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Abstract. In this paper, improving a famous result of Wolkowicz and Styan for the GCD ma-
trix (Sn) and the LCM matrix [Sn] defined on Sn = {1,2, . . . ,n} , we present new upper and
lower bounds for the smallest and the largest eigenvalues of (Sn) and [Sn] in terms of particular
arithmetical functions.

1. Introduction and preliminaries

Let S = {x1,x2, . . . ,xn} be a set of distinct positive integers. Let (xi,x j) and [xi,x j]
denote the greatest common divisor and the least common multiply of xi and x j , re-
spectively. The n× n matrices (S) = ((xi,x j)) and [S] = ([xi,x j]) are respectively
called the GCD matrix and the LCM matrix on S . Initially, Smith [32] proved that if
S is factor closed then det(S) = ∏n

k=1 ϕ(xk) , where ϕ is Euler’s totient. Since Smith’s
paper many generalizations of Smith’s result have been published in the literature. For
general accounts see e.g. [2, 10, 20, 30].

The eigenstructure is a rich topic in the study of GCD and LCM matrices. Let

λ (1)
n � λ (2)

n � · · ·� λ (n)
n be the eigenvalues of the n×n matrix (Mε

n ) =
( (i, j)2ε

iε jε
)
, where

ε is a real number. In 1944, Wintner [34] proved that limsupn→∞ λ (n)
n < ∞ if and only

if ε > 1. In 1998, Lindqvist and Seip [21] showed that if ε > 1 then ζ (2ε)
ζ (ε)2 � λ (1)

n �

λ (n)
n � ζ (ε)2

ζ (2ε) , and if 1
2 < ε � 1 then liminfn→∞ λ (1)

n = 0 and limsupn→∞ λ (n)
n = ∞ . In

1989, Beslin and Ligh [5] proved that (S) is positive definite for any set S of distinct
positive integers but [S] is not positive definite. Therefore, all eigenvalues of (S) are
positive reals but all eigenvalues of [S] need not be positive (see [8]). In 2004, Hong
and Loewy [13] investigated the asymptotic behavior of the eigenvalues of n×n matrix
((xi,x j)ε ) on S = {x1,x2, . . . ,xn} , where ε is a real number. Since the paper of Hong
and Loewy many results on the asymptotic behavior of the eigenvalues of the GCD and
related matrices have been published in the literature, see [3, 4, 11, 12, 14]. In 2008
Ilmonen, Haukkanen and Merikoski [17] examined the eigenvalues of certain abstract
generalizations of the GCD matrix and the LCM matrix on posets. Then Mattila and
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Haukkanen [25] and Mattila [22] gave new bounds for the eigenvalues of such abstract
generalizations. In addition to above papers, in 2012 Mattila and Haukkanen [23, 24]
investigated the eigenvalues of the n×n matrix Aα ,β

n = ((i, j)α [i, j]β ) , where α,β ∈R .

They proved that λ (1)
n � tn ·min1�i�n Jα−β (i) ·min{1,n2β} , where λ (1)

n is the smallest

eigenvalue of Aα ,β
n and α > β , and obtained a real interval which provides a broad

bounds for the eigenvalues of the matrix Aα ,β
n . Here tn is the smallest eigenvalue of the

n×n matrix ET E , where E is the n×n matrix whose the i j−entry is 1 if j|i and 0
otherwise.

Except Aα ,β
n , all above matrices of which eigenvalues were investigated are pos-

itive definite. Since the LCM matrix [S] defined on any set S = {x1,x2, . . . ,xn} is not
positive definite for n � 2, to investigate the eigenvalues of the LCM matrix [S] is not
easy. Except Mattila and Haukkanen [23, 24], the eigenvalues of the LCM matrix have
not hitherto been studied and any upper (lower) bounds for the smallest (largest) eigen-
values of the GCD matrix and the LCM matrix have not been presented earlier in the
literature.

In a wider point of view, it is a hard task to calculate the eigenvalues of an n× n
matrix so it is very useful to know the approximate location of the eigenvalues in gen-
eral. Wolkowicz and Styan, in their excellent paper [35], obtained bounds for eigenval-
ues of n×n matrices by using traces. Their result has not only theoretical value but also
many computational applications. Since their paper many generalizations and improve-
ments of their result have been published in the literature. For general accounts see e.g.
[16, 26, 27, 28, 29, 33, 36]. Also, their result has many applications, for example in
graph theory and signal processing, see e.g. [1, 19]. We now state their result.

THEOREM 1. (Theorem 2.1 in [35]) Let A be an n×n complex matrix with real

eigenvalues λ (1)
n ,λ (2)

n , . . . ,λ (n)
n in non-decreasing order, and let m = trA/n, s2 = tr(A2)/

n−m2 . Then

m− s(n−1)1/2 � λ (1)
n � m− s/(n−1)1/2, (1.1)

m+ s/(n−1)1/2 � λ (n)
n � m+ s(n−1)1/2. (1.2)

Equality holds on the left (right) of (1.1) if and only if equality holds on the left (right)
of (1.2) if and only if the n−1 largest (smallest) eigenvalues are equal.

The main aim of this paper is to improve the lower and upper bounds for the small-
est and the largest eigenvalues of n×n matrix in Theorem 1 for the GCD matrix (Sn)
and the LCM matrix [Sn] defined on Sn = {1,2, . . . ,n} . We perform this improvement
by using Rayleigh-Ritz Theorem and Cauchy’s Interlacing Theorem and hence we ob-
tain new lower and upper bounds for the smallest and largest eigenvalues of (Sn) and
[Sn] in terms of particular arithmetical functions.
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2. Main results

Consider the GCD matrix (Sn) and the LCM matrix [Sn] defined on Sn={1,2, . . . ,n}.
In Theorem 2 we will improve the upper bound in (2.1) and the lower bound in (2.2)
for the smallest and largest eigenvalues of (Sn) , respectively. Moreover, we will obtain
a lower bound for the smallest eigenvalue of (Sn) and an upper bound for the largest
eigenvalue of (Sn) by direct calculations of the left side of (2.1) and the right side of
(2.2), respectively. Then in Theorem 3 we will perform the similar improvement and
calculations for the LCM matrix [Sn] .

THEOREM 2. Let n > 3 and λ (1)
n � · · · � λ (n)

n be the eigenvalues of the GCD
matrix (Sn) defined on Sn = {1,2, . . .n} . Then we have

n(n+1)
2

− s(n−1)1/2 < λ (1)
n <

n(n+1)
2

−
(

ns2 +2(n−1)
n2−n

)1/2

(2.1)

and

n(n+1)
2

+
(

ns2 +2(n−1)
n2−n

)1/2

< λ (n)
n <

n(n+1)
2

+ s(n−1)1/2, (2.2)

where

s =
(

2
n

n

∑
i=1

(N2 ∗ϕ)(i)− 7n2 +12n+5
12

)1/2

. (2.3)

Proof. First we calculate m and s defined in Theorem 1 for the matrix (Sn) in
terms of the power function N2 and the Euler totient ϕ , see [30, 31]. It is clear that
m = n(n+1)/2. Then, we have

s2 =
1
n

n

∑
i=1

n

∑
j=1

(i, j)2 − 1
n2

(
n(n+1)

2

)2

=
1
n

[
2

n

∑
i=1

i

∑
j=1

(i, j)2 −
n

∑
i=1

i2
]
− (n+1)2

4

=
2
n

n

∑
i=1

(N2 ∗ϕ)(i)− 7n2 +12n+5
12

.

Here N2 ∗ϕ is the Dirichlet convolution of the power function N2 and the Möbius
funciton μ , see [30, 31] and the last equality follows from Lemma 1 in [7] which was
proved by Cesáro [9] for the first time. From Theorem 1 we obtain the left-hand side of
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(2.1) and the right-hand side of (2.2). On the other hand, we have

n2(m−λ (1)
n )2 = n2

(
1
n

n

∑
i=1

λ (i)
n −λ (1)

n

)2

=
( n

∑
i=1

λ (i)
n −nλ (1)

n

)2

=
n

∑
i=1

(λ (i)
n −λ (1)

n )2 + ∑
j �=k

(λ ( j)
n −λ (1)

n )(λ (k)
n −λ (1)

n ).

Here it should be noted that in the proof of Lemma 2.2 in [35] the second sum is
underestimated by 0 but here we shall find a better lower bound for it and thus we

are able to improve the upper bound for λ (1)
n and the lower bound for λ (n)

n of (Sn)
in Theorem 1. From Rayleigh-Ritz Theorem (see Theorem 4.2.2 in [15] ) it is clear
that λmin(A) � aii � λmax(A) for an n×n Hermitian matrix A = (ai j) . Thus we have

λ (n)
n −λ (1)

n > n− 1 for all n � 2. From Cauchy’s Interlacing Theorem (see Theorem

4.3.8 in [15]) we have that λ (n−1)
n − λ (1)

n > λ (2)
3 − λ (1)

3 for all n > 3. By a simple

calculation in Maple λ (2)
3

∼= 1,460 and λ (1)
3

∼= 0,324. Thus we have

∑
j �=k

(λ ( j)
n −λ (1)

n )(λ (k)
n −λ (1)

n ) > 2(n−1). (2.4)

In addition, we have

n

∑
i=1

(λ (i)
n −λ (1)

n )2 =
n

∑
i=1

(λ (i)
n −m+m−λ (1)

n )2

=
n

∑
i=1

[(λ (i)
n −m)(λ (i)

n +m−2λ (1)
n )]+n(m−λ (1)

n )2

=
n

∑
i=1

[(λ (i)
n )2 −2λ (i)

n λ (1)
n −m2 +2mλ (1)

n )]+n(m−λ (1)
n )2

=
n

∑
i=1

(λ (i)
n )2 −nm2 +n(m−λ (1)

n )2

= ns2 +n(m−λ (1)
n )2.

Thus, it is clear that

n2(m−λ (1)
n )2 > ns2 +n(m−λ (1)

n )2 +2(n−1).

Finally we have

λ (1)
n <

n(n+1)
2

−
(

ns2 +2(n−1)
n2−n

)1/2

.
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Similarly we expand n2(λ (n)
n −m)2 to obtain the left-hand inequality in (2.2).

n2(λ (n)
n −m)2 = n(λ (n)

n −m)2 +ns2 + ∑
j �=k

(λ (n)
n −λ ( j)

n )(λ (n)
n −λ (k)

n ).

By the inequality (2.4) we have

n2(λ (n)
n −m)2 > n(λ (n)

n −m)2 +ns2 +2(n−1).

This completes the proof. �

THEOREM 3. Let n > 4 and μ (1)
n � · · · � μ (n)

n be the eigenvalues of the LCM
matrix [Sn] on Sn = {1,2, . . .n} . Then, we have

n(n+1)
2

− s(n−1)1/2 < μ (1)
n <

n(n+1)
2

−
(

s2 +32(n−1)
n−1

)1/2

(2.5)

and

n(n+1)
2

+
(

s2 +32(n−1)
n−1

)1/2

< μ (n)
n <

n(n+1)
2

+ s(n−1)1/2, (2.6)

where

s =
[

1
3n

n

∑
i=1

i2
(

N
(
Nμ ∗ (N +1)(2N +1)

)∗ ζ
)

(i)− 7n2 +12n+5
12

]1/2

. (2.7)

Proof. First we calculate m and s defined in Theorem 1 for the matrix [Sn] in
terms of arithmetical functions N , μ and ζ by a similar method as in [6]. Again
m = n(n+1)/2. Then, we have

s2 =
1
n

n

∑
i=1

n

∑
j=1

[i, j]2 − 1
n2

( n

∑
i=1

i

)2

=
1
n

[
2

n

∑
i=1

i

∑
j=1

[i, j]2 −
n

∑
i=1

i2
]
− (n+1)2

4

=
2
n

n

∑
i=1

i

∑
j=1

[i, j]2 − 7n2 +12n+5
12

.

Now we calculate the sum of squares of lcms.

i

∑
j=1

[i, j]2 =
i

∑
j=1

i2
j2

(i, j)2

= i2 ∑
d|i

1
d2

i

∑
j=1

( j,i)=d

j2

= i2 ∑
d|i

∑
k�i/d

(k,i/d)=1

k2.
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Here we have for every positive integer t ,

∑
k�t

(k,t)=1

k2 = ∑
k�t

k2δ ((k,t))

= ∑
k�t

k2 ∑
d|(k,t)

μ(d)

= ∑
d|t

μ(d) ∑
md�t

m2d2

= ∑
d|t

μ(d)d2 ∑
m�t/d

m2

= ∑
d|t

d2μ(d)
t/d(t/d +1)(2t/d+1)

6

=
t
6 ∑

d|t
dμ(d)(t/d +1)(2t/d+1)

=
[
N
6

(
(Nμ)∗ ((N +1)(2N +1))

)]
(t).

Thus, we obtain (2.7).

Again, by using the same method in the proof of Lemma 2.2 in [35], we expand

n2(m− μ (1)
n )2. Then, we have

n2(m− μ (1)
n )2 = ns2 +n(m− μ (1)

n )2 + ∑
j �=k

(μ ( j)
n − μ (1)

n )(μ (k)
n − μ (1)

n ).

Since μmax(A)−μmin(A) � 2maxi�= j |ai j| for an n×n Hermitian matrix A = (ai j) (see

[18]) and [n,n−1] = n(n−1) for every integer n > 1, we have μ (n)
n −μ (1)

n > 2n(n−1)
for all n � 2. By using Cauchy’s Interlacing Theorem (see Theorem 4.3.8 in [15]),

we have μ (n−1)
n − μ (1)

n > μ (3)
4 − μ (1)

4 for all n > 4. By a simple calculation in Maple

μ (3)
4

∼= −0,312 and μ (1)
4

∼= −8,843. Thus, we have

∑
j �=k

(μ ( j)
n − μ (1)

n )(μ (k)
n − μ (1)

n ) > 32n(n−1). (2.8)

Finally we have

μ (1)
n < m−

(
s2 +32(n−1)

n−1

)1/2

.

Similarly expanding n2(μ (n)
n −m)2 and using the inequality in (2.8) we obtain the left-

hand inequality in (2.6). �
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3. Comments and an open problem

In the study of eigenvalues of GCD, LCM and related matrices, some authors
[3, 11, 12, 13, 14] investigated asymptotic behavior of the eigenvalues of such matrices
defined on S = {x1,x2, . . . ,xn} and they gave lower bounds for the smallest eigenvalues
and upper bounds for the largest eigenvalues of such matrices. In addition, authors
of [17, 22, 23, 24, 25] obtained such bounds on some certain constants and particular
arithmetical functions by using matrix theoretic techniques. In this paper, we have
obtained not only a lower (an upper) bound but also an upper (a lower) bound for the
smallest (largest) eigenvalue of the GCD matrix as well as the LCM matrix defined on
Sn by using a different technique from above papers. Indeed, our bounds depend on
only particular arithmetical functions and the size n of our matrices.

In this context, Mattila and Haukkanen [23, 24] proved that every eigenvalue of
the matrix Aα ,β

n lies in the real interval
[
2min{1,nα+β}−Tn max{1,n2β} max

1�i�n
|Jα−β (i)|,Tn max{1,n2β} max

1�i�n
|Jα−β (i)|

]
.

Here tn and Tn are the smallest and the largest eigenvalues of EET , where E is the
n× n matrix (ei j) whose the i j−entry is 1 if j|i and 0 otherwise. These bounds
provided by above interval are valid for all values of α and β but it is natural that these
bounds are not good enough for particular values of α and β . For example, A1,0

n is the
GCD matrix (Sn) and above interval is

[
2−Tn · max

1�i�n
|ϕ(i)|,Tn · max

1�i�n
|ϕ(i)|].

For n = 20 the interval approximately is [−595.8214,597.8214] . On the other hand,
from Theorem 2 we have approximately -40.2114 and 7.8123 as a lower and an upper
bound for the smallest eigenvalue of (S20) and also we have approximately 13.1876
and 61.2114 as a lower and an upper bound for the largest eigenvalue of (S20) .

Moreover, so far the eigenvalues of the usual LCM matrices have not been studied
much in the literature. Contrary to the GCD matrix, the LCM matrix [S] defined on any
set S is positive definite if and only if |S|= 1. For example, the eigenvalues of [S2] are
λ1 = 3

2 − 1
2

√
17 and λ2 = 3

2 + 1
2

√
17. Thus by using Cauchy’s Interlacing Theorem and

Rayleigh-Ritz Theorem one can easily see that at least one eigenvalue of [S] = ([xi,x j])
is negative and at least one eigenvalue of [S] = ([xi,x j]) is positive for each n � 2.
From this observation we conclude our paper with an open problem.

PROBLEM. How many eigenvalues of [Sn] = ([i, j]) defined on Sn = {1,2, . . . ,n}
are positive? More generally, how many eigenvalues of [S] = ([xi,x j]) defined on S =
{x1,x2, . . . ,xn} are positive?
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