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A GLOBAL VERSION OF GEHRING LEMMA IN ORLICZ SPACES

ON SPACES OF HOMOGENEOUS TYPE
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(Communicated by L. Maligranda)

Abstract. We extend a global version of Gehring lemma in Orlicz spaces, proved by T. Iwaniec,
from the Euclidean case to the setting of spaces of homogeneous type.

1. Introduction

The classical Gehring lemma revealed the self-improving property of reverse Hölder
inequalities, implying the higher integrability of p− integrable functions satisfying such
an inequality. Gehring lemma is a powerful tool in proving regularity results for so-
lutions of elliptic systems, nonlinear PDEs and for (quasi)minimizers of variational
integrals. The original lemma was proved for Lebesgue functions on X = R

n with
Lebesgue measure [6]. In his seminal paper [6], Gehring used this lemma as a tool to
show that the Jacobian, which is in L1

loc , of a K−quasiconformal mapping on D ⊂ R
n

actually belongs to L1+ε
loc for some ε > 0 depending only on K and n .

Let us recall the original Gehring lemma ([6], Lemma 3). Suppose that Q ⊂ R
n

is a cube, p > 1 and g ∈ Lp (Q) is a nonnegative function. Assume that there exists a
constant b > 1 such that the following reverse Hölder inequality holds
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for every parallel cube Q′ ⊂ Q . Then g ∈ Lq (Q) whenever q ∈ [p, p + c) , for some
c = c(n, p,b) > 0. Moreover,
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Gehring lemma was extended in several directions, by relaxing the conditions on
the underlying space X or on the space of functions where f belongs. Various local
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versions of Gehring lemma have been proved for functions in the local Lebesgue space
Lp

loc (X) , where X = R
n has a measure determined by a doubling weight (Kinnunen

[11]), or more generally, X is a doubling metric measure space (Zatorska-Goldstein
[19], Maasalo [14]) or X is a space of homogeneous type with 0 < μ (X) < ∞ (Gi-
anazza [7]). An elegant proof of Gehring lemma for Lebesgue functions on a doubling
metric measure space has been given by Björn and Björn in the monograph [1, Theorem
3.22].

Local versions of Gehring lemma for functions in Orlicz spaces on X = R
n have

been proved by Cianchi and Fusco [3], by Franchi and Serra Casano [5] and others.
Gehring lemma in Orlicz spaces plays a key role in the study of higher integrability
properties for the gradient of local minimizers of variational integrals with nonstandard
growth [3], [5], [2].

The reformulation of Gehring lemma in the general setting of interpolation the-
ory has led to new methods to obtain Gehring type integrability results that extend the
scope of the classical self-improving inequalities. Using interpolation theoretical meth-
ods, Mastyło and Milman [16], then Martin and Milman [15], proved a global version,
respectively a local version, of Gehring lemma, in weighted Lp spaces on R

n with a
non-doubling weight. Mastyło and Milman [16] also considered a new approach to
Gehring type results in Orlicz spaces on R

n , based on an Orlicz space extension of the
sharp reverse Hardy inequality for decreasing functions in Lp spaces.

Iwaniec proved in [12] a general version of Gehring lemma in Orlicz spaces and
highlighted the significance of Gehring lemma in Lebesgue spaces through its appli-
cations to regularity results for A−harmonic functions and through its connections to
maximal inequalities. Further applications of Iwaniec’s version of Gehring lemma are
given in the monograph [13].

The purpose of this paper is to extend Iwaniec’s version of Gehring lemma from
the Euclidean setting, where X = R

n is endowed with Lebesgue measure, to the setting
of spaces of homogeneous type. It is well-known that spaces of homogeneous type
represent a natural framework in harmonic analysis. Doubling metric measure spaces
are examples of spaces of homogeneous type.

In this paper (X ,ρ ,μ) is a space of homogeneous type in the sense of Coifman
and Weiss [4]. The function ρ : X ×X → R+ is a quasi-metric, i.e. ρ is symmetric,
ρ (x,y) = 0 if and only if x = y , and there is a constant K � 1 such that

ρ (x,y) � K [ρ (x,z)+ ρ (z,y)]

for all x,y,z ∈ X .
For x ∈ X and r > 0, the set B(x,r) = {y ∈ X : ρ (y,x) < r} is called the ball of

center x and radius r . Every ball comes with a center and a radius, although these are
not unique in general. For every ball B = B(x,r) and λ > 0 we denote λB = B(x,λ r) .

Here μ is a Borel regular measure which is positive and finite on balls and is
doubling, that is, there is a constant Cμ � 1 so that

μ (2B) � Cμ μ (B)

for all balls B in X .
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The constants K and Cμ describing the properties of ρ and μ , respectively, are
called the constants of the space of homogeneous type (X ,ρ ,μ) .

In the following, Φ : R+ → R+ is a convex function of the form Φ(t) = tF (t) ,
where F (t) strictly increases from zero to infinity as t runs over the interval [0,∞) and
F satisfies the Δ2−condition

F (2t) � CdF (t) (1.1)

for some constant Cd � 1 and all t � 0.
We will prove the following extension of Iwaniec’s version of Gehring lemma in

Orlicz spaces [12, Lemma 3.1].

THEOREM 1. Let (X ,ρ ,μ) be a space of homogeneous type, with constants K
and Cμ . Let g,h ∈ LΦ (X) be nonnegative functions satisfying

Φ−1

⎛
⎝ 1

μ (B)

∫
B

Φ(g)dμ

⎞
⎠� A

1
μ (2B)

∫
2B

gdμ + Φ−1

⎛
⎝ 1

μ (2B)

∫
2B

Φ(h)dμ

⎞
⎠ (1.2)

for every ball B ⊂ X , where the constant A > 1 is independent of the ball. Assume
that μ (X) = ∞ . Then there exist positive constants ε0 = ε0

(
K,Cμ ,Cd ,A

)
and A′ =

A′ (K,Cμ ,Cd ,A,ε0
)

such that for each ε ∈ (0,ε0] we have

∫
X

gF1+ε (g)dμ � A′
∫
X

hF1+ε (h)dμ . (1.3)

Actually, it will turn out from the proof of the above theorem that we also can
cover the case of spaces with finite measure.

THEOREM 2. Under the assumptions of Theorem 1, with the exception that μ (X)<
∞ replaces μ (X) = ∞ , there exist positive constants ε0 = ε0

(
K,Cμ ,Cd ,A

)
, A′ =

A′ (K,Cμ ,Cd ,A,ε0
)

and A′′ = A′′ (K,Cμ ,Cd ,A,ε0
)

such that for each ε ∈ (0,ε0] we
have ∫

X

gF1+ε (g)dμ � A′
∫
X

hF1+ε (h)dμ +A′′Fε (T +0)
∫
X

gF (g)dμ . (1.4)

Here T := 1
2A+2Φ−1

(
1

μ(X)
∫
X

Φ(g)dμ
)

.

Whether or not X has finite measure, the integrability of hF1+ε (h) over X im-
plies the integrability of gF1+ε (g) over X .

2. Preliminary results

The basic covering lemma in spaces of homogeneous types [4, Theorem 1.2] says
that, for every family F of balls that is a covering of a bounded set E ⊂ X and every
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λ > 4K , there exists a countable family G ⊂ F of pairwise disjoint balls, such that
{λB : B ∈ G } is also a covering of E .

For a locally integrable real-valued function f in X , define the noncentered max-
imal function M ∗ ( f ) of f by

M ∗ ( f ) (x) = sup
B�x

1
μ (B)

∫
B

| f |dμ ,

where the supremum is taken over all balls B ⊂ X containing x .
The noncentered maximal operator M ∗ maps L1 (X) to weak-L1 (X) , as has been

proved in [4, Theorem 2.1]. Thus, there exists a constant C , depending only on the
constants K and Cμ of the space X , such that for all t > 0 we have

μ ({x ∈ X : M ∗ ( f ) (x)}) � C
t

∫
X

| f |dμ . (2.1)

We can take C =
(
Cμ
)1+log2 λ

, where λ > 4K is arbitrary.
The following version of Calderón-Zygmund decomposition lemma is from [4,

Theorem 2.2], see also [9, Lemma 2.9]. Note that the assumption that f has bounded
support can be removed, see [4, page 70].

LEMMA 1 Let f ∈L1 (X) be a nonnegative function and t > 0 such that t > 1
μ(X)

∫
X

f dμ

if μ (X) < ∞ . Let C be the constant from (2.1). There exists a countable family of balls
{Bi : i � 1} satisfying the following conditions:

(1) f (x) � tC for almost every x ∈ X \ ⋃
i�1

Bi ;

(2) t � 1
μ(Bi)

∫
Bi

f dμ � tC2 for each i � 1 ;

(3) There is a positive integer M such that an arbitrary point in X cannot belong
to more than M balls from the family {Bi : i � 1};

(4)
∞
∑
i=1

μ (Bi) � M
t

∫
X

f dμ .

The constants C2 > 0 and M depend only on the constants K and Cμ of X .

Note that we can take C2 =
(
Cμ
)1+log2 3K

, while the positive integer M can be

chosen such that M �
(
Cμ
)(1+log2(4K3+5K2))(1+log2(2K2+K)) . The family {Bi : i � 1}

from the previous lemma is called a Calderón-Zygmund decomposition of X for f , at
the level t .

Suppose that the function Φ : R+ → R+ , Φ(t) = tF (t) satisfies the conditions
from the Introduction. The Δ2−condition implies the estimate

F (λ t) � Cdλ log2Cd F (t)

for every λ � 1 and t � 0 [18, Lemma 2.7]. Note that Φ(λ t) � λ Φ(t) for all 0 �
λ � 1 and t � 0, since Φ is convex and Φ(0) = 0. Since Φ also satisfies a doubling
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condition, a function g belongs to the Orlicz space LΦ (X) if and only if Φ(|g|) is
integrable over X .

Φ is a strictly increasing surjective function and its inverse Φ−1 is subadditive
[18, Lemma 2.9]. We recall the inequality

Φ−1 (v) � t +
v

F (t)
(2.2)

for t > 0 and v � 0, that is equivalent to the obvious inequality u ·F (t) � t ·F (t)+u ·
F (u) , where u = Φ−1 (v) .

In the following { f > t} stands for {x ∈ X : f (x) > t} , where f : X → R and
t ∈ R .

The next lemma extends the result of a basic step from the proof of Lemma 14.3.1
from [13].

LEMMA 2 Let g,h ∈ LΦ (X) be nonnegative functions satisfying (1.2) for every ball
B ⊂ X , where the constant A > 1 is independent of the ball. Then there exist some
positive constants α , β and t0 such that∫

{g>t}
Φ(g)dμ � αF (t)

∫
{g>t}

gdμ + β
∫

{h>t}
Φ(h)dμ (2.3)

for all t � t0 . Here α > 1 and β > 0 depend only on the constants K , Cμ , Cd and on

A. We may take an arbitrary t0 > 0 if μ (X) = ∞ , or t0 > 1
2A+2Φ−1

(
1

μ(X)
∫
X

Φ(g)dμ
)

if μ (X) < ∞ .

Proof. Denote Gt = {g > t} and Ht = {h > t} for t � 0.
Let s > 0. If μ (X) < ∞ we assume in addition that

Φ(s) >
1

μ (X)

∫
X

Φ(g)dμ . (2.4)

We consider a Calderón-Zygmund decomposition {Bi : i � 1} of X for the function
f = Φ(g) , at the level Φ(s) .

By Lemma 1 (1), there is a set E ⊂ X with μ (E) = 0 such that Φ(g(x)) �
Φ(s) for all x ∈ X \

(⋃
i�1

Bi ∪E

)
. Then Gs ⊂ ⋃

i�1
Bi ∪E . By Lemma 1 (3), we get

∫
Gs

Φ(g)dμ � M
∞
∑
i=1

∫
Bi

Φ(g)dμ . But
∫
Bi

Φ(g)dμ � C2Φ(s)μ (Bi) for each i � 1, by the

second inequality in Lemma 1 (2). It follows that

∫
Gs

Φ(g)dμ � C2MΦ(s)
∞

∑
i=1

μ (Bi) . (2.5)
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We will use the assumption (1.2) in order to estimate
∞
∑
i=1

μ (Bi) by means of

μ
(⋃

i�1
2Bi

)
. Since the balls Bi have bounded overlap, by Lemma 1 (3) it follows

that
∞

∑
i=1

μ (Bi) � Mμ

(⋃
i�1

Bi

)
� Mμ

(⋃
i�1

2Bi

)
. (2.6)

We have Φ(s) � 1
μ(Bi)

∫
Bi

Φ(g)dμ for each i � 1, by the first inequality in Lemma

1 (2). Using (1.2) we get

s � A
1

μ (2Bi)

∫
2Bi

gdμ + Φ−1

⎛
⎝ 1

μ (2Bi)

∫
2Bi

Φ(h)dμ

⎞
⎠ . (2.7)

Let t > 0. Taking into account that g � t on 2Bi \Gt we get

1
μ (2Bi)

∫
2Bi

gdμ � t +
1

μ (2Bi)

∫
2Bi∩Gt

gdμ .

Similarly, taking into account the subadditivity of Φ−1 , it follows that

Φ−1

⎛
⎝ 1

μ (2Bi)

∫
2Bi

Φ(h)dμ

⎞
⎠� t + Φ−1

⎛
⎝ 1

μ (2Bi)

∫
2Bi∩Ht

Φ(h)dμ

⎞
⎠ . (2.8)

From (2.8) and (2.2) we get

Φ−1

⎛
⎝ 1

μ (2Bi)

∫
2Bi

Φ(h)dμ

⎞
⎠� 2t +

1
F (t)

1
μ (2Bi)

∫
2Bi∩Ht

Φ(h)dμ .

Combining (2.7) with the latter inequality we obtain

s � (A+2)t +A
1

μ (2Bi)

∫
2Bi∩Gt

gdμ +
1

F (t)
1

μ (2Bi)

∫
2Bi∩Ht

Φ(h)dμ , (2.9)

for all t > 0.
Now fix t = s

2A+2 . If μ (X) < ∞ the assumption (2.4) becomes

t >
1

2A+2
Φ−1

⎛
⎝ 1

μ (X)

∫
X

Φ(g)dμ

⎞
⎠ .

For t = s
2A+2 inequality (2.9) yields

μ (2Bi) � 1
t

∫
2Bi∩Gt

gdμ +
1
A
· 1

Φ(t)

∫
2Bi∩Ht

Φ(h)dμ . (2.10)
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Using the basic covering lemma we extract from {2Bi : i � 1} a subfamily of pair-
wise disjoint balls

{
2Bik : k � 1

}
such that

⋃
i�1

2Bi ⊂ ⋃
k�1

2λBik . Here λ > 4K is a con-

stant. It follows that μ
(⋃

i�1
2Bi

)
� μ

( ⋃
k�1

2λBik

)
�

∞
∑

k=1
μ
(
2λBik

)
�C3

∞
∑

k=1
μ
(
2Bik

)
,

where C3 =
(
Cμ
)1+log2 λ .

Taking account of (2.10) this implies

μ

(⋃
i�1

2Bi

)
� C3

1
t

∞

∑
k=1

∫
2Bik

∩Gt

gdμ +
C3

A
· 1

Φ(t)

∞

∑
k=1

∫
2Bik

∩Ht

Φ(h)dμ ,

hence

μ

(⋃
i�1

2Bi

)
� C3

1
t

∫
Gt

gdμ +
C3

A
· 1

Φ(t)

∫
Ht

Φ(h)dμ . (2.11)

Now, from (2.5), (2.6) and (2.11) we obtain

∫
Gs

Φ(g)dμ � C2M
2Φ(s)

⎛
⎝C3

1
t

∫
Gt

gdμ +
C3

A
· 1

Φ(t)

∫
Ht

Φ(h)dμ

⎞
⎠ , (2.12)

where t = s
2A+2 .

By the Δ2 -condition we have F (s) � (Cd)
log2(2A+2) F (t) . Denote C4 = (Cd)

log2(2A+2) .

Then Φ(s)
t = s

t F (s) � (2A+2)C4F (t) and Φ(s)
Φ(t) � (2A+2)C4 .

On the other hand,
∫

Gt\Gs

Φ(g)dμ � F (s)
∫

Gt\Gs

gdμ � F (s)
∫
Gt

gdμ .

Adding this inequality to (2.12) and using the above estimates, we obtain the claim
(2.3), for t � t0 , where α = C4

[
2C2C3M2 (A+1)+1

]
and β = 2

(
1+ 1

A

)
C2C3C4M2 .

Note that α > 1 and β > 0.
Here t0 > 0 is arbitrary if μ (X) = ∞ , but if μ (X) < ∞ we have to assume that

t0 >
1

2A+2
Φ−1

⎛
⎝ 1

μ (X)

∫
X

Φ(g)dμ

⎞
⎠ .

In order to transform integrals of the form
∫

{t0< f�t1}
Ψ( f )dν into Lebesgue inte-

grals on intervals in R , we use the following consequence of Fubini’s theorem, that
gives Lemma 3.1 from [11] in the case Ψ(t) = t p , with p ∈ [1,∞) .
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LEMMA 3 Let Ψ : R+ → R+ be a strictly increasing function with lim
ε↘0

Ψ(ε) = 0 and

lim
t→∞

Ψ(t) = ∞ , which is absolutely continuous on (0,∞) . Let ν be a measure on X and

E ⊂ X be a set with ν (E) < ∞ . If f is a nonnegative ν -measurable function on E
and 0 � t0 < t1 < ∞ , then

∫
{t0< f�t1}

Ψ( f )dν =
t1∫

t0

Ψ′ (t)ν ({ f > t})dt− Ψ(t)ν ({ f > t})|t1t0 .

The following elementary lemma is proved for the sake of completness.

LEMMA 4 Let Φ : R+ →R+ be a convex increasing function of the form Φ(t) = tF (t)
and p > 0 . Then F p is Lipschitz continuous on every interval [a,b] ⊂ (0,∞) .

Proof. Being convex on R+ , the function Φ is Lipschitz continuous on every
compact interval contained in (0,∞) . Let [a,b] ⊂ (0,∞) . We have

LΦ,[a,b] := sup

{ |Φ(t1)−Φ(t2)|
|t1 − t2| : t1 �= t2 in [a,b]

}
< ∞.

First we prove that F is Lipschitz continuous on [a,b] . Indeed, given t1,t2 ∈ [a,b]
we have |F (t1)−F (t2)| =

∣∣∣ 1
t1

(Φ(t1)−Φ(t2))+ t2−t1
t1t2

Φ(t2)
∣∣∣ , hence

|F (t1)−F (t2)| � 1
a

(
LΦ,[a,b] +

1
a

Φ(b)
)
|t1− t2| .

We used the fact that Φ is increasing and nonnegative. Then F is LF,[a,b] -Lipschitz
continuous on [a,b] , where LF,[a,b] := 1

a

(
LΦ,[a,b] + 1

aΦ(b)
)
.

Let p > 0 with p �= 1. For a � x< y � b we have 0 < yp−xp

y−x < pmax
{
ap−1,bp−1

}
.

Thus, F p is L−Lipschitz continuous on [a,b] , where L := pmax
{
ap−1,bp−1

}
LF,[a,b] .

3. Proof of the main result

Let t0 > 0. If μ (X) < ∞ , we assume that t0 > 1
2A+2Φ−1

(
1

μ(X)
∫
X

Φ(g)dμ
)

.

For ε > 0 denote J (ε) =
∫
X

gF1+ε (g)dμ . Write J (ε) = J1 (ε) + J2 (ε) , where

J1 (ε) :=
∫

X\Gt0

gF1+ε (g)dμ and J2 (ε) :=
∫

Gt0

gF1+ε (g)dμ .

We have the trivial estimate

J1 (ε) � Fε (t0)
∫

X\Gt0

gF (g)dμ � Fε (t0)
∫
X

gF (g)dμ . (3.1)
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Denote Ig (ε, t1) =
∫

Gt0\Gt1

gF1+ε (g)dμ and Ih (ε,t1) =
∫

Ht0\Ht1

hF1+ε (h)dμ . By

Lebesgue monotone convergence theorem, we have J2 (ε) = lim
t1→∞

Ig (ε, t1) .

We will consider the measures ν , π and ω such that dν = Φ(g)dμ , dπ = gdμ
and dω = Φ(h)dμ . By Lemma 2 we have

ν (Gt) � αF (t)π (Gt)+ β ω (Ht) (3.2)

for every t � t0 .
We have Ig (ε, t1) =

∫
Gt0\Gt1

Fε (g)dν . By Lemma 4, the function Fε is Lipschitz

continuous on every compact interval contained in (0,∞) , hence Fε is absolutely con-

tinuous on (0,∞) . According to Lemma 3, we can write Ig (ε,t1)=
t1∫
t0

(Fε )′ (t)ν (Gt)dt−
Fε (t)ν (Gt)|t1t0 . But (Fε )′ (t) = εFε−1 (t)F ′ (t) for a.e. t ∈ [t0,t1] . Using (3.2) we get
for all t � t0

(Fε)′ (t)ν (Gt) � α
ε

ε +1

(
F1+ε)′ (t)π (Gt)+ β (Fε)′ (t)ω (Ht) .

The occurence of F1+ε in the right hand side of the above inequality is the key to
the self-improving phenomenon occuring here .

Using the previous inequality and applying Lemma 3 twice more we get

Ig (ε, t1) � − Fε (t)ν (Gt)|t1t0 +
αε

ε +1

∫
Gt0\Gt1

F1+ε (g)dπ +
αε

ε +1
F1+ε (t)π (Gt)

∣∣t1
t0

+

β
∫

Ht0\Ht1

Fε (h)dω + β Fε (t)ω (Ht)|t1t0 .

Note that
∫

Gt0\Gt1

F1+ε (g)dπ = Ig (ε,t1) and
∫

Ht0\Ht1

Fε (h)dω = Ih (ε,t1) . The pre-

vious inequality writes as(
1− αε

ε +1

)
Ig (ε, t1) � β Ih (ε,t1)+Fε (t1)

[
αε

ε +1
F (t1)π (Gt1)−ν (Gt1)

]
+ (3.3)

Fε (t0)
[

ν
(
Gt0

)− αε
ε +1

F (t0)π
(
Gt0

)]
+ β Fε (t)ω (Ht)|t1t0 .

Let ε > 0 such that αε
ε+1 < 1, i.e. ε < 1/(α −1) .

Then

αε
ε +1

F (t1)π (Gt1)−ν (Gt1) � F (t1)π (Gt1)−ν (Gt1) =
∫

Gt1

g [F (t1)−F (g)]dμ ,

hence αε
ε +1

F (t1)π (Gt1)−ν (Gt1) � 0. (3.4)
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By (3.2) for t = t0 we get ν
(
Gt0

)− αε
ε+1F (t0)π

(
Gt0

)
� 1

ε+1 ν
(
Gt0

)
+ β ε

ε+1ω
(
Ht0

)
,

therefore

Fε (t0)
[

ν
(
Gt0

)− αε
ε +1

F (t0)π
(
Gt0

)]
+ β Fε (t)ω (Ht)|t1t0

� 1
ε +1

Fε (t0)
[
ν
(
Gt0

)−β ω
(
Ht0

)]
+ βFε (t1)ω (Ht1) (3.5)

� α
ε +1

F1+ε (t0)π
(
Gt0

)
+ βFε (t1)ω (Ht1) .

From (3.3), (3.4) and (3.5) it follows that

Ig (ε, t1) � α
1+ ε −αε

F1+ε (t0)π
(
Gt0

)
+

β (1+ ε)
1+ ε −αε

[Ih (ε,t1)−Fε (t1)ω (Ht1)] .

(3.6)
It remains to let t1 tend to infinity in (3.6). If

∫
X

hF1+ε (h)dμ = ∞ , then the claim

of the theorem is obvious. Assume that
∫
X

hF1+ε (h)dμ < ∞ . We prove that

lim
t1→∞

Fε (t1)ω (Ht1) = 0. (3.7)

Since every locally integrable function f is dominated a.e. by its noncentered maximal
function M ∗ f , we have the inclusion Ht1 ⊂ {M ∗ (hF1+ε (h)

)
> t1F1+ε (t1)

}
. By

(2.1), this implies

μ (Ht1) � C
t1F1+ε (t1)

∫
X

hF1+ε (h)dμ .

Since F1+ε (t1)ω (Ht1) �
∫

Ht1

hF1+ε (h)dμ , using the absolute continuity of the in-

tegral, the integrability of hF1+ε (h) and the fact that lim
t1→∞

μ (Ht1) = 0, we obtain

lim
t1→∞

F1+ε (t1)ω (Ht1) = 0. Then we also have (3.7), since there is τ1 > 0 such that

F (t) � 1 for every t � τ1 .
Letting t1 tend to infinity in (3.6) and using (3.1) we obtain

∫
X

gF1+ε (g)dμ � 1+ ε + α −αε
1+ ε −αε

Fε (t0)
∫
X

gF (g)dμ +
β (1+ ε)

1+ ε −αε

∫
X

hF1+ε (h)dμ .

(3.8)
If μ (X) = ∞ , then we let t0 tend to zero in (3.8), as we may. Taking into account that

F (0) = 0 we get (1.3) with A′ = β (1+ε)
1+ε−αε .

Fix any ε0 < 1/(α −1) . Since the constants α and β depend only on K , Cμ , Cd

and A , the same holds true for ε0 . For every ε ∈ (0,ε0] we have β (1+ε)
1+ε−αε � β (1+ε0)

1+ε0−αε0
,

consequently (1.3) holds for A′ = β (1+ε0)
1+ε0−αε0

.
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If μ (X) < ∞ , we let t0 tend to T := 1
2A+2Φ−1

(
1

μ(X)
∫
X

Φ(g)dμ
)

from the right

in (3.8), hence we get (1.4) with A′′ = 1+ε0+α−αε0
1+ε0−αε0

.

REMARK 1 If μ (X) = ∞ , the only function g ∈ LΦ (X) satisfying the reverse Jensen

inequality Φ−1

(
1

μ(B)
∫
B

Φ(g)dμ
)

� A 1
μ(2B)

∫
2B

gdμ for all balls B⊂ X is the zero func-

tion.
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