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SOME NEW HARDY TYPE INEQUALITIES WITH GENERAL KERNELS II

KRISTINA KRULI¢ HIMMELREICH AND JOSIP PECARIC

(Communicated by N. Elezovic)

Abstract. In this paper we prove new Hardy type inequalities with general kernels. We give
new results that involve the Hardy—Hilbert and the Pélya—Knopp inequality. We also prove new
results that involve n-convex functions.

1. Introduction

The classical Hardy inequality reads:

(1 [ p p \’ =
/0 (E/o fmdt) dxg(ﬁ) /0 fx)dx, p>1, (1.1)

where f is nonnegative function such that f € L?(R) and R4 = (0,c). The constant

(ﬁ)p is sharp. The almost dramatic period of research in at least 10 years until G.

H. Hardy [2] stated and proved (1.1) was recently described in details in [7] and [8].
By putting f(r) = g(¢ 5 )t 7 and making some obvious substitutions we find that

(1.1) is equivalent to
<1 [* ’d ° d
/ (—/g(r)dr) S [erw (12)
0o \xJo by 0 X

Note that (1.2) holds also for p =1 (with equality) while (1.1) has no meaning for
p = 1. Of course this proof also shows that the following more general inequality

[ro(5 [ roa) %< [“orm 13

holds for each convex function @ on the interval / with Imf C I. This observation
can be found in the papers [4] by Kaijser et al. but was known even before, see e.g.
Godunova [1].
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Let H; be defined by
Hof(x) / FOk(x1) (1.4)

where .
:/ k(x,t)dt < oo
0

Here k(x,y) is a general measurable and nonnegative function, a so called kernel.
The following result was proved by Kaijser et al. [3]:

THEOREM 1.1. Let u be a weight function on (0,b), 0 < b < e, and let k(x,y) >

k
0 on (0,b) x (0,b). Assume that % is locally integrable on (0,b) for each
fixed y € (0,b) and define v by
b k(x,y) , . dx
— ’ P 0,b
v(y) =y | K(x)u()x <o, y€(0,b).

If @ is a positive and convex function on (a,c), —eo < a < ¢ < o, then

/CI)ka & /cp (1.5)

SJorall f with a < f(x) <c, 0<x<b, where Hy, is defined by (1.4).

In the same paper the dual operator H, defined by
/ k(x,y) f(y)dy, (1.6)

where K(x) = [ k(x,y)dy < o, was studied and the following result was proved:

k(x,y)u(x)
xK (x)
is locally integrable on (b,=) for every fixed y € (b,oo). Let the function v be defined

by
)=y [ DL < v )

THEOREM 1.2. For 0 < b < oo, let u be a weight function such that

K(x) X
If @ is a positive and convex function on (a,c), —eo < a < ¢ < oo, then
d
/ O(Hf(x) a / O(f (1.7)

forall f with a < f(x) <c, b<x< oo, where Hy is defined by (1.6).
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In the sequel let (Q1,%;, 1), (Q2,%2,p) be measure spaces and let Ay be de-
fined as follows:

Af(x) / k() () (), (1.8)

where f:Q; — R is measurable, k 1 Q) x Qy — R is a measurable and nonnegative
kernel and

%) i= [ kxdua) <o xeQ. (19)
Q

The following result was given in [5] see also [6].

THEOREM 1.3. Let u be a weight function, k(x,y) > 0. Assume that I;(()Exy)) u(x) is
locally integrable on Q| for each fixed y € Q. Define v by

V() = /Q1 K5Y) o (x) < oo (1.10)

If © is a convex function on the interval I C R, then the inequality

O(Af (x))ux)d gty (x / D(F )V (O)di () (L11)
Q

holds for all measurable functions f: Q) — R, such that Imf C I, where Ay is defined
by (1.8)—(1.9).

This result unifies and generalizes most results of this type.

Now consider the Green function G defined on [, 8] X [ot, B] by

o[ B @i
T e cicp

B—o

(1.12)

The function G is convex under s, it is symmetric nonpositive function and it is also
convex under 7. It is continuous under s and continuous under 7.

For any function ¢ : [, B] — R, ¢ € C?([a,b]), we can easily show by integrating
by parts that the following is valid

_B-x
=5 o

where the function G is defined as above in (1.12).
Next we give a well known Taylor’s theorem with the integral remainder.

0(x) 0(0r) + 5

B
ﬂ)—!—/a G(x,5)0" (s)ds, (1.13)

THEOREM 1.4. Let n be a positive integer and ¢ : [ct, B] — R be such that ¢~
is absolutely continuous, then for all x € [o,B] the Taylor formula at the point ¢ €
(o, B] is

¢(x) = To1(d:c,x) + Ry—1(93c,x)
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where

Ty 1(0:c.%) = Z‘P o)t

and the remainder is given by

Ry_1(¢;c,x) = /¢ )" L.

Throughout this paper, all measures are assumed to be positive, all functions are
assumed to be positive and measurable and expressions of the form 0-c, = and ?—)
are taken to be equal to zero. Moreover, by a weight u = u(x) we mean a nonnegative
measurable function on the actual interval or more general set.

2. The main results

We give the first result.

THEOREM 2.1. Let Arf(x), K(x ) be defined by (1.8) and (1.9) respectively. Let
u and v be weight functions and ([) ) be absolutely continuous for some n >3 and
G is the Green function defined by (1.12). Then

/ 0 (F())v(¥)dita (v / 0 (Arf (x))u(x)dpy (x)

(BB— 10 5014 fg)%of‘mm) 0)dia()

B —Af(x) Af(x) —a
/Ql < ﬁ ka ¢(a)+lcﬁfa¢(ﬂ)) u(x)d,ul(x)

n3¢l+2

S ( Vi (v / G(AS (). )ux)dps (x >>

1=0

X (s— )’

(n—3 / / </QzG dllz(y)—/Ql G(Akf(x)7s)u(x)du1(x))

(s—t)" 3ds ¢\ (1)dt (2.1)

/ UORRTRORY RIS

P10 ) L)
( L0010+ L= 208) ) vty

ﬁ— () Arf(x) — o
/91< B o(o) + B—a q)(ﬂ))u(x)dul(x)
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— kg (142
E’ ¢( >(ﬁ)/aﬁ< QZG ()dpia (y / G(ALf(x),s)u(x)dp (x ))
x(B 5)!
//(/ ()du(y /GAkf dm())
(s r)" Yds o™ (1)dt (2.2)

where f:Q, — R is a measurable function.

Proof. Using (1.13)in Jo, ¢(f(y))v(y)dia(y) = Jo, ¢ (Aef (x))u(x)d i (x) we have

/ o(f y)dpa(y / O (Arf (x))ulx)dp (x)
(B ﬁ_ ! fj’ (@) + fg’—‘of‘w)) 0)dp ()
_/91 (%MG) %(ﬁ(ﬁ)) u(x)dp (x)
/j¢"(5)< o, CU)s)v0)dialy / G(ALf(x),5)u(x)dp (x )) s (23)

Now applying Taylor’s formula on the function ¢” at the point ¢ and replacing n by
n—2 (n>3) we have

=3 ¢(+2) ()

0'() =3,

=0

(s—1)"3dr. (2.4)

Similarly, applying Taylor’s formula for ¢” at the point § and replacing n by n —2
(n > 3) we have

" n—3 ¢(Z+2)( n

0 (s)=l=20 T / O () (s—1)2dr. (2.5)

Using (2.4) in (2.3) we get
/ ¢(f y)din (y / O (Arf (x))u(x)dpy (x)
B—rb) fy)—a
( T ¢(a)+W¢(ﬁ)) V)i )
B —Acf(x) Af(x) —a
- /Q1 (W‘P(a) + ﬁTWﬁ)) u(x)dp (x)

+ 5 D ([ G0 [, Glaes o)
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x (s —o)'ds
+ﬁ/ﬁ< G(f(y),s)v(y)d1ia (y / G(ALf (x),s)u(x)dp (x ))

< / 0 (1) (s — 1) 3dt) ds 2.6)

By applying Fubini’s theorem in the last term of (2.6) we obtain (2.1). Similarly using
(2.5) in (2.3) we obtain (2.2). [

First we give result involving convex functions.

COROLLARY 2.1. Let the assumptions of Theorem 2.1 be satisfied. If ¢ is a
convex function and

GF(3),s)v(¥)dpa(y / G(ALf (), () (x) > 0,
Q
then
L, OUONMOIamn ()~ [ oA ()t ()
> [ (%Mcxw L= 2o®)) vare)
- [ (P52 00+ D 0(p) Jua) @)

Proof. By assumptions ¢” exists almost everywhere and ¢” > 0. Then in (2.3)
the last integral

/aﬁ ¢"(s) ( o, G(f(y),s)v(y)dua(y / G(ALf(x),s)u(x)du, (x )) ds >0

and (2.7) follows. [

We continue with the following result that involves n-convex functions.

COROLLARY 2.2. Let the assumptions of Theorem 2.1 be satisfied.
(i) If ¢ is n-convex and

/tﬁ ( N G(f(y),s)v(y)dua (y / G(ALf(x),s)u(x)du (x )) (s—1)"3ds > 0,
then
(P( )iz ly / ¢ (Axf (x))u(x)dpn (x)
B—r) ) -«
_/Qz< B—o ¢(a)+ﬁ_7a¢(ﬂ)) v(y)dus (y)

B—Aif(x) Arf(x)
+ [ (B2 000y + AL 2o 5) ) uaa o
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>§¢<z+l2!>(a) /aﬁ< [, GU0)sp 0y / G(ALf (x),8)u(x)d s (x ))
x (s )ds 2.8)
(ii) If ¢ is n-convex and
/;( [, GU):v0)dps (s / G(ALf(x),8)u(x)d s (x )> (s 1) 3ds <0,
then

L, OGO (0) — [ (A ()

00+ B0 B) ) vy

Akf )C)—(X
s (B g+ AL <z><ﬁ>) ()i (3
n—3 (_ )l¢(l+2) ﬁ) B
212(’)#/0{ ( QzG (v)duz(y / G(Af (x),s)u(x)dp (x ))
(B s)'ds @9)

Proof. By assumptions ¢") exists almost everywhere and ¢ > 0. We can apply
Theorem 2.1 to obtain (2.8) and (2.9) respectively. [

COROLLARY 2.3. Let the assumptions of Theorem 2.1 be satisfied. If v is defined
by (1.10), then

()diia(y / O (Acf () u(x)dpy (x)

92
g{) l+2')(06) /j( QZG (v)diio (v / G(Auf(x),s)u(x)du (x ))
X (s—
T // (QZG )tz (y /GAkf dm())
% (s —1Y"3ds 0™ (1) (2.10)
and
[ ot 2 0)dpa(y / 9 (Acf () u(x)d ity (x)
_ ;M/{f( QzG V)i (v / G(Af (x),8)u(x)du (x ))
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_ﬁ/aﬁ/o:< o, CU O 0)dbz (v / G(ALf (x),$)u(x)dp (x ))
X (s—1)"3ds o™ (1)dt (2.11)

where f:Q, — R is a measurable function.

Proof. The first and second integrals on the right-hand sides of (2.1) and (2.2) are
equal to O when we apply the definition of the function v. [J

Next result involving n-convex functions is given in the following Corollary.

COROLLARY 2.4. Let the assumptions of Theorem 2.1 be satisfied. Let v be de-
fined by (1.10). If ¢ is n-convex and

/tﬁ(%c(f() ()dgs) — [ GlALS(0).s )dul()) (s — 1y ds >0,

(2.12)
then

O(f () )v(y)dua (v /¢Akf (x)d s (x)
Q

;’fm/ﬁ(gzc(f() O)iy) - [ G5 >du1(>>

1=0 I «
x (s — o)'ds. (2.13)
If ¢ is n-convex and
[ ([ 601 smtdint)— [, Gtnstoshuteidun o)) s-0 s <o,
o Q>
then

O(f(9))v(y)dia (y /¢Akf (x)d s (x)

Q
S SO
>3 LU0 P G mtidnt) - [, Gt .hutoain o)
x (B—s)ds (2.14)

where f:Q, — R is a measurable function.

Proof. Since (2.12) holds and the function ¢ is n-convex so by assumptions ¢ )
exists almost everywhere and (b(") >0,so

ﬁ/{){ﬁ/ﬁ( ng(f( V)dus (y / G(Arf(x), s)u(x)dp (x ))

X (s—1)"3ds¢"™ (t)dr >0
and (2.13) follows. Similarly we obtain (2.14). [
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COROLLARY 2.5. Let the assumptions of Theorem 2.1 be satisfied. Let k(x,y) >0

and v be defined by (1.10). If ¢ is n-convex, then (2.13) follows. If ¢ is n-concave,
then (2.13) holds with the reversed sign of inequality.

Proof. Since G is a convex function, k(x,y) > 0 and v is defined by (1.10) then
we can apply Theorem 1.3 and obtain that

G/ (), 5)v(v)diz /GAkf Ju(x)dp (x) > 0.

Q)

Since the function ¢ is n-convex function, so by assumptions (l)(”) exists almost ev-
erywhere and ¢>(") >0, so

ﬁ /a ! /, ﬁ( [ GUO) 0y / G(ALf (x) (x)dlll(x)>

X (s—1)"3ds¢"™ (t)dt >0

and (2.13) follows. Similarly we obtain (2.14). [

EXAMPLE 2.1. By applying Corollary 2.5 with Q; = Q) = (0,0) and k
I, 0<y<x, k(x,y) =0, y >x, duj(x) =dx, dup(y) = dy and u(x) =
v(y) = % ) we obtain the following result

[t - [ (1/xf<t>dt) &
;j}‘?’m / (/ G(f y—/:G(Akf(x)7s)%>(s—a)’ds

where Ay, is defined by
A =1 [

EXAMPLE 2.2. By arguing as in Example 2.1 but only with ¢ (x) =x”, TT,(p—
i+ 1) > 0 we obtain the following result

fros [ ( o )"@
i (25 (p— )"~ 2/ (/ G(f y—/ONG(Akf(st)%)(s—aYd&

B (2.15)

y) =

(x,
(so that

1
X

If [T.,(p—i+1) <0, then (2.15) holds with the reversed sign of inequality.
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EXAMPLE 2.3. Let Q) = Q) = (0,b), 0 < b < oo, replace dp(x) and dus(y)
by the Lebesque measures dx and dy, respectively, and let k(x,y) =0 for x <y < b.
Then A coincides with the operator Hy defined by (1.4) and if also u(x) is replaced
by u(x)/x and v(x) by v(x)/x, then we obtain the following result

[ oromm 2 - [ ot sut) &

n—3 ¢(l+2)(a) B b dy , "
12617'/0: (/0 G(J‘(y),s)v(>))7—/0 G(ka(x),s)u(x)7)(S_a)lds O

EXAMPLE 2.4. By arguing as in Example 2.3 but Q| = Q) = (b,), 0 < b < e
and with kernels such that k(x,y) =0 for b <y < x we obtain the following result

[ owonm® - [ °°<z><H,;f<x>>u<x>%

n=3 ¢ (+2)( ( ) l
G(f G(H:f(x) —oa)d
3 D[ e L [ 6t 51 T ) (5= s
where Hpf is defined by (1.6). U

We continue with the result that involves Hardy—Hilbert’s inequality.
If p>1 and f is a nonnegative function such that f € L?(R. ), then

c( ) )” r(
/O<O o) s Sm /f (2.16)

Inequality (2.16) is sometimes called Hilbert’s inequality even if Hilbert himself only
considered the case p =2.

EXAMPLE 2.5. Let Q) = Q) = (0,), replace du;(x) and du,(y) by the Lebes-

n-1/p
que measures dx and dy, respectively, let k(x,y) = G ) ! (x) = <. Then

K(x) =K = W and v(y) = % Let ®(u ):up, lel( —i+1)=>0 then the
following result follows »

/mf”(y)dy—K”/m< Ow%dy>pdx

g Hl+1( o ~1- 2/ (/ G(f /:G(Akf(x),s)d—;)(s_a)zds

2.17)

e in(n/p) [~ F0) 3
sin (7
Arf(x) = i
T 0o X+y
If [T\, p—i+ 1 <0, then (2.17) holds with the reversed sign of inequality. [

xrdy.
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We mention Pélya—Knopp’s inequality,

/:exp G/Oxlnf(t)dt) dx < e/owf(x)d)@ (2.18)

for positive functions f € L'(R ). Since (2.18) can be obtained from (1.1) by rewriting

it with the function f replaced with f » and then by letting p — oo, Pélya—Knopp’s
inequality may be considered as a limiting case of Hardy’s inequality.

EXAMPLE 2.6. Let the assumptions in Theorem 2.1 be satisfied. Then, by ap-

plying (2.13) and (2.14) with ®(x) = ¢, and f replaced by In fP, p > 0 we obtain
that

[ 7000~ [ Jex (i [ K msoi)) | utidia s
> Eexpa/a (QZG(lan(y) y)du (y / G(Arf(x) (x)dyl(x))

x (s— a)lds (2.19)

where k(x,y), K(x), u(x) and v(y) are defined as in Theorem 1.3 and
p
A = — k 1 d .
kf(x) K(.X) /;22 (xvy) nf(y) ”2()’)

In particular, if p=1, Q; =Qy =(0,00), k(x,y) =1, 0<y<ux, k(x,y) =0, y > x. (so
that K(x) =x), duy (x) =dx, dup(y) = dy, u(x) = 1/x (so that v(x) = 1 /x) replacing
f(x)/x by f(x) and making a simple calculation we find that (2.19) is equal to

/wf(y>dy—e/0wexp(§ [ msoay) as

> 2 " expo <[ ’ ( | G(lnf(y)xs)? - G(Pkﬂx),s)d—;) (s— a)lds,

P ) / In(f
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