∣ f Δn

(t)
∣∣∣1/α

Δt

]αq

.

Applying the inequality (3.5) in Lemma 3.2 on the term

∫ b

τ

(∫ b

t
w(s)

∣∣∣ f Δn
(s)
∣∣∣1/α

Δs

)p/q

w(t)
∣∣∣ f Δn

(t)
∣∣∣1/α

Δt,

with λ = p/q and g(t) = w(t)
∣∣ f Δn

(t)
∣∣1/α

, we see that

∫ b

τ
Λp(1−α)(t)

[∫ b

t
w(s)

∣∣∣ f Δn
(s)
∣∣∣1/α

Δs

]α p

wαq(t)
∣∣∣ f Δn

(t)
∣∣∣q Δt

� G(τ)

[(∫ b

τ
w(t)

∣∣∣ f Δn
(t)
∣∣∣1/α

Δt

)1+ p
q
]αq

= G(τ)

[(∫ b

τ
w(t)

∣∣∣ f Δn
(t
∣∣∣1/α

Δt

)1/αq
]αq

= G(τ)
∫ b

τ
w(t)

∣∣∣ f Δn
(t)
∣∣∣1/α

Δt.
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Using α = 1/(p+q) , we see that

∫ b

a
Λ( p+q−1

p+q )p(t)
[∫ b

t
w(s)

∣∣∣ f Δn
(s)
∣∣∣p+q

Δs

] p
p+q

w
q

p+q (t)
∣∣∣ f Δn

(t)
∣∣∣q Δt

� G(τ)
∫ b

a
w(t)

∣∣∣ f Δn
(t)
∣∣∣p+q

Δt,

which is the desired inequality (3.8). The proof is complete. �
For the remaining results we assume that p � 1 and q > 0 are any real numbers

and rk � 0 for k = 0,1, . . . ,n−1 are real numbers with Σn−1
k=0rk = 1.

THEOREM 3.1. Assume that f Δk+i
(a) = 0, for all i = 0,1, . . . ,n− k− 1 . If w is

a positive, rd-continuous, and nonincreasing on [a,τ]T , then

∫ τ

a
w(t)

(
n−1

∏
k=0

∣∣∣ f Δk
(t)
∣∣∣rk
)p ∣∣∣ f Δn

(t)
∣∣∣q Δt �

n−1

∑
k=0

rkHk(a,τ)
∫ τ

a
w(t)

∣∣∣ f Δn
(t)
∣∣∣p+q

Δt,

(3.10)
where

Hk(a,τ) :=
[∫ τ

a
Ωp+q−1

k (a;t)Δt

] p
p+q

, (3.11)

and

Ωk(a;t) :=
∫ t

a
|hn−k−1(t,σ(s))| p+q

p+q−1 Δs.

Proof. Applying the inequality (see [9, Lemma 1]),

n−1

∏
k=0

ark
k �

n−1

∑
k=0

rkak �
(

n−1

∑
k=0

rka
p
k

)1/p

, (3.12)

for any real numbers ak � 0, for k = 0,1, . . . ,n−1, and any p � 1, we see that(
n−1

∏
k=0

∣∣∣ f Δk
(t)
∣∣∣rk
)p

�
n−1

∑
k=0

rk

∣∣∣ f Δk
(t)
∣∣∣p . (3.13)

From Taylor’s formula (2.4) and f Δk+i
(a) = 0 for i = 0,1, . . . ,n− k−1, we have

f Δk
(t) =

∫ t

a
hn−k−1 (t,σ(s)) f Δn

(s)Δs.

That is ∣∣∣ f Δk
(t)
∣∣∣ =

∣∣∣∣
∫ t

a
hn−k−1 (t,σ(s)) f Δn

(s)Δs

∣∣∣∣
�
∫ t

a
|hn−k−1 (t,σ(s))|

∣∣∣ f Δn
(s)
∣∣∣Δs. (3.14)



42 SAFI S. RABIE, S. H. SAKER, D. O’REGAN AND R. P. AGARWAL

From (3.13) and (3.14) and using the fact that w is nonincreasing, we get(
n−1

∏
k=0

∣∣∣ f Δk
(t)
∣∣∣rk
)p

�
n−1

∑
k=0

rk

(∫ t

a
|hn−k−1 (t,σ(s))|

∣∣∣ f Δn
(s)
∣∣∣Δs

)p

�
n−1

∑
k=0

rkw
−α p(t)

(∫ t

a
|hn−k−1 (t,σ(s))|wα (s)

∣∣∣ f Δn
(s)
∣∣∣Δs

)p

.

(3.15)

Applying Hölder’s inequality with γ = 1/(1−α) , and ν = 1/α on the right hand side
where α = 1/(p+q) , we obtain(

n−1

∏
k=0

∣∣∣ f Δk
(t)
∣∣∣rk
)p

�
n−1

∑
k=0

rkw
−α p(t)Ω(1−α)p

k (a;t)
(∫ t

a
w(s)

∣∣∣ f Δn
(s)
∣∣∣1/α

Δs

)α p

.

(3.16)
Multiplying (3.16) by w(t)

∣∣ f Δn
(t)
∣∣q and integrating from a to τ and then applying the

inequality in Lemma 3.3 where Ω(t) is replaced by Ωk(a; t) and H(t) is replaced by
Hk(a,τ) , we have

∫ τ

a
w(t)

(
n−1

∏
k=0

∣∣∣ f Δk
(t)
∣∣∣rk
)p ∣∣∣ f Δn

(t)
∣∣∣q Δt

�
n−1

∑
k=0

rk

∫ τ

a
w(1−α p)(t)

∣∣∣ f Δn
(t)
∣∣∣q Ω(1−α)p

k (a;t)
(∫ t

a
w(s)

∣∣∣ f Δn
(s)
∣∣∣1/α

Δs

)α p

Δt

=
n−1

∑
k=0

rk

∫ τ

a
wαq(t)

∣∣∣ f Δn
(t)
∣∣∣q Ω(1−α)p

k (a;t)
(∫ t

a
w(s)

∣∣∣ f Δn
(s)
∣∣∣1/α

Δs

)α p

Δt

=

[
n−1

∑
k=0

rkHk(a,τ)

]∫ τ

a
w(t)

∣∣∣ f Δn
(t)
∣∣∣1/α

Δt.

Using α = 1/(p+q), we have

∫ τ

a
w(t)

(
n−1

∏
k=0

∣∣∣ f Δk
(t)
∣∣∣rk
)p ∣∣∣ f Δn

(t)
∣∣∣q Δt �

n−1

∑
k=0

rkHk(a,τ)
∫ τ

a
w(t)

∣∣∣ f Δn
(t)
∣∣∣p+q

Δt,

which is the desired inequality (3.10). The proof is complete. �

THEOREM 3.2. Assume that f Δk+i
(b) = 0, for all i = 0,1, . . . ,n− k− 1 . If w is

a positive, rd-continuous and nondecreasing on [τ,b]T , then

∫ b

τ
w(t)

(
n−1

∏
k=0

∣∣∣ f Δk
(t)
∣∣∣rk
)p ∣∣∣ f Δn

(t)
∣∣∣q Δt

�
n−1

∑
k=0

rkGk(τ,b)
∫ b

τ
w(t)

∣∣∣ f Δn
(t)
∣∣∣p+q

Δt, (3.17)
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where

Gk(τ,b) =
[∫ b

τ
Λp+q−1

k (t;b)Δt

] p
p+q

, (3.18)

and

Λk(t;b) =
∫ b

t
|gn−k−1(σ(s),t)| p+q

p+q−1 Δs.

Proof. As in the proof of Theorem 3.1, by applying Taylor’s formula (2.5), we see
that ∣∣∣ f Δk

(t)
∣∣∣� ∫ b

t
|gn−k−1 (σ(s),t)|

∣∣∣ f Δn
(s)
∣∣∣Δs.

By applying the inequality (3.12), we have

(
n−1

∏
k=0

∣∣∣ f Δk
(t)
∣∣∣rk
)p

�
n−1

∑
k=0

rk

(∫ b

t
|gn−k−1 (σ(s), t)|

∣∣∣ f Δn
(s)
∣∣∣Δs

)p

. (3.19)

Applying Hölder’s inequality for γ = 1/(1−α) and ν = 1/α where α = 1/(p+ q)
and since w(t) is nondecreasing, we have

(∫ b

t
|gn−k−1 (σ(s),t)|

∣∣∣ f Δn
(s)
∣∣∣Δs

)p

�
(

w−α(t)
∫ b

t
wα (s) |gn−k−1 (σ(s),t)|

∣∣∣ f Δn
(s)
∣∣∣Δs

)p

� w−α p(t)
(∫ b

t
|gn−k−1 (σ(s),t)|1/(1−α) Δs

)(1−α)p

(∫ b

t
w(s)

∣∣∣ f Δn
(s)
∣∣∣1/α

Δs

)α p

= w−α p(t)Λ(t;b)(1−α)p
(∫ b

t
w(s)

∣∣∣ f Δn
(s)
∣∣∣1/α

Δs

)α p

. (3.20)

Substituting (3.20) into (3.19), we have

(
n−1

∏
k=0

∣∣∣ f Δk
(t)
∣∣∣rk
)p

�
n−1

∑
k=0

rkw
−α p(t)Λ(t;b)(1−α)p

(∫ b

t
w(s)

∣∣∣ f Δn
(s)
∣∣∣1/α

Δs

)α p

.

(3.21)
Multiplying (3.21) by w(t)

∣∣ f Δn(t)
∣∣q and integrating from τ to b and then applying the

inequality in Lemma 3.4, where Λ(t) is replaced by Λk(t;b) and G(τ) is replaced by
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Gk(τ,b) , we have

∫ b

τ
w(t)

(
n−1

∏
k=0

∣∣∣ f Δk
(t)
∣∣∣rk
)p ∣∣∣ f Δn

(t)
∣∣∣q Δt

�
n−1

∑
k=0

rk

∫ b

τ
w(t)

∣∣∣ f Δn
(t)
∣∣∣q w−α p(t)Λ(t;b)(1−α)p

(∫ b

t
w(s)

∣∣∣ f Δn
(s)
∣∣∣1/α

Δs

)α p

Δt

=
n−1

∑
k=0

rk

∫ b

τ
wαq(t)

∣∣∣ f Δn
(t)
∣∣∣q Λ(t;b)(1−α)p

(∫ b

t
w(s)

∣∣∣ f Δn
(s)
∣∣∣1/α

Δs

)α p

Δt

�
n−1

∑
k=0

rkGk(τ,b)
∫ b

τ
w(t)

∣∣∣ f Δn
(t)
∣∣∣1/α

Δt.

Using α = 1/(p+q), we have

∫ b

τ
w(t)

(
n−1

∏
k=0

∣∣∣ f Δk
(t)
∣∣∣rk
)p ∣∣∣ f Δn

(t)
∣∣∣q Δt

�
n−1

∑
k=0

rkGk(τ,b)
∫ b

τ
w(t)

∣∣∣ f Δn
(t)
∣∣∣p+q

Δt,

which is the desired inequality (3.17). The proof is complete. �

THEOREM 3.3. Assume that f Δk+i
(a) = 0, for all i = 0,1, . . . ,n− k− 1 . If 0 <

A � w(t) � B for all t ∈ [a,τ]T , then

∫ τ

a
w(t)

(
n−1

∏
k=0

∣∣∣ f Δk
(t)
∣∣∣rk
)p ∣∣∣ f Δn

(t)
∣∣∣q Δt

�
n−1

∑
k=0

rkHk(a,τ)
(

B
A

) p
p+q
∫ τ

a
w(t)

∣∣∣ f Δn
(t)
∣∣∣p+q

Δt, (3.22)

where Hk(a,τ) is defined as in (3.11).

Proof. We proceed as in the proof of Theorem 3.1 to get

(
n−1

∏
k=0

∣∣∣ f Δk
(t)
∣∣∣rk
)p

�
n−1

∑
k=0

rk

(∫ t

a
|hn−k−1 (t,σ(s))|

∣∣∣ f Δn
(s)
∣∣∣Δs

)p

.

From the boundedness of w(t) and since A � w(t) , we have

(
n−1

∏
k=0

∣∣∣ f Δk
(t)
∣∣∣rk
)p

�
n−1

∑
k=0

rkA
−α p

(∫ t

a
wα(s) |hn−k−1 (t,σ(s))|

∣∣∣ f Δn
(s)
∣∣∣Δs

)p

.
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Applying Hölder’s inequality with γ = 1/(1−α) and ν = 1/α, we have(
n−1

∏
k=0

∣∣∣ f Δk
(t)
∣∣∣rk
)p

�
n−1

∑
k=0

rkA
−α p

(∫ t

a
|hn−k−1 (t,σ(s))|1/(1−α) Δs

)(1−α)p(∫ t

a
w(s)

∣∣∣ f Δn
(s)
∣∣∣1/α

Δs

)α p

=
n−1

∑
k=0

rkA
−α pΩ(1−α)p(a;t)

(∫ t

a
w(s)

∣∣∣ f Δn
(s)
∣∣∣1/α

Δs

)α p

. (3.23)

Multiplying (3.23) by w(t)
∣∣ f Δn

(t)
∣∣q and integrating from a to τ , we obtain

∫ τ

a
w(t)

(
n−1

∏
k=0

∣∣∣ f Δk
∣∣∣rk
)p ∣∣∣ f Δn

(t)
∣∣∣q Δt

�
n−1

∑
k=0

rk

Aα p

∫ τ

a
w(t)Ω(1−α)p(a;t)

(∫ t

a
w(s)

∣∣∣ f Δn
(s)
∣∣∣1/α

Δs

)α p ∣∣∣ f Δn
(t)
∣∣∣q Δt. (3.24)

Since w(t) � B and α(p+q) = 1, then we have

wα p(t) � Bα p, and w(t) � Bα pwαq(t). (3.25)

This and (3.24) imply that

∫ τ

a
w(t)

(
n−1

∏
k=0

∣∣∣ f Δk
(t)
∣∣∣rk
)p ∣∣∣ f Δn

∣∣∣q Δt

�
n−1

∑
k=0

rk
Bα p

Aα p

∫ τ

a
w(t)αqΩ(1−α)p(a;t)

(∫ t

a
w(s)

∣∣∣ f Δn
(s)
∣∣∣1/α

Δs

)α p ∣∣∣ f Δn
(t)
∣∣∣q Δt.

Applying the inequality in Lemma 3.3 and using α = 1/(p+q) , we have

∫ τ

a
w(t)

(
n−1

∏
k=0

∣∣∣ f Δk
(t)
∣∣∣rk
)p ∣∣∣ f Δn

(t)
∣∣∣q Δt

�
n−1

∑
k=0

rkHk(a,τ)
(

B
A

) p
p+q
∫ τ

a
w(t)

∣∣∣ f Δn
(t)
∣∣∣p+q

Δt,

which is the desired inequality (3.22). This completes our proof. �

THEOREM 3.4. Assume that f Δk+i
(b) = 0, for all i = 0,1, . . . ,n− k− 1. If 0 <

A � w(t) � B for all t ∈ [τ,b]T , then

∫ b

τ
w(t)

(
n−1

∏
k=0

∣∣∣ f Δk
(t)
∣∣∣rk
)p ∣∣∣ f Δn

(t)
∣∣∣q Δt

�
n−1

∑
k=0

rk

(
B
A

) p
p+q

Gk(τ,b)
∫ b

τ
w(t)

∣∣∣ f Δn
(t)
∣∣∣p+q

Δt, (3.26)
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where Gk(τ,b) is defined as in (3.18).

Proof. We proceed as in the proof of Theorem 3.2 to get(
n−1

∏
k=0

∣∣∣ f Δk
(t)
∣∣∣rk
)p

�
n−1

∑
k=0

rk

(∫ b

t
|gn−k−1 (σ(s),t)|

∣∣∣ f Δn
(s)
∣∣∣Δs

)p

.

From the boundedness of w(t) , since A � w(t) , we have(
n−1

∏
k=0

∣∣∣ f Δk
(t)
∣∣∣rk
)p

�
n−1

∑
k=0

rkA
−α p

(∫ b

t
wα(s) |gn−k−1 (σ(s),t)|

∣∣∣ f Δn
(s)
∣∣∣Δs

)p

.

Applying Hölder’s inequality with γ = 1/(1−α) and ν = 1/α where α = 1/(p+q) ,
we have(

n−1

∏
k=0

∣∣∣ f Δk
(t)
∣∣∣rk
)p

�
n−1

∑
k=0

rkA
−α pΛ(t;b)(1−α)p

(∫ b

t
w(s)

∣∣∣ f Δn
(s)
∣∣∣1/α

Δs

)α p

. (3.27)

Multiplying (3.27) by w(t)
∣∣ f Δn

(t)
∣∣q and integrating from τ to b , we obtain

∫ b

τ
w(t)

(
n−1

∏
k=0

∣∣∣ f Δk
∣∣∣rk
)p ∣∣∣ f Δn(t)

∣∣∣q Δt

�
n−1

∑
k=0

rk

Aα p

∫ b

τ
w(t)Λ(1−α)p(t;b)

(∫ b

t
w(s)

∣∣∣ f Δn
(s)
∣∣∣1/α

Δs

)α p ∣∣∣ f Δn
(t)
∣∣∣q Δt. (3.28)

Since w(t) � B and α(p+q) = 1, then by using (3.25) in (3.28), we have that

∫ b

τ
w(t)

(
n−1

∏
k=0

∣∣∣ f Δk
(t)
∣∣∣rk
)p ∣∣∣ f Δn

(t)
∣∣∣q Δt

�
n−1

∑
k=0

rk
Bα p

Aα p

∫ b

τ
wαq(t)Λ(1−α)p(t;b)

(∫ b

t
w(s)

∣∣∣ f Δn
(s)
∣∣∣1/α

Δs

)α p ∣∣∣ f Δn
(t)
∣∣∣q Δt.

Applying the inequality in Lemma 3.4 and using α = 1/(p+q), we have

∫ b

τ
w(t)

(
n−1

∏
k=0

∣∣∣ f Δk
(t)
∣∣∣rk
)p ∣∣∣ f Δn

(t)
∣∣∣q Δt

�
n−1

∑
k=0

(
B
A

) p
p+q

rkGk(τ,b)
∫ b

τ
w(t)

∣∣∣ f Δn
(t)
∣∣∣p+q

Δt,

which is the desired inequality (3.26). The proof is complete. �
As a special case of the above Theorems 3.1, 3.2, 3.3 and 3.4 respectively, when

T = R , by setting

hk(t,s) =
(t− s)k

k!
, for all s � t, (3.29)

we have the the following modified versions of the results obtained in [9].
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THEOREM 3.5. Assume that f (k+i)(a) = 0 for all i = 0,1, . . . ,n− k− 1 . If w is
nonincreasing, then

∫ τ

a
w(t)

(
n−1

∏
k=0

∣∣∣ f (k)(t)
∣∣∣rk
)p ∣∣∣ f (n)(t)

∣∣∣q dt

�
n−1

∑
k=0

mk(τ −a)(n−k)p
∫ τ

a
w(t)

∣∣∣ f (n)(t)
∣∣∣p+q

dt,

where

mk :=
(

1
p+q

) p
p+q rk

[(n− k)!]p

[
(n− k)(1−α)

n− k−α

](
p+q−1

p+q )p

. (3.30)

THEOREM 3.6. Assume that f (k+i)(b) = 0 for all i = 0,1, . . . ,n− k− 1 . If w is
nondecreasing for all t ∈ [τ,b]∩R , then

∫ b

τ
w(t)

(
n−1

∏
k=0

∣∣∣ f (k)(t)
∣∣∣rk
)p ∣∣∣ f (n)(t)

∣∣∣q dt

�
n−1

∑
k=0

mk(b− τ)(n−k)p
∫ b

τ
w(t)

∣∣∣ f (n)(t)
∣∣∣p+q

dt,

where mk is defined in (3.30).

THEOREM 3.7. Assume that f (k+i)(a) = 0 for all i = 0,1, . . . ,n− k− 1 . If 0 <
A � w(t) � B for all t ∈ [a,τ]∩R , then

∫ τ

a
w(t)

(
n−1

∏
k=0

∣∣∣ f (k)(t)
∣∣∣rk
)p ∣∣∣ f (n)(t)

∣∣∣q dt

�
n−1

∑
k=0

m∗
k(τ −a)(n−k)p

∫ τ

a
w(t)

∣∣∣ f (n)(t)
∣∣∣p+q

dt,

where

m∗
k :=

(
B
A

) p
p+q

(
1

p+q
)

p
p+q

rk

[(n− k)!]p

[
(n− k)(1−α)

n− k−α

](
p+q−1

p+q )p

. (3.31)

THEOREM 3.8. Assume that f (k+i)(b) = 0 for all i = 0,1, . . . ,n− k− 1 . If 0 �
A � w(t) � B for all t ∈ [τ,b]∩R , then

∫ b

τ
w(t)

(
n−1

∏
k=0

∣∣∣ f (k)(t)
∣∣∣rk
)p ∣∣∣ f (n)(t)

∣∣∣q dt

�
n−1

∑
k=0

m∗
k(b− τ)(n−k)p

∫ b

τ
w(t)

∣∣∣ f (n)(t)
∣∣∣p+q

dt,

where m∗
k is defined as in (3.31).
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As a special case, when T = N , by setting

hk(m,n) =
(m−n)(k)

k!
, for all m � n, (3.32)

in Theorem 3.1, we have the following result.

THEOREM 3.9. Assume that Δk+iu(a) = 0 for all i = 0,1, . . . ,n− k− 1 . If w is
nonincreasing for t ∈ [a,b]∩N , then

b−1

∑
t=a

w(t)

(
n−1

∏
k=0

|Δku(t)|rk
)p

|Δnu(t)|q �
n−1

∑
k=0

rkHk

b−1

∑
t=a

w(t) |Δnu(t)|p+q ,

where

Hk =

⎡
⎢⎣b−1

∑
t=a

⎛
⎝t−1

∑
s=a

(
(t − s−1)(n−k−1)

(n− k−1)!

) p+q
p+q−1

⎞
⎠

p+q−1
⎤
⎥⎦

p/(p+q)

. (3.33)

REMARK 3.1. When T = N , and using (3.32) in Theorems 3.2, 3.3 and 3.4, we
can obtain new results in discrete time scales. The details are left to the interested
reader.
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