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Abstract. For the Hardy space Hp
q,s(Rd ,μk) , 0 < p � 1, we shall improve a Hardy’s type in-

equality associated with the Dunkl transform respect to the measures μκ homogeneous of degree
γ , on the strip (2γ +d)(2− p) � σ < 2γ +d + p(N +1), where N = [(2γ +d)(1/p−1)] is the
greatest integer not exceeding (2γ +d)(1/p−1).

1. Introduction

In recent years the topic of Hardy type inequalities and their applications seem to
have grown more and more popular. Although Hardy’s original result dates back to the
1920’s, some new versions are stated and old ones are still being improved almost a
century later. One of the reasons for the popularity of Hardy type inequalities is their
usefulness in various applications.

The first definition of Hardy spaces was in terms of analytic functions in the unit
disc and their boundary values. In the last two decades, the theory was developed in R

d

by real variable methods like Poisson integrals, Riesz transforms, and maximal func-
tions. The subsequent discovery of the atomic decomposition theory of Hp(Rd) spaces
marks an important step of further developments on its real variable theory. Using the
grand maximal function, R. Coifman [4] first shows that an element in Hp(Rd) can
decomposed into a sum of a series of basic elements. Then the study on some analytic
problems on Hp(Rd) is summed up to investigate some properties of these basic ele-
ments, and therefore the problems because quite simple. Taibleson and Weiss [21] gave
the definition of molecules belonging to Hp, and showed that every molecule is in Hp

with continuous embedding map. By the atomic decomposition and the molecule char-
acterization, the proof of Hp boundedness of the operators on Hardy space becomes
easier. The theory of Hp have been extensively studied in [9, 10, 11].

In the setting of the Euclidian case, the Fourier transform F ( f ) of f ∈ Hp(Rd),
is a continuous function and satisfies the inequality

∫
Rd

|F ( f )(ξ )|p
|ξ |d(2−p) dξ � ‖ f‖p

Hp(Rd), 0 < p � 1 (1)
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which is well-known as Hardy’s inequality for Hp(Rd) (cf. [11, Corollary 7.23], [19,
p. 128]). Recently [20], establish this inequality for the Dunkl transform on the critical
exponent case σ = (2γ +d)(2− p). The aim of this paper is to improve this inequality
for the over critical exponent associated with the Dunkl transform.

This kind of inequality has been extended to several different settings. We may cite
the following situations: This was done first by Assal [1]; establishes a Hardy’s type
inequality associated with the Hankel transform for over critical exponent σ > 2− p.
Later, Assal and Rahmouni [2] extended this form of this inequality to other contexts;
they are interested in the Laguerre hypergroup with the Euclidean Fourier replaced by
the Laguerre Fourier transform, we point out here that an improved of this inequality
has been given by [3]. Although, by using the inverse Laguerre Fourier they establish
a Hardy’s type inequality on the dual of Laguerre hypergroup for the critical and over
critical cases [15, 16].

In this paper, we obtain an improved Hardy’s type inequality associated with the
Dunkl transform. So, for the Hardy space Hp

q,s(Rd ,μκ), 0 < p � 1 we establish a
Hardy’s type inequality for the strip (2γ +d)(2− p)� σ < 2γ +d+ p(N+1). Through-
out this paper, C stands for a positive constant that can be changed from line to line.

2. Preliminaries

In order to confirm the basic and standard notations we briefly overview the theory
of Dunkl operators and related harmonic analysis, most of which can be found in [5, 6,
7, 8, 17, 18, 22, 23].

2.1. Reflection groups, Root systems and Multiplicity functions

Let us begin to recall some results concerning the root systems. A useful reference
for this topic is the book by Humphreys [12].

We consider Rd with the Euclidean inner product ≺ ., .� and norm |y| :=√≺ y,y �.
For α ∈ Rd \ {0}, let σα be the reflection in the hyperplane Hα ⊂ Rd orthogonal to
α, i.e

σαy := y− 2 ≺ α,y �
|α|2 α.

A finite set R ⊂ Rd \ {0} is called a root system, if R ∩ R.α = {−α,α} and
σαR = R for all α ∈ R. We assume that it is normalized by |α|2 = 2 for all α ∈ R.
For a root system R, the reflections σα ,α ∈ R, generate a finite group G⊂ O(d), the
reflection group associated with R. All reflections in G correspond to suitable pairs of
roots.

For a given β ∈ Rd \ ⋃α∈R Hα , we fix the positive subsystem
R+ := {α ∈ R :≺ α,β �> 0}. Then, for each α ∈ R either α ∈ R+ or α ∈ R−.
Let k : R → C be a multiplicity function on R (i.e. a function which is constant on
the orbits under the action of G).
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2.2. Dunkl transform and Dunkl convolution

Let us consider the differential-difference operators Tj, j = 1, ...,d, on Rd intro-
duced by C. F. Dunkl in [6] and called Dunkl operators in the literature, associated with
the finite reflection group G and the multiplicity function κ , are given for a function f
of class C 1 on Rd by

Tj f (y) =
∂

∂y j
f (y)+ ∑

α∈R+

κ(α)α j
f (y)− f (σαy)
≺ α,y � .

For y ∈ Rd , the initial problem Tju(.,y)(x) = y ju(x,y); j = 1, ...,d with u(0,y) = 1
admits a unique analytic solution on R

d , which will be denoted by Eκ(x,y) and called
Dunkl kernel [7]. This kernel has a unique analytic extension to Cd ×Cd . The Dunkl
kernel has the Laplace-type representation [17]

Eκ(x,y) =
∫

Rd
e≺y,z�dΓx(z); x ∈ R

d , y ∈ C
d ,

where ≺ y,z �:= ∑d
j=1 y jz j and Γx is a probability measure on Rd , such that

supp(Γx) ⊂ {z ∈ Rd : |z| � |x|}. In particular cases, we have

|Eκ(x,y)| � 1, x,y ∈ R
d . (2)

The Dunkl kernel gives rise to an integral transform, which is called Dunkl transform
on R

d , and it was introduced by Dunkl [8], where already many basic properties were
established which is taken with respect to a weighted Lebesgue measure invariant under
the action of G and which generalizes the Euclidean Fourier transform. Dunkl’s results
were completed and extended later on by De Jeu [5].

More precisely, let us introduce the measure dμκ(x) := wκ(x)dx where the weight
given by

wκ (y) := ∏
α∈R+

| ≺ α,y � |2k(α), y ∈ R
d ,

is homogeneous of degree 2γ with

γ = γκ := ∑
α∈R+

κ(α),

and let us denote by Lp
κ(Rd ,μκ ), 0 < p � ∞, the space of measurable functions f on

R
d , such that

‖ f‖Lp
κ (Rd ,μκ ) =

(∫
Rd

| f (y)|pdμκ(y)
) 1

p

, if p > 0 and ‖ f‖L∞
κ (Rd ,μκ ) = ess sup

y∈Rd
| f (y)|.

Then for every f ∈ L1
κ(Rd ,μκ), the Dunkl transform of f denoted by FD( f ) is defined

by

FD( f )(x) := cκ

∫
Rd

Eκ(−ix,y) f (y)dμκ (y), x ∈ R
d .
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By using the spherical-polar coordinates x = ry, where y ∈ Sd−1, we have

∫
Rd

f (x)dμκ (x) =
∫ ∞

0

(∫
Sd−1

f (ry)wκ (y)dσ(y)
)
rd+2γdr, (3)

where dσ is the normalized surface measure on the unit sphere Sd−1 of Rd . From
which it follows that the Mehta-type constant cκ

cκ =
(∫

Rd
e−|x|2/2dμκ(x)

)−1
.

Let us point out that the Dunkl transform coincides with the Euclidean Fourier trans-
form when κ = 0, whereas if d = 1 and G = Z2 then it is closely related to the Hankel
transform on the real line. We list some of the known properties of the Dunkl transform
in the following Lemma.

LEMMA 1. [5, 8]

1. If f ∈ L1
κ(Rd ,μκ), then FD( f ) ∈ C (Rd) and lim

‖x‖→∞
FD ( f )(x) = 0.

2. The Dunkl transform FD is an isomorphism of the Schwartz class S (Rd) onto
itself, and FD ( f )(x) = f (−x).

3. The Dunkl transform FD on S (Rd) extends uniquely to an isometric isomor-
phism on L2

κ(Rd ,μκ), i.e.,‖ f‖L2
κ (Rd ,μκ ) = ‖FD ( f )‖L2

κ (Rd ,μκ ).

4. Let f ∈ L1
κ(Rd ,μκ). If FD( f ) is in L1

κ(Rd ,μκ), then we have the following
inversion formula

f (x) = cκ

∫
Rd

Eκ(ix,y)FD ( f )(y)dμκ (y).

5. If f ,g ∈ L2
κ(Rd ,μκ), then

∫
Rd

FD( f )(y)g(y)dμκ (y) =
∫

Rd
f (y)FD (g)(y)dμκ(y).

6. Given ε > 0, let fε (x) = ε−2−2γ f (ε−1x). Then FD ( fε )(x) = FD( f )(εx).

7. If f (y) = f0(‖y‖) is radial, then FD ( f )(x) = Hd−1
2 +γ− 1

2
f0(‖x‖) is again a ra-

dial function, where Hα denotes the Hankel transform defined by

Hαg(s) =
1

Γ(α +1)

∫ ∞

0
g(r)

Jα(rs)
(rs)α r2α+1dr,

and Jα denotes the Bessel function of the first kind.



HARDY’S TYPE INEQUALITY FOR THE OVER CRITICAL EXPONENT 55

The Dunkl transform shares many other properties with the Fourier transform. There-
fore, it is natural to associate a generalized translation operator with this transform. Let
x ∈ Rd . The Dunkl translation f 
−→ τx is defined on L2

κ(Rd ,μκ) by the equation

FD (τx f )(y) = Eκ(ix,y)FD ( f )(y), y ∈ R
d .

It is known that τy f (x) = τx f (y) for a.e. x ∈ Rd and a.e. y ∈ Rd . In general, the op-
erator τy is not positive (see for instance, [22, Proposition 3.10]), and it is still an open
problem whether τy f can be extended to a bounded operator on L1

κ(Rd ,μκ). On the
other hand, however, it was shown in [22, Theorem 3.7] that the generalized translation
operator τy can be extended to all radial functions in Lp

κ (Rd ,μκ), 1 � p � 2, and
τy : Lp

rad(R
d ,μκ)→ Lp

κ(Rd ,μκ) is a bounded operator, where Lp
rad(R

d ,μκ ) denotes the
space of all radial functions in Lp

κ(Rd ,μκ). More properties on the generalized transla-
tion operator can be found in [17, 18, 22].

3. Hardy-type inequality

The atom decomposition theory of Hp(Rd) spaces marks an important step of
further developments on its real variable theory. Using the grand maximal function,
R. Coifman [4] first shows that an element in Hp(R) can decomposed into a sum of
a series of basic elements. Then the study on some analytic problems on Hp(Rd) is
summed up to investigate some properties of these basic elements, and therefore the
problems because quite simple. These basic elements are called atoms. Let us now
make the definition of an atom.

DEFINITION 1. Let 0 < p � 1 � q � ∞ with p �= q. A function a(x)∈ Lq
κ(Rd ,μκ)

is called a (p,q,s)-atom with the center at x0, if it satisfies the following conditions

(i) Supp a ⊂ B(x0,r);

(ii) ‖a‖Lq
κ(Rd ,μκ ) �

[
μκB(x0,r)

] 1
q− 1

p = Cr(2γ+d)( 1
q− 1

p );

(iii)
∫

Rd
a(y)y�dμκ(y) = 0, for all monomials y� with |�| � s with

s � N =
[
(2γ + d)( 1

p − 1)
]
, where [ . ] denotes, as usual, the “greatest inte-

ger not exceeding” function.

Here, (i) means that an atom must be a function with compact support, (ii) is the
size condition of atoms, and (iii) is called the cancelation moment condition. More-
over, B(x0,r) is the ball centered at x0 with radius r. Clearly, a(p,∞,s) atom must be
a(p,q,s) atom, if p < q < ∞.

REMARK 1. The volume of the ball at point x0 it is not translation invariant as the
measure is a weight times the Lebesgue measure. Only when the weight is a constant
it is translation invariant. So in general cases, a(p, q, s)-atom centered at x0 ∈ Rd is
defined to be a Lq

κ(Rd ,μκ) function a on Rd such that the translation τx0(a)(x) is not
a(p, q, s)-atom centered at the origin.



56 R. ATEF

Using the atomic decomposition, we define the Hardy space Hp
q,s(Rd ,μκ) to be

the collection of functions f satisfying f = ∑∞
j=0 β ja j, where a j are Hp

q,s(Rd ,μκ)-
atoms and β j is a sequence of complex numbers with ∑∞

j=0 |β j|p < ∞. Hp
q,s(Rd ,μκ ) is

equipped with a norm as follows

‖ f‖Hp
q,s(Rd ,μκ ) = inf

{ ∞

∑
j=0

|β j|p
}

,

where the infimum is taken over all atoms decompositions of f . Note that each Hp
q,s(Rd)

function has a decomposition into (p,q,s)-atoms, it is natural to compare the spaces
of functions admitting decompositions into (p,q,s)-atoms and (p,q′,s′)-atoms. It was
shown in [10] that for each p, these spaces corresponding to different (q,s) all coin-
cide. A well-known that (cf. [20]) for each p ∈ (0,1] the Dunkl transform FD( f ) of
f ∈ Hp

q,s(Rd ,μk) is continuous function. Further, the following facts are known. For
f ∈ S ′(Rd) the Dunkl transform is defined by

〈FD ( f ),φ〉 = 〈 f ,FD (φ)〉, φ ∈ S (Rd).

Thus the Dunkl transform FD ( f ), extends to a topological automorphism of S ′(Rd).
Now we are in a position to give the main result of this paper is the following

theorem.

THEOREM 1. Let 0 < p � 1, and N = [(2γ + d)(1/p− 1)], the greatest integer
not exceeding (2γ +d)(1/p−1). Then for any f ∈ Hp

q,s(Rd ,μκ) the Dunkl transform
is a continuous function and satisfies the following Hardy’s type inequality∫

Rd

|FD ( f )(y)|p
|y|σ dμκ(y) � C‖ f‖p

Hp
q,s(Rd ,μκ )

, (4)

provide that
(2γ +d)(2− p) � σ < 2γ +d + p(N +1) (5)

where C is a constant does not depends on f .

REMARKS 1.

1. Note that the collection of all real σ satisfying the condition (5) is a nonempty
set since 2γ +d + p(N +1)− (2γ +d)(2− p) > 0.

2. For the critical case σ0 = (2γ +d)(2− p) has been extensively studied in [20].

3. It would be interesting to know if this is the best possible improved.

Proof. Let f = ∑∞
j=0 β ja j ∈ Hp

q,s(Rd ,μκ), being element of Hp
q,s(Rd ,μκ) where

a j are atoms supported by the ball B(x0,r) centered at point x0 with radius r. Since
0 < p � 1, it follows∫

Rd

|FD ( f )(y)|p
|y|σ dμκ(y) � C

∞

∑
j=0

|β j|p
∫

Rd

|FD (a j)(y)|p
|y|σ dμκ(y).
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In order to prove the theorem, it is enough to prove,∫
Rd

|FD ( f )(y)|p
|y|σ dμκ(y) � C. (6)

Let us now take ρ an arbitrary nonnegative real number, and decomposing the left hand
side of (6) as∫

Rd

|FD(a j)(y)|p
|y|σ dμκ(y) =

∫
|y|<ρ

|FD (a j)(y)|p
|y|σ dμκ(y)+

∫
|y|�ρ

|FD(a j)(y)|p
|y|σ dμκ(y)

:= S1 +S2.

To estimate S1; we may use Taylor’s theorem in several variables with integral’s re-
mainder for the function y 
−→ Eκ(ix,y), we obtain

Eκ(ix,y) =
N

∑
n=0

Vκ(≺ iy, . �)n(x)
n!

+RN+1(x,y),

where

RN+1(x,y) =
1

(N +1)!

∫ 1

0
(1− t)N+1

[∫
Rd

≺ iy,z �N+1 et≺iy,z�dΓx(z)
]
dt,

and Vκ is the intertwining operator (see, [7, 18]), defined on C[Rd ] (the algebra of
polynomial functions on Rd ) by

Vκ(p) =
∫

Rd
f (z)dΓx(z), x ∈ R

d .

Since
∫

Rd
a j(y)y�dμκ(y) = 0, for every |�|� N where N =

[
(2γ +d)( 1

p −1)
]
, we can

write

FD (a j)(x) =
∫

B(x0,r)

[
Eκ(−ix,y)−

N

∑
n=0

Vκ(≺ iy, . �)n(x)
n!

]
a j(y)dμκ(y), x ∈ R

d .

Hence, from (2) it follows that

|FD(a j)(x)| � cκ

∫
B(x0,r)

|RN+1(x,y)||a j(y)|dμκ(y).

But it is clear that

|RN+1(x,y)| � 1
(N +1)!

[|x|.|y|]N+1.

Now with the help of properties (i),(ii) and (iii) for a(p,∞,s)-atoms of Hp
q,s(Rd ,μκ),

we get the following results

|FD(a j)(x)| � C
∫

B(x0,r)
|x|N+1|y|N+1[μκB(x0,r)]

− 1
p dμκ(y)

� CrN+1+(2γ+d)(1− 1
p )|x|N+1,



58 R. ATEF

where we have used (see, [22, 13]),

μκB(x0,r) = Cr2γ+d .

Integrating with respect to the measure dμκ over the domain 0 < |y| < ρ , we
obtain

S1 :=
∫
|y|<ρ

|FD(a j)(y)|p
|y|σ dμκ(y) � Crp(N+2γ+d+1)−(2γ+d)

∫
|y|<ρ

|y|p(N+1)−σ dμκ(y)

� Cr−(2γ+d)+p(N+2γ+d+1)ρ2γ+d+p(N+1)−σ

that is
S1 � Cr−(2γ+d)+p(N+2γ+d+1)ρ2γ+d+p(N+1)−σ (7)

provide that σ < 2γ +d + p(N +1) which follows from the inequality (5).
Now to estimate S2, we may apply Hölder’s inequality for q = 2

p and Plancherel
formula to get

S2 �
(∫

Rd

(|a j(y)|p
) 2

p dμκ(y)

) p
2
(∫

|y|�ρ
|y| 2σ

p−2 dμκ(y)

) 2−p
2

� C‖a j‖p
L2

κ (Rd ,μκ )

(∫
y�ρ

|y| 2σ
p−2 dμκ(y)

) 2−p
2

� C‖a j‖p
L2

κ (Rd ,μκ )
ρ

(2γ+d)(2−p)
2 −σ ,

provide that (2γ+d)(2−p)
2 < σ , which is a consequence of the left hand side of (5). Tak-

ing into account that

‖a j‖2
L2

κ (Rd ,μκ ) =
∫

Rd
|a j(y)|2 dμκ(y)

�
∫

B(x0,r)

[
μκB(x0,r)

]− 2
p dμκ(y)

� C r−
(2γ+d)(2−p)

p .

We obtain ‖a j‖p
L2

κ (Rd ,μκ )
� C r−

(2γ+d)(2−p)
2 and hence,

S2 � C r−
(2γ+d)(2−p)

2 ρ
(2γ+d)(2−p)

2 −σ . (8)

Case 1. If σ0 = (2γ +d)(2− p). We put ρ = 1
r , ∀ r > 0, then we have S1 � C

and S2 � C.

Case 2. If (2γ +d)(2− p)< σ < (2γ +d)+ p(N+1). We shall discuss the cases
0 < r < 1 and r � 1.
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• Hence, in order to deal with the case 0 < r < 1, we need more precise estimates,
so we consider the set ϒρ ; the collection of all numbers ρ satisfying

ϒρ =

{
ρ > 0 :

(2γ+d)(2−p)
(2γ+d)(2−p)−2σ

log(r) � log(ρ) � (2γ+d)−p(N+2γ+d+1)
(2γ+d)+p(N+1)−σ

log(r)

}
. (9)

To prove that the collection ϒρ above is nonempty set it is enough to prove that

(2γ +d)(2− p)
(2γ +d)(2− p)−2σ

× (2γ +d)+ p(N +1)−σ
(2γ +d)− p(N+1+(2γ +d))

� 1 (10)

which is a different formulation of the hand side of (5), that is (2γ +d)(2− p) � σ .
Using the fact that (2γ + d)+ p(N + 1)−σ > 0 and the right hand side of (9) it

follows that
S1 � Cr−(2γ+d)+p(N+2γ+d+1)ρ2γ+d+p(N+1)−σ � C. (11)

Using the left hand side of (9) and the fact that (2γ+d)(2−p)
2 −σ < 0, we obtain

S2 � C. (12)

Combining (11) and (12) we obtain

S1 � C and S2 � C, for 0 < r < 1. (13)

• Now, to deal with the case r � 1, we may take

ρ = r
2γ+d−p(N+1+2γ+d)

2γ+d+p(N+1)−σ (14)

so, using the fact that r � 1, we obtain

ρ � r
(2γ+d)(2−p)

(2γ+d)(2−p)−2σ , (15)

which leads to
S1 � C and S2 � C, for r � 1. (16)

Hence to prove (6), it is enough to combine (13) and (16). The proof of the main
theorem is completed.
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