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ON THE UPPER AND LOWER ESTIMATES OF

NORMS IN VARIABLE EXPONENT SPACES
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(Communicated by J. Soria)

Abstract. In the present paper we investigate some geometrical properties of the norms in Ba-
nach function spaces. Particularly there is shown that if exponent 1/p(·) belongs to BLO1/ log

then for the norm of corresponding variable exponent Lebesgue space we have the following
lower estimate ∥∥∑χQ‖ f χQ‖p(·)/‖χQ‖p(·)

∥∥
p(·) � C‖ f‖p(·)

where {Q} defines disjoint partition of [0;1] . Also we have constructed variable exponent
Lebesgue space with above property which does not possess following upper estimation

‖ f‖p(·) � C
∥∥∑χQ‖ f χQ‖p(·)/‖χQ‖p(·)

∥∥
p(·) .

1. Introduction

Let Ω ⊂ R
n and let M be the space of all equivalence classes of Lebesgue mea-

surable real-valued functions endowed with the topology of convergence in measure
relative to each set of finite measure.

DEFINITION 1. A Banach subspace X of M is called a Banach function space
(BFS) on Ω if

1) the norm ‖ f‖X is defined for every measurable function f and f ∈ X if and
only if ‖ f‖X < ∞ . ‖ f‖X = 0 if and only if f = 0 a.e.;

2) ‖| f |‖X = ‖ f‖X for all f ∈ X ;
3) if 0 � f � g a.e., then ‖ f‖X � ‖g‖X ;
4) if 0 � fn ↑ f a.e., then ‖ fn‖X ↑ ‖ f‖X ;
5) if E is measurable subset of Ω such that |E| < ∞, (below we denote the

Lebesgue measure of E by |E|) then ‖χE‖X < ∞ ;
6) for every measurable set E, |E| < ∞, there is a constant CE < ∞ such that∫

E f (t)dt � CE‖ f‖X .
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Given a BFS X , its associate space X ′ is defined by

X ′ =
{

g :
∫

Ω
| f (x)g(x)|dx < ∞ for all f ∈ X

}

and endowed with the associate norm

‖ f‖X ′ = sup

{∫
Ω
| f (x)g(x)|dx : ‖g‖X � 1

}
.

An immediate consequence of this definition is the generalized Hölder’s inequality: for
all f ∈ X and g ∈ X ′, ∣∣∣∣

∫
Ω

f (x)g(x)dx

∣∣∣∣� ‖ f‖X‖g‖X ′ .

Furthermore, X ′ is also a BFS on Ω and (X ′)′ = X . The associate space of X is closed
norming subspace of the dual space X∗ , and equality

‖ f‖X = sup

{∫
Ω
| f (x)g(x)|dx : ‖g‖X ′ � 1

}

holds for all f ∈ X (see [1]).
Given a Banach function space X , define the scale of spaces Xr, 0 < r < ∞,

Xr = { f ∈ M : | f |r ∈ X},

with the “norm”
‖ f‖Xr = ‖| f |r‖1/r

X .

If r � 1, then ‖ · ‖Xr is again an actual norm and Xr is a Banach function space.
However, if r < 1, need not be a Banach function space. The simple example is the
scale of Lebesgue spaces: if X = Lp(Ω), (1 � p < ∞), then (Lp)r = Lpr, and so Xr is
a Banach space only for r � 1/p.

Let ℑ be some fixed family of sequences Q = {Qi} of disjoint measurable subsets
of Ω, |Qi| > 0 such that Ω = ∪Qi∈QQi. We ignore the difference in notation caused by
a null set.

Everywhere in the sequel lQ is a Banach sequential space (BSS), meaning that
axioms 1)-6) from definition 1 are satisfied with respect to the count measure. Let
ek = eQk denote the standard unit vectors in lQ.

Kopaliani in [11] introduced notions of uniformly upper (lower) l -estimates.

DEFINITION 2. 1) Let l = {lQ}Q∈ℑ be a family of BSSs. A BFS X is said to
satisfy a uniformly upper l -estimate if there exists a constant C < ∞ such that for every
f ∈ X and Q ∈ ℑ we have

‖ f‖X � C

∥∥∥∥∥ ∑
Qi∈Q

ei‖ f χQi‖X

∥∥∥∥∥
lQ

.
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2) BFS X is said to satisfy uniformly lower l -estimate if there exists a constant C < ∞
such that for every f ∈ X and Q ∈ ℑ we have

‖ f‖X � C

∥∥∥∥∥ ∑
Qi∈Q

ei‖ f χQi‖X

∥∥∥∥∥
lQ

.

Note that if in Definition 2 for all Q ∈ ℑ, we take one discrete Lebesgue space
lp, (1 � p < ∞), we obtain classical definition of upper and lower p -estimates of Ba-
nach spaces (see [17], [8]). The existence of upper or lower p -estimates in the Banach
spaces is of great interest in study of the structure of the space (see [16]). Berezhnoi
[2, 3] investigate uniformly upper (lower) l -estimates of BFS, when discrete lQ spaces
for all partition of Ω coincides to some discrete BSS.

DEFINITION 3. A pair of BFSs (X ,Y ) is said to have property G(ℑ) if there
exists a constant C > 0 such that

∑
Qi∈Q

‖ f χQi‖X · ‖gχQi‖Y ′ � C · ‖ f‖X · ‖g‖Y ′

for any Q ∈ ℑ and every f ∈ X , g ∈Y ′.

Definition 3 was introduced by Berezhnoi [3]. Let us remark that a pair (Lp(Ω),Lq(Ω))
possesses the property G(ℑ) if p � q.

The connections between the property G(ℑ) and uniformly upper (lower) l -estimates
of BFS-s was investigated in paper [11].

THEOREM 1. ([11]) Let (X ,Y ) be a pair of BFSs. Then the following assertions
are equivalent:

1) The pair (X ,Y ) of BFSs possesses property G(ℑ) .
2) There is a family l = {lQ}Q∈ℑ of BSSs such that X satisfies uniformly lower

l -estimate and Y satisfies uniformly upper l -estimate.

THEOREM 2. ([11]) The pair (X ,X) of BFSs possesses property G(ℑ) if and only
if there exist constants C1,C2 > 0 such that for every f ∈ X and Q ∈ ℑ we have

C1‖ f‖X �
∥∥∥∥∥ ∑

Q∈Q

‖ f χQ‖X

‖χQ‖X
χQ

∥∥∥∥∥
X

� C2‖ f‖X . (1.1)

Note that the (1.1) type inequalities is very important for studying the boundedness
properties of operators of harmonic analysis in variable Lebesgue spaces (see [4], [7]).

DEFINITION 4. We say that BFS X has property G′(ℑ) (property G′′(ℑ)) if there
exists constant C1 (C2 > 0) such that for every f ∈ X and Q ∈ ℑ we have∥∥∥∥∥ ∑

Q∈Q

‖ f χQ‖X

‖χQ‖X
χQ

∥∥∥∥∥
X

� C1‖ f‖X ,

(
‖ f‖X � C2

∥∥∥∥∥ ∑
Q∈Q

‖ f χQ‖X

‖χQ‖X
χQ

∥∥∥∥∥
X

)
. (1.2)
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The idea of (1.2) type inequalities are to generalize the following property of the
Lebesgue norm

‖ f‖Lp =

∥∥∥∥∥∑i

‖ f χΩi‖Lp

‖χΩi‖Lp
χΩi

∥∥∥∥∥
Lp

,

where Ωi is disjoint measurable partition of Ω .
Below everywhere by ℑ we denote the family of all sequences (may be finite)

{Qi} disjoint intervals from [0;1] . Assume that sets like [0;a) and (b;1] are also
intervals. In this paper we will use G , G′ , G′′ notations.

The aim of our paper is to investigate the property G′ (property G′′ ) for variable
Lebesgue spaces Lp(·)[0;1]. We have described the class of exponents, for which the
correspondent variable exponent Lebesgue spaces has property G′ (property G′′ ). Also
we have constructed variable exponent Lebesgue space with property G′ (G′′ ), which
does not possess G′′ (G′ ) property. Recently some properties of projection operators
in variable Lebesgue spaces were investigated in [9].

Given a function f ∈ L1[0;1] . Let define its BMO modulus by

γ( f ,r) = sup
|Q|�r

1
|Q|

∫
Q
| f (x)− fQ|dx, 0 < r � 1,

where the supremum is taken over all intervals of [0;1]. We say that f ∈ BMO1/ log if
γ( f ,r) � C/ log(e+1/r) and f ∈VMO1/ log if γ( f ,r) log(e+1/r)→ 0 as r → 0.

Given a function f ∈ L1[0;1] . Let define its BLO modulus by

η( f ,r) = sup
|Q|�r

( fQ − essinf
x∈Q

f (x)), 0 < r � 1,

where the supremum is taken over all intervals of [0;1]. We say that f ∈ BLO1/ log if
η( f ,r) � C/ log(e+1/r) . More about these classes see in [14].

Particularly we will proof following theorems:

THEOREM 3. Let for exponent p(·) we have 1/p(·) ∈ BLO1/ log, 1 � p− � p+ <
∞ . Then the space Lp(·)[0;1] has property G′ .

THEOREM 4. Let for exponent p(·),1 � p− � p+ < ∞ we have 1/p(·)∈BLO1/ log .
Then there exists c such that the space L(p(·)+c)′ [0;1] has property G′′ .

THEOREM 5. 1) There exists exponent p(·),1 � p− � p+ < ∞ such that 1/p(·)∈
BLO1/ log and Lp(·)[0;1] has property G′ but does not have property G′′ .
2) There exists exponent p(·),1 � p− � p+ < ∞ such that 1/p(·) ∈ BLO1/ log and
Lp(·)[0;1] has property G′′ but does not have property G′ .
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2. Some remarks on properties G′ and G′′

In this section we will discuss relations between G′ and G′′ properties for BFS X
and its associate space. ℑ denotes the family of all sequences of disjoint intervals.

DEFINITION 5. ([3]) Let X be a BFS. We say that for BFS X is fulfilled condition
A if there exists constant C > 0 such that, for all interval Q ⊂ [0;1]

‖χQ‖X · ‖χQ‖X ′ � C · |Q|

THEOREM 6. Let BFS X has property G′ and for X fulfilled condition A. Then
associate space of X has property G′′.

Proof. Let Q = {Q1,Q2, ...} denotes some partition of [0;1]. Let g ∈ X ′ and
f ∈ X such that ‖ f‖X � 1. Using Hölders inequality and A condition we conclude that
|Q| 
 ‖χQ‖X · ‖χQ‖X ′ . Using this fact and property G′ we obtain

∫
[0;1]

| f (x)g(x)|dx = ∑
k

∫
Qk

| f (x)g(x)|dx � ∑
k

‖ f χQk‖X · ‖gχQk‖X ′

� C1

∫
[0;1]

∑
k

‖ f χQk‖X

‖χQk‖X

‖gχQk‖X ′

‖χQk‖X ′
χQkdx

� C1

∥∥∥∥∥∑k
‖ f χQk‖X

‖χQk‖X
χQk

∥∥∥∥∥
X

∥∥∥∥∥∑k
‖gχQk‖X ′

‖χQk‖X ′
χQk

∥∥∥∥∥
X ′

� C2

∥∥∥∥∥∑k
‖gχQk‖X ′

‖χQk‖X ′
χQk

∥∥∥∥∥
X ′

.

Consequently X ′ possess G′′ property. �

Note that if BFS X has property G (in the meaning of (X ,X) has the property
G(ℑ)) then for X ′ we have property G without condition A (see [11]).

DEFINITION 6. Let Q ∈ ℑ . We define the averaging operator with respect to Q
by

TQ f (x) = ∑
i
| f |Qi χQi(x)

where | f |Q denotes the average of | f | on Q .

THEOREM 7. Let BFS X has property G′′ and the averaging operators TQ : X →
X , Q ∈ ℑ are uniformly bounded. Then associate space of X has property G′.

Proof. Let g ∈ X is nonnegative function such that ||g||X � 1. For any ε > 0
and i we choose nonnegative function hi ∈ X such that ||hi||X � 1 and || f χQi ||X ′ �
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(1 + ε)
∫
Qi

f hi . Note that uniformly boundedness of the averaging operator implies
condition A for space X (see [3]). So by property G′′ and Hölder inequality we get

∫
[0;1]

g(x)∑
i

|| f χQi ||X ′

||χQi ||X ′
χQi(x)dx �

∫
[0;1]

g(x)∑
i

(1+ ε)
∫
Qi

f (t)hi(t)dt

||χQi ||X ′
χQi(x)dx

= (1+ ε)
∫

[0;1]
f (t)∑

i

hi(t)
∫
Qi

g(x)dx

||χQi ||X ′
dt

� (1+ ε)|| f ||X ′

∥∥∥∥∥∑i

hi(·)
∫
Qi

g(x)dx

||χQi ||X ′
χQi

∥∥∥∥∥
X

� (1+ ε)|| f ||X ′

∥∥∥∥∥∑i

‖hi‖X
∫
Qi

g(x)dx

||χQi ||X ||χQi ||X ′
χQi

∥∥∥∥∥
X

� C1(1+ ε)|| f ||X ′

∥∥∥∥∥∑i

χQi

|Qi|
∫

Qi

g(x)dx

∥∥∥∥∥
X

� C2(1+ ε)|| f ||X ′ ||g||X
� C2(1+ ε)|| f ||X ′ .

By the fact that ε is arbitrary small we conclude that X ′ has property G′ . �
Note that if 0 < r < ∞ then for any f ∈ X we have ‖ f‖X = ‖ f 1/r‖r

Xr and the
inequalities in definition 4 can be written in following form∥∥∥∥∥ ∑

Q∈Q

‖ f 1/rχQ‖Xr

‖χQ‖Xr
χQ

∥∥∥∥∥
r

Xr

� C1‖ f 1/r‖r
Xr ,

‖ f 1/r‖r
Xr � C2

∥∥∥∥∥ ∑
Q∈Q

‖ f 1/rχQ‖Xr

‖χQ‖Xr
χQ

∥∥∥∥∥
r

Xr

.

Consequently if BFS has property G′ (G′′ ), then the “norms” ‖ · ‖Xr (0 < r < ∞) have
also property G′ (G′′ ).

3. Variable Lebesgue spaces

The variable exponent Lebesgue spaces Lp(·)(Rn) and the corresponding variable
exponent Sobolev spaces Wk,p(·) are of interest for their applications to the problems
in fluid dynamics, partial differential equations with non-standard growth conditions,
calculus of variations, image processing and etc (see [7]).

Given a measurable function p : [0;1] → [1;+∞), Lp(·)[0;1] denotes the set of
measurable functions f on [0;1] such that for some λ > 0

∫
[0;1]

( | f (x)|
λ

)p(x)

dx < ∞.
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This set becomes a Banach function spaces when equipped with the norm

‖ f‖p(·) = inf

{
λ > 0 :

∫
[0;1]

( | f (x)|
λ

)p(x)

dx � 1

}
.

For the given p(·), the conjugate exponent p′(·) is defined pointwise p′(x) =
p(x)/(p(x)−1) , x ∈ [0;1]. Given a set Q ⊂ [0;1] we define some standard notations:

p−(Q) := essinf
x∈Q

p(x), p+(Q) := esssup
x∈Q

p(x), p− := p−([0;1]), p+ := p+([0;1]).

In the notation introduced above, an exponent p(·), 1 � p− � p+ < ∞, the associate
space of Lp(·)[0;1] contains all measurable functions f such that

‖ f‖′(Lp(·))′ = sup

{∫
[0;1]

| f (x)g(x)|dx : g ∈ Lp(·)[0;1], ‖g‖p(·) � 1

}
< ∞.

Note that in this case the associate space of Lp(·)[0;1] is equal to Lp′(·)[0;1], and
‖ · ‖′

(Lp(·))′ and ‖ · ‖p′(·) are equivalent norms (see [4], [7]). We have also

∫
[0;1]

| f (x)g(x)|dx � C‖ f‖p(·)‖g‖p′(·), f ∈ Lp(·)[0;1], g ∈ Lp′(·)[0;1].

Conversely for all f ∈ Lp(·)[0;1]

‖ f‖p(·) � C sup
∫

[0;1]
| f (x)g(x)|dx,

where the supremum is taken over all g ∈ Lp′(·)[0;1] such that ‖g‖p′(·) � 1.
Given exponent p(·), 1 � p− � p+ < ∞ and a Lebesgue measurable function f

define the modular associated with p(·) on the set E ⊂ [0;1] by

ρp(·),E f =
∫

E
| f (x)|p(x)dx.

In case of constant exponents, the Lp norm and the modular differ only by an exponent.
In the variable Lebesgue spaces their relationship is more subtle as the next result shows
(see [4], [7]).

PROPOSITION 8. Given exponent p(·), suppose 1 � p− � p+ < ∞. Let E mea-
surable subset of [0;1]. Then:

(1) ‖ f χE‖p(·) = 1 if and only if ρp(·),E f = 1 ;

(2) if ρp(·),E f � C, then ‖ f χE‖p(·) � max(C1/p−(E), C1/p+(E));
(3) if ‖ f‖p(·) � C, then ρp(·),E f � max(Cp+(E),Cp−(E)).

The next result is a necessary and sufficient condition for the embedding Lq(·)[0;1]
⊂ Lp(·)[0;1] (see [4], [7]).



92 T. KOPALIANI, N. SAMASHVILI AND S. ZVIADADZE

PROPOSITION 9. Given the exponents p(·),q(·), suppose 1 � p− � p+ < ∞,1 �
q− � q+ < ∞. Then Lq(·)[0;1]⊂ Lp(·)[0;1] if and only if p(·) � q(·) almost everywhere.
Furthermore, in this case we have

‖ f‖p(·) � 2‖ f‖q(·).

For our results we need to impose some regularity on the exponent function p(·).
The most important condition, one widely used in the study of variable Lebesgue
spaces, is log-Hölder continuity. Let C1/ log denotes the set of exponents p : [0;1] →
[1,+∞) with log-Hölder condition

|(p(x)− p(y)) ln |x− y||� C, x, y ∈ [0;1], x �= y. (3.1)

For Lebesgue integrable function f define Hardy-Littlewood maximal function

M f (x) = sup
x∈Q

| f |Q,

where supremum is taken over all Q ⊂ [0;1] intervals containing point x and fQ de-
notes the average of function f on Q. Let by B denote set of all exponents p(·) for
which Hardy-Littlewood maximal operator is bounded on the space Lp(·)[0;1] . Dien-
ing [5] proved a key consequence of log-Hölder continuity of p(·) . If 1 < p− and
p(·) ∈ C1/ log, then p(·) ∈ B . For an overview about subject we refer to the mono-
graphs [4], [7].

Kopaliani [11] proved that if exponent p(·) satisfies log-Hölder conditions then
the pair of BFSs (Lp(·)[0;1],Lp(·)[0;1]) has property G . Note that there are another
classes of exponents p(·) such that pair of BFSs (Lp(·)[0;1],Lp(·)[0;1]) has property
G. For instance, if exponent p(·) is absolutely continuous on [0;1] , then the pair of
BFSs (Lp(·)[0;1],Lp(·)[0;1]) has property G (see [13]). Note also that there exists con-
tinuous exponent on [0;1] such that the pair of BFSs (Lp(·)[0;1],Lp(·)[0;1]) does not
have property G (see [11]).

The class BMO1/ log is very important for investigation of exponents from B.

THEOREM 10. ([15], [10]) Let p : [0;1] → [1;+∞) , then
1) if p(·) ∈ B , then 1/p(·) ∈ BMO1/ log ;
2) if p(·) ∈VMO1/ log , then p(·) ∈ B ;
3) if p(·) ∈ BMO1/ log , then there exists c such that p(·)+ c ∈ B .

4. Proof of results

Proof of theorem 3. We begin with some auxiliary estimations.

LEMMA 1. Let p(·) be a exponent on [0;1] with 1 � p− � p+ < ∞. Then for all
t � 0 and Q ⊂ [0;1] interval

1
|Q|

∫
Q

t p(x)dx � e2(p−(Q)−p+(Q))t pQ , (4.1)

where pQ is defined as 1
pQ

= 1
|Q|
∫
Q

1
p(x)dx .
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This lemma is proved in [6] (see Lemma 4.1) in case of 1 < p− � p+ < ∞, but
analogously may be proved in presented case. If in (4.1) we take t = 1

‖χQ‖p(·)
, we obtain

‖χQ‖p(·) � C1|Q|(1/p(·))Q, (4.2)

for some constant C1 > 0.

Now assume that 1/p(·) ∈ BLO1/ log , then there exists C2 such that

|Q|(1/p)Q = |Q|
1
|Q|
∫
Q

1
p(x) dx− 1

p+(Q) + 1
p+(Q)

(4.3)

� |Q|
C

ln(e+1/|Q|) +
1

p+(Q) � C2 · |Q|
1

p+(Q) .

From (4.2) and (4.3) we obtain

C3 · |Q|1/p+(Q) � ||χQ||p(·) � C4 · |Q|1/p+(Q). (4.4)

Let Q = {Q1,Q2, ...} denotes some partition of [0;1] . Define on [0;1] function
p̃(·) in following way: p̃(x) = p+(Qi) when x ∈ Qi .

Without restriction of generality let consider the case when || f ||p(·) = 1. By Propo-

sition 8
∫ 1
0 | f (x)|p(x)dx = 1 . Then we only need to prove that

∥∥∥∥∥∑i

|| f χQi ||p(·)
||χQi ||p(·)

χQi(x)

∥∥∥∥∥
p(·)

� C.

By Proposition 8 we have

|| f χQi ||p(·) �

⎛
⎝∫

Qi

| f (x)|p(x)dx

⎞
⎠

1/p+(Qi)

. (4.5)

Then by (4.4) and (4.5)

∫
[0;1]

(
∑
i

|| f χQi ||p(·)
||χQi ||p(·)

χQi(x)

) p̃(x)

dx = ∑
i

∫
Qi

(
|| f χQi ||p(·)
||χQi ||p(·)

)p+(Qi)

χQi(x)dx

= ∑
i

|Qi|
(
|| f χQi ||p(·)
||χQi ||p(·)

)p+(Qi)

� ∑
i
|Qi|

∫
Qi

| f (x)|p(x)dx

C1|Qi|

=
1
C1

∫
[0;1]

| f (x)|p(x)dx =
1
C1

.
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Consequently we obtain ∥∥∥∥∥∑i

|| f χQi ||p(·)
||χQi ||p(·)

χQi(x)

∥∥∥∥∥
p̃(·)

� C.

Using the fact that p(x) � p̃(x), x ∈ [0;1] and proposition 9 we obtain desired re-
sult. �

Proof of theorem 4. The proof of theorem can be obtained from analogous ar-
guments as in proof of theorem 3. But we will obtain this proof from more general
proposition.

Consider exponent p(·) such that 1/p(·) ∈ BLO1/ log , then by theorem 10 there
exists a constant c such p(·)+c∈B. Using theorem 6 and theorem 3 we obtain desired
result. �

Proof of theorem 5. Let us show that the function

f (x) =
{

ln ln(1/x) if x ∈ (0,e−1];
0 if x ∈ (e−1,1],

belongs to BLO1/ log.
Let (a;b) ⊂ [0;1]. Without loss of generality assume that 0 � a < b � e−1. On

(a;b] define the function

h(x) =
x∫

a

ln ln(1/t)dt− (x−a) lnln(1/x)− 2(x−a)
ln(1/(x−a))

.

We have

h′(x) =
x−a

x ln(1/x)
−2 · ln(1/(x−a))+1

(ln(1/(x−a)))2 , a < x � b.

Since the function x ln(1/x) on (0;1) is increasing

(ln(1/(x−a)))2(x−a)−2x ln(1/x)(ln(1/(x−a))+1)

� ln
1

x−a

(
(x−a) ln

1
x−a

−2x ln
1
x

)
� −x · ln 1

x
· ln 1

x−a
< 0.

This means that function h is decreasing. From monotonicity of h and h(a+) = 0
follows thats

b∫
a

ln ln(1/x)dx− (b−a) lnln(1/b)− 2(b−a)
ln(1/(b−a))

� 0.

By the last inequality we get

1
b−a

b∫
a

ln ln(1/x)dx− lnln(1/b) � 4
ln(e+1/(b−a))

, (4.6)
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and consequently f ∈ BLO1/ log.

Note that the function f is a classical example discontinuous functions from
BMO1/ log (see [18]). From the well-known observation that a Lipschitz function pre-
serves mean oscillations it follows that the function sin( f (x)) provides an example of
a discontinuous bounded function from BMO1/ log. Lerner [15] proved that if p(x) =
p0 + μ sin( f (x)), x ∈ [0;1] where p0 > 0 and μ sufficiently close to 0, then Hardy-
Littlewood maximal operator is bounded on Lp(·)[0;1] . It is unknown whether p(·) ∈
BLO1/ log. Bellow we will construct a bounded function (some sense analogous of
sin( f (x))) which belongs to BLO1/ log.

Let dn = e−en
, n ∈ {0}∪N and c0 = 2/e , c2n+1 = c2n − (dn − dn+1) , c2n+2 =

c2n+1− (dn−dn+1) , n ∈ {0}∪N . Let us show that the non-negative bounded function

g(x) =

⎧⎪⎪⎨
⎪⎪⎩

ln ln 1
c2n+c2n+2−x−dn

−n if x ∈ (c2n+2; c2n+1],n ∈ {0}∪N;

ln ln 1
x−dn

−n if x ∈ (c2n+1; c2n],n ∈ {0}∪N;

0 if x ∈ (2/e,1].

belongs to BLO1/ log i.e. for all (a;b) ⊂ [0;1] we have

1
b−a

∫
(a;b)

g(x)dx− inf
x∈(a;b)

g(x) � C
ln(e+1/(b−a))

. (4.7)

Note that g(c2n) = 0, g(c2n+1) = 1, n ∈ {0}∪N and on each set [c2n+1;c2n]
function g is strictly monotonic and continuous.

Let (a;b)⊂ [0;1] , without lose of generality suppose that b � 2/e . Consider three
cases:

Case 1. At least one point c2n belongs to interval (a;b) , where n ∈ {0}∪N ;
Case 2. Interval (a;b) contains only one point like c2n+1 , where n ∈ {0}∪N ;
Case 3. Interval (a;b) does not contain point cn for any n ∈ {0}∪N .
Define ma = sup{k : a � ck} , mb = min{k : ck � b} . Note that if a > 0 then

ma = max{k : a � ck} and ma = ∞ if a = 0.
Consider case 1. Suppose that ma < ∞ , define m′

a = max{k : a � ck ∧ g(ck) = 0}
and m′

b = min{k : ck � b ∧ g(ck) = 0} . It is clear that cma � cm′
a
� cm′

b
� cmb . We

have

1
b−a

∫
(a;b)

g(x)dx− inf
x∈(a;b)

g(x) =
1

b−a

∫
(a;b)

g(x)dx (4.8)

=
1

b−a

(∫ cm′
a

a
+
∫ cm′

b

cm′
a

+
∫ b

cm′
b

)
g(x)dx

= A1 +A2 +A3.

Let cm′
a
< cm′

b
. Using the fact that g(2c2k+1− x) = g(x) when x ∈ [c2k+2;c2k+1]
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we get

(b−a)A2 =

cm′
b∫

cm′
a

g(x)dx =
(m′

a−2)/2

∑
k=m′

b/2

c2k∫
c2k+2

g(x)dx =
(m′

a−2)/2

∑
k=m′

b/2

⎛
⎝ c2k+1∫

c2k+2

+

c2k∫
c2k+1

⎞
⎠g(x)dx

=
(m′

a−2)/2

∑
k=m′

b/2

2

c2k∫
c2k+1

g(x)dx = 2
(m′

a−2)/2

∑
k=m′

b/2

c2k∫
c2k+1

(
ln ln

1
x−dk

− k

)
dx.

Note that by c2k −dk = dk and c2k+1−dk = dk+1 we have

(b−a)A2 = 2
(m′

a−2)/2

∑
k=m′

b/2

dk∫
dk+1

(
ln ln

1
t
− k

)
dt � 2

(m′
a−2)/2

∑
k=m′

b/2

dk∫
dk+1

(
ln ln

1
t
− m′

b

2

)
dt

= 2
(m′

a−2)/2

∑
k=m′

b/2

dk∫
dk+1

(
ln ln

1
t
− ln ln

1
dm′

b/2

)
dt = 2

dm′
b/2∫

dm′
a/2

(
ln ln

1
t
− ln ln

1
dm′

b/2

)
dt.

Now by the following estimation b− a > (b− a)/2 � dm′
b/2 − dm′

a/2 and by (4.6) we
have

A2 � 1
dm′

b/2−dm′
a/2

dm′
b/2∫

dm′
a/2

(
ln ln

1
t
− ln ln

1
dm′

b/2

)
dt (4.9)

� 4
ln(e+1/(dm′

b/2−dm′
a/2))

� 4
ln(e+1/(b−a))

.

If ma = ∞ then

A2 � 1
dm′

b/2 −0

dm′
b/2∫

0

(
ln ln

1
t
− ln ln

1
dm′

b/2

)
dt � 4

ln(e+1/(b−a))
. (4.10)

Consider A1 . Let cma = cm′
a
. Since cm′

a
−dm′

a/2 = dm′
a/2 and using (4.6) we get

A1 =
1

b−a

cm′
a∫

a

(
ln ln

1
x−dm′

a/2
− m′

a

2

)
dx (4.11)

=
1

b−a

cm′
a
−dm′

a/2∫
a−dm′

a/2

(
ln ln

1
t
− m′

a

2

)
dx

� 4
ln(e+1/(cm′

a
−a))

� 4
ln(e+1/(b−a))

.
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Let cma �= cm′
a

then ma = m′
a +1 and g(cma) = 1. Since cm′

a
−dm′

a/2 = dm′
a/2 we get

A1 � 2
b−a

cm′
a∫

cma

(
ln ln

1
x−dm′

a/2
− m′

a

2

)
dx (4.12)

=
2

b−a

cm′
a
−dm′

a/2∫
cma−dm′

a/2

(
ln ln

1
t
− ln ln

1
dm′

a/2

)
dx

� 8
ln(e+1/(b−a))

.

Consider A3 . Let cmb = cm′
b
. Since cmb−2−d(mb−2)/2 = d(mb−2)/2 we get

A3 =
1

b−a

b∫
cmb

(
ln ln

1
cmb + cmb−2− x−d(mb−2)/2

− mb−2
2

)
dx (4.13)

=
1

b−a

cmb−2−d(mb−2)/2∫
cmb+cmb−2−b−d(mb−2)/2

(
ln ln

1
t
− mb−2

2

)
dt

� 4
ln(e+1/(b−a))

.

If cmb �= cm′
b

then mb = m′
b−1 and g(mb) = 1 we have

A3 � 2
b−a

cmb∫
cm′

b

(
ln ln

1
cm′

b
+ cm′

b−2− x−d(m′
b−2)/2

− m′
b−2

2

)
dx (4.14)

=
2

b−a

cm′
b−2−d(m′

b−2)/2∫
cm′

b
+cm′

b−2−cmb−d(m′
b−2)/2

(
ln ln

1
t
− m′

b−2

2

)
dt

� 8
ln(e+1/(b−a))

.

In case of m′
a = m′

b desired result can be obtained from estimations of A1 and A3 .

Case 2. It is clear that in this case cma = cmb = cn where n is odd. Note that
restriction of function g on the interval (cn+1;cn−1) has symmetry about x = cn line,
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therefore without loss of generality we can assume that g(a) � g(b) then

1
b−a

b∫
a

g(x)dx−g(b) =
1

b−a

b∫
a

(g(x)−g(b))dx (4.15)

� 2
b−a

b∫
cn

((
ln ln

1
x−d(n−1)/2

− n−1
2

)
−g(b)

)
dx

� 2
b− cn

b∫
cn

(
ln ln

1
x−d(n−1)/2

− lnln
1

b−d(n−1)/2

)

� 4
ln(e+1/(b−a))

.

Case 3. In this case by (4.6) we get desired estimation.
Finally by the estimates (4.8)–(4.15) and (4.6) we get (4.7).

Now let construct exponent p(·) such that 1/p(·) ∈ BLO1/ log but G′′ property
fails.

We choose real numbers a and b such that 0 < a < b < 1, a+ b < 1. Consider
sets A and B

A = {x : g(x) � a} , B = {x : g(x) � b} .

It is clear that these sets are union of intervals and let denote they by Δa
n and Δb

n i.e.

A =
⋃
n�1

Δa
n, B =

⋃
n�1

Δb
n.

Let now construct exponent p in following way

p(x) =

⎧⎪⎨
⎪⎩

1/a if x ∈ A;

1/b if x ∈ B;

1/g(x) if x ∈ [0;1]\(A∪B).

It is clear that p(·) is continuous except point 0, where it has discontinuity and
1/p(·) ∈ BLO1/ log .

Let consider the set of right side endpoints of intervals from A . Let make partition
of [0;1] by these points. So we will get sequence of disjoint intervals Δn such that
Δa

n∪Δb
n ⊂ Δn .

Let δk = min{|Δa
k|, |Δb

k |} . Since δk � min{|Δa
n|, |Δb

n|} for all n � k then for each
n , n � k we can choose intervals Δa′

n ⊂ Δa
n and Δb′

n ⊂ Δb
n such that δk = |Δa′

n | = |Δb′
n | .

Now for each k we construct functions fk and gk in following way fk(x) =
χ∪n�kΔa′

n
(x) and gk(x) = χ∪n�kΔb′

n
(x) .
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Let now check property G of Lp(·)[0;1]

k

∑
n=1

|| fkχΔn ||L1/a · ||gkχΔn ||L1/b =
k

∑
n=1

||χΔa′
n
||L1/a · ||χΔb′

n
||L1/b

=
k

∑
n=1

|Δa′
n |a · |Δb′

n |b = k ·δ a+b
k .

On the other hand

|| fk||L1/a · ||gk||L1/b =

(
k

∑
n=1

|Δa′
n |
)a

·
(

k

∑
n=1

|Δb′
n |
)b

= (k ·δk)
a+b .

Property G states that, there exits absolute constant C such that

k ·δ a+b
k � C · (k ·δk)

a+b ,

we have
k1−a−b � C.

The last estimation is impossible since a+b < 1 and k1−a−b → +∞ , k → +∞ .
Using Theorem 1 we conclude that Lp(·)[0;1] does not have property G′′ .
Note that 1/(p(·)+c)∈ BLO1/ log for all c > 0. Consequently exponents p(·)+c

give us the spaces with same property.
Proof of the second part of Theorem 5. Note that by Theorem 10 and Theorem 6

we conclude that space L(p(·)+c)′ [0;1] possesses property G′′ for some constant c > 0.
It is clear that space L(p(·)+c)′ [0;1] does not have property G′ (because L(p(·)+c)[0;1]
does not have property G′′ ). �
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