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Abstract. In the present paper we prove the Chebyshev inequality involving two isotonic linear
functionals. Namely, if A and B are isotonic linear functionals, then A(p f g)B(q)+A(p)B(q f g)
� A(p f )B(qg) + A(pg)B(q f ) , where p,q are non-negative weights and f ,g are similarly or-
dered functions such that the above-mentioned terms are well-defined. If functionals are equal,
i.e. A = B and if p = q , then the above inequality becomes the Chebyshev inequality involving
one isotonic linear functional: A(p)A(p f g) � A(p f )A(pg) in which we recognize a generaliza-
tion of the well-known classical integral and discrete Chebyshev inequalites as special cases.

We derive various properties of functionals related to the difference of the right-hand and
the left-hand sides of the above-mentioned inequalities. The most remarkable results are the
Grüss type inequalities for two functionals. Inequalities involving some fractional integral oper-
ators are also given.

1. Introduction

In this paper we point out how known results from theory of inequalities are ap-
plied to fractional integral operators and vice versa, how some results related to frac-
tional integral operators caused the discovery of new results in theory of inequalities.
Very recently several papers about Chebyshev and Grüss type inequalities for fractional
integral operators appeared, see [3], [4], [5], [6] [7], [10], [11], [14], [20], [21], [22],
[23], [24]. A careful introspection of those papers shows that some results in them are
simple consequences of known results and they can be easily obtained using inequali-
ties for isotonic linear functionals. On the other hand, known inequalites for fractional
integral operators give us a clue how the known Chebyshev and Grüss inequalities can
be generalized to inequalities with two isotonic linear functionals.

The paper is organized in the following way. The next section contains definition
and some interesting examples of isotonic linear functionals connected with fractional
integration. Also, Chebyshev type inequalities for one and two isotonic functionals are
proved and properties of related functionals are investigated. Each result is followed
by related consequences from theory of fractional integral operators. The third section
is devoted to Grüss type inequalities for two isotonic functionals and applications to
fractional integral operators.
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2. Inequalities involving isotonic linear functionals

DEFINITION 1. (Isotonic linear functional) Let E be a non-empty set and L be a
class of real-valued functions on E having the properties:

L1. If f ,g ∈ L , then (a f +bg) ∈ L for all a,b ∈ R ;
L2. The function 1 belongs to L . (1(t) = 1 for t ∈ E ).

A functional A : L → R is called an isotonic linear functional if
A1. A(a f +bg) = aA( f )+bA(g) for f ,g ∈ L , a,b ∈ R ;
A2. f ∈ L , f (t) � 0 on E implies A( f ) � 0.

A lot of results involving isotonic linear functionals are given in monograph [18].
The Jensen, the Hölder, the Minkowski and related inequalities involving isotonic linear
functionals are given in that book. But, there are no results about Chebyshev type
inequalities for isotonic linear functionals. Some results of that type can be find in
separated papers such as in [1], [2], [13], [17], [19]. In this paper we prove more
general results which consequences are results given in the above mentioned papers.

EXAMPLE 1. (i) Discrete functional. If E = {1,2, . . . ,n} and f : E → R , then
A( f ) = ∑n

i=1 f (i) is an isotonic linear functional.

(ii) Integral functional. If E = [a,b] ⊂ R and L = L(a,b) , then

A( f ) =
∫ b

a
f (t)dt.

If A1( f ) = 1
b−aA( f ) , then A1 is a normalized isotonic linear functional.

(iii) Fractional hypergeometric operator. If t > 0, α > max{0,−β − μ} , μ >
−1, β −1 < η < 0, then

A( f ) = Iα ,β ,η,μ
t { f (t)}

is an isotonic linear functional, ([3]), where Iα ,β ,η,μ
t { f (t)} is a fractional hypergeomet-

ric operator, [9], i.e.

Iα ,β ,η,μ
t { f (t)} =

t−α−β−2μ

Γ(α)

∫ t

0
σ μ(t −σ)α−1

2F1

(
α + β + μ ,−η ,α;1− σ

t

)
f (σ)dσ

where the function

2F1(a,b,c,t) =
∞

∑
n=0

(a)n(b)n

(c)n

tn

n!

is the Gaussian hypergeometric function and (a)n is the Pochhammer symbol: (a)n =
a(a+1) . . .(a+n−1) , (a)0 = 1.

(iv) There is a list of some particular cases of a fractional hypergeometric operator
which are of particular interest in the theory of fractional integration.
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The Saigo fractional integral operator
If t > 0, α > max{0,−β} , β − 1 < η < 0, then A( f ) = Iα ,β ,η

t { f (t)} is an iso-

tonic linear functional, where Iα ,β ,η
t { f (t)} is the Saigo fractional integral operator, i.e.

Iα ,β ,η{ f (t)}= Iα ,β ,η,0
t { f (t)}=

t−α−β

Γ(α)

∫ t

0
(t−σ)α−1

2 F1

(
α+β ,−η ,α;1−σ

t

)
f (σ)dσ .

The Erdélyi-Kober fractional integral operator
If t > 0, α > 0, −1 < η < 0, then

A( f ) = Iα ,η
t { f (t)}

is an isotonic linear functional, where Iα ,η
t { f (t)} is the Erdélyi-Kober fractional inte-

gral operator, i.e.

Iα ,η{ f (t)} = Iα ,0,η,0
t { f (t)} =

t−α

Γ(α)

∫ t

0
(t−σ)α−1

2F1

(
α,−η ,α;1− σ

t

)
f (σ)dσ .

The Riemann-Liouville fractional integral operator
One of the earliest defined and the most investigated fractional integral operator is

the so-called Riemann-Liouville operator defined as

Jα f (t) = Iα ,−α ,0,0
t { f (t)} =

1
Γ(α)

∫ t

0
(t −σ)α−1 f (σ)dσ , α > 0.

(v) The Hadamard fractional integral
The Hadamard fractional integral of order α > 0 of function f is defined as

HJα f (x) =
1

Γ(α)

∫ x

1

(
log

x
y

)α−1 f (y)dy
y

, 1 < x.

For a further studying of theory of fractional calculus we recommend book [15].

2.1. Chebyshev type inequalities for isotonic linear functionals

We say that functions f and g on E are similarly ordered (or synchronous) if for
each x,y ∈ E

( f (x)− f (y))(g(x)−g(y)) � 0.

If the reversed inequality holds, then we say that f and g are oppositely ordered or
asynchronous.

The next result is the Chebyshev inequality for two isotonic linear functionals.

THEOREM 1. (The Chebyshev inequality for two isotonic linear functionals) Let
A and B be two isotonic linear functionals on L and let p,q ∈ L be non-negative
functions. Let f ,g be two functions on E such that p f , pg, q f , qg, p f g, q f g ∈ L.

If f and g are similarly ordered functions, then

A(p f g)B(q)+A(p)B(q f g) � A(p f )B(qg)+A(pg)B(q f ). (2.1)

If f and g are oppositely ordered functions, then the reverse inequality in (2.1) holds.
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Proof. If f and g are similarly ordered functions, then

p(x)q(y)( f (x)− f (y))(g(x)−g(y)) � 0.

Acting on this inequality firstly by functional A with respect to x and using isotonicity
and linearity we get

q(y)A(p f g)−q(y)g(y)A(p f )−q(y) f (y)A(pg)+q(y) f (y)g(y)A(p) � 0.

Acting on the last inequality by B with respect to y we get wanted inequality. In a
similar manner we prove inequality for oppositely ordered functions. �

COROLLARY 1. Let A be an isotonic linear functional on L and let p ∈ L be a
non-negative function.

If f and g are similarly ordered functions on E such that p f , pg, p f g ∈ L, then

A(p)A(p f g) � A(p f )A(pg). (2.2)

If f and g are oppositely ordered functions, then the reverse inequality in (2.2) holds.

Proof. Putting A =B , p = q in (2.1) and divided by 2 we get inequality (2.2). �
Inequality (2.2) is the Chebyshev inequality for an isotonic positive functional,

[17].
Let A , B be fixed isotonic linear functionals and let f and g be two fixed functions

on E . Let us define a cone C as follows

C := {p ∈ L : p � 0, p f , pg, p f g ∈ L}.

We define functional R on cone C as

R(p) = A(p)B(p f g)+B(p)A(p f g)−A(p f )B(pg)−A(pg)B(p f ).

THEOREM 2. If f and g are similarly ordered functions, then functional R is
superadditive, non-negative and positive homogeneous of order 2. If f and g are op-
positely ordered functions, then functional R is subadditive, non-positive and positive
homogeneous of order 2.

Proof. Suppose that f and g are similarly ordered functions. If in (2.1) we put a
substitution p ↔ q , then we get

A(q f g)B(p)+A(q)B(p f g) � A(q f )B(pg)+A(qg)B(p f ). (2.3)

Adding (2.1) and (2.3) we get a symmetric form of the Chebyshev inequality

A(p f g)B(q)+A(p)B(q f g)+A(q f g)B(p)+A(q)B(p f g)
− (A(p f )B(qg)+A(pg)B(q f )+A(q f )B(pg)+A(qg)B(p f ))� 0.
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Let us consider a difference R(p+q)−R(p)−R(q) . In fact, it is equal to the left-hand
side of the previous inequality, so R(p + q)− R(p)−R(q) � 0. It means, that R is
superadditive. Non-negativity of R follows from (2.1) putting p = q . Homogenity is
also easy to check. If f and g are oppositely ordered functions the proof is similar. �

A non-negative superadditive and homogeneous of order 2 functional posses the
following boundedness property.

THEOREM 3. Let p,q ∈C be such that there exist numbers M,m such that M �
m > 0 and Mp � q � mp. If f and g are similarly ordered functions, then

M2R(p) � R(q) � m2R(p). (2.4)

Furthermore, if p � q, then
R(p) � R(q) (2.5)

i.e. functional R is non-decreasing.
If f and g are oppositely ordered functions, then inequalities (2.4) and (2.5) are

reversed.

Proof. Using homogenity, superadditivity of R and the fact that R(Mp− q) � 0
we have

M2R(p) = R(Mp) = R(Mp−q+q) � R(Mp−q)+R(q) � R(q).

The second inequality in (2.4) is proved in the similar manner. Result (2.5) follows
from (2.4) for M = 1. �

In particular, if A = B , then a functional 1
2R becomes the so-called Chebyshev

functional T ( f ,g, p) which is defined as

p �→ T ( f ,g, p) = A(p)A(p f g)−A(p f )A(pg).

Properties of the Chebyshev functional which follow from the above results are col-
lected in the following corollary.

COROLLARY 2. (i) The functional T is homogeneous of order 2 on C.
(ii) If f and g are similarly ordered functions, p∈C, then T is superadditive and

T ( f ,g, p) � 0. (2.6)

(ii) Let p,q∈C be such that there exist numbers M,m with properties M � m > 0
and Mp � q � mp. If f and g are similarly ordered functions, then

M2T ( f ,g, p) � T ( f ,g,q) � m2T ( f ,g, p). (2.7)

Furthermore, if p � q, then

T ( f ,g, p) � T ( f ,g,q) (2.8)

i.e. the functional T is non-decreasing.
If f and g are oppositely ordered functions, then inequalities (2.6), (2.7) and (2.8)

are reversed and T is subadditive.
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Also, we have results for a composite functional. Let

ηR(p) = A(p)B(p)Φ
(

R(p)
A(p)B(p)

)
.

THEOREM 4. Let f and g be similarly ordered functions on E , p ∈C such that
A(p), B(p) > 0 .

If Φ : [0,∞) → [0,∞) is a non-decreasing concave function, then the functional

ηR(p) = A(p)B(p)Φ
(

R(p)
A(p)B(p)

)
.

is superadditive.
Furthermore if M � m > 0 such that Mp � q � mp, then

M2ηR(p) � ηR(q) � m2ηR(p). (2.9)

In particular, if p � q, then
ηR(p) � ηR(q).

Proof. The mapping p �→ A(p)B(p) is superadditive since

A(p+q)B(p+q)−A(p)B(p)−A(q)B(q)= A(p)B(q)+A(q)B(p) > 0.

The superadditivity of ηR(p) follows from Thm 2.2, [17]. Here we prove it di-

rectly. Namely, denote v(p) = A(p)B(p) and γ = v(p)+v(q)
v(p+q) . Then we have

Φ
(

R(p+q)
v(p+q)

)
� Φ

(
R(p)+R(q)

v(p+q)

)
= Φ

(
v(p)

v(p+q)
R(p)
v(p)

+
v(q)

v(p+q)
R(q)
v(q)

)

= Φ
(

v(p)
v(p)+ v(q)

(
γ
R(p)
v(p)

)
+

v(q)
v(p)+ v(q)

(
γ
R(q)
v(q)

))

� v(p)
v(p)+ v(q)

Φ
(

γ
R(p)
v(p)

)
+

v(q)
v(p)+ v(q)

Φ
(

γ
R(q)
v(q)

)

=
v(p)

v(p)+ v(q)
Φ
(

γ
R(p)
v(p)

+ (1− γ) ·0
)

+
v(q)

v(p)+ v(q)
Φ
(

γ
R(q)
v(q)

+ (1− γ) ·0
)

� v(p)
v(p)+ v(q)

[
γΦ
(

R(p)
v(p)

)
+(1− γ)Φ(0)

]

+
v(q)

v(p)+ v(q)

[
γΦ
(

R(q)
v(q)

)
+(1− γ)Φ(0)

]

� v(p)
v(p)+ v(q)

γΦ
(

R(p)
v(p)

)
+

v(q)
v(p)+ v(q)

γΦ
(

R(q)
v(q)

)

=
v(p)

v(p+q)
Φ
(

R(p)
v(p)

)
+

v(q)
v(p+q)

Φ
(

R(q)
v(q)

)
.
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The first inequality holds because of non-decreasing of Φ and superadditivity of R .
The second and the third inequalities follow from the concavity of Φ and the fourth
inequality holds because of nonnegativity of function Φ . Multiplying with v(p+q) =
A(p+q)B(p+q) we have

A(p+q)B(p+q)Φ
(

R(p+q)
A(p+q)B(p+q)

)

� A(p)B(p)Φ
(

R(p)
A(p)B(p)

)
+A(q)B(q)Φ

(
R(q)

A(q)B(q)

)
. �

Consequence of the above theorem is that for a functional involving the Chebyshev
functional

ηT (p) = A(p)Φ
(

T ( f ,g, p)
A(p)

)
we have analogue results. Namely, if f ,g are similarly ordered and Φ is concave, then
ηT (p) is superadditive, has boundary property (2.9) and it is monotone.

Finally, let us prove the Chebyshev inequality for several functions.

THEOREM 5. Let A be an isotonic linear functional, p be a non-negative function
from L and let f1, f2, . . . , fn be non-negative increasing functions such that p f1, p f2, . . . ,
p fn , p f1 · . . . ·, fn ∈ L. Then

n

∏
i=1

A(p fi) � An−1(p)A

(
p

n

∏
i=1

fi

)
. (2.10)

Proof. If n = 2, then inequality (2.10) becomes inequality (2.2). Suppose that
(2.10) is valid for n functions. Then

An(p)A(p f1 . . . fn fn+1) = An−1(p)A(p)A(p( f1 . . . fn) fn+1)

� An−1(p)A(p f1 . . . fn)A(p fn+1) � A(p f1) · . . . ·A(p fn+1),

and by induction the statement is valid for all positive integer n . �

2.2. Applications on fractional integral operators

Let us consider a fractional hypergeometric operator.

THEOREM 6. Let f and g be two similarly ordered functions on [0,∞) , and let
p,q be two non-negative functions on [0,∞) . Then

Iα ,β ,η,μ
t {p(t) f (t)g(t)}Iγ,δ ,ζ ,ν

t {q(t)}+ Iα ,β ,η,μ
t {p(t)}Iγ,δ ,ζ ,ν

t {q(t) f (t)g(t)} (2.11)

� Iα ,β ,η,μ
t {p(t) f (t)}Iγ,δ ,ζ ,ν

t {q(t)g(t)}+ Iα ,β ,η,μ
t {p(t)g(t)}Iγ,δ ,ζ ,ν

t {q(t) f (t)}
for t > 0 , α > max{0,−β −μ} , γ > max{0,−δ −ν} , μ , ν >−1 , β , δ < 1 , β −1 <
η < 0 , δ −1 < ζ < 0 .
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Proof. Putting A( f ) = Iα ,β ,η,μ
t { f (t)} and B( f ) = Iγ,δ ,ζ ,ν

t { f (t)} in inequality
(2.1) we get inequality (2.11). �

REMARK 1. If p = q = 1 , then (see [3])

A(1) = Iα ,β ,η,μ
t {1} =

Γ(μ +1)Γ(1−β + η)
Γ(1−β )Γ(1+ μ + α + η)

t−β−μ

and

B(1) = Iγ,δ ,ζ ,ν
t {1} =

Γ(ν +1)Γ(1− δ + ζ )
Γ(1− δ )Γ(1+ ν + γ + ζ )

t−δ−ν .

So, inequality (2.11) becomes

Γ(μ +1)Γ(1−β + η)
Γ(1−β )Γ(1+ μ + α + η)

t−β−μIγ,δ ,ζ ,ν
t { f (t)g(t)} (2.12)

+
Γ(ν +1)Γ(1− δ + ζ )

Γ(1− δ )Γ(1+ ν + γ + ζ )
t−δ−νIα ,β ,η,μ

t { f (t)g(t)}

� Iα ,β ,η,μ
t { f (t)}Iγ,δ ,ζ ,ν

t {g(t)}+ Iα ,β ,η,μ
t {g(t)}Iγ,δ ,ζ ,ν

t { f (t)}.

This result is given in paper [3] as Theorem 6. If A = B , i.e. if α = γ , β = δ , η = ζ
and μ = ν , then (2.12) becomes inequality given in [3, Theorem 5]. In the same paper
[3] in Theorem 9 the following inequality occurs:

Iα ,β ,η,μ
t {

n

∏
i=1

fi(t)} �
(

Γ(1−β )Γ(1+ μ + α + η)tβ+μ

Γ(μ +1)Γ(1−β + η)

)n−1 n

∏
i=1

Iα ,β ,η,μ
t { fi(t)}

which is, in fact, inequality (2.10) when p = 1 .
If in Theorem 6 we put μ = η = 0, then we get result for the Saigo integral

operator. Case p = q = 1 for the Saigo operator is given in [20, Theorem 2], while
the case p = q = 1 with A = B is given in [20, Theorem 1]. In the same paper [20],
inequalites for q -fractional operators are given.

REMARK 2. Putting A( f ) = Jα f (t) , B( f ) = Jβ f (t) and p = q , i.e. A and B are
the Riemann-Liouville fractional integrals, then the Chebyshev inequality from Theo-
rem 1 has a form:

Jα p(t)Jβ p f g(t)+ Jα p f g(t)Jβ p(t) � Jα p f (t)Jβ pg(t)+ Jα pg(t)Jβ p f (t).

This inequality is independetly proved in [10, Theorem 5]. In the same paper in The-
orem 2, author proved the Chebyshev inequality for the Riemann-Liouville fractional
integral operator if α = β , while the case p = q = 1 is given as Theorem 3.1 in [4].
In the same paper the Chebyshev inequality involving the Riemann-Liouville fractional
integral operator for n functions is given.
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REMARK 3. In this remark we mention results involving the Hadamard fractional
integral operators. In paper [5] the following result occurs:

Let f and g be two synchronous functions on [0,∞) and p,q : [0,∞) → [0,∞) .
Then for all x > 1 , α > 0 we have

HJα p(x)HJαq f g(x)+H Jαq(x)HJα p f g(x)�H Jα p f (x)HJαqg(x)+H Jαq f (x)HJα pg(x).

It is just inequality (2.1) for A( f ) = B( f ) =H Jα f (x) . Non-weighted result i.e. for case
p = q = 1 , is given in paper [6] together with a non-weighted result for two operators
HJα f (x) and HJβ f (x) and with the Chebyshev inequality for n functions.

We have to point out that in the all above-mentioned papers results for differents
kinds of fractional integral operators are obtained “ab ovo”. Namely, authors begin with
inequality ( f (x)− f (y))(g(x)−g(y)) � 0, multiply with appropriate weights, integrate
with respect to the first and to the second variable and get the Chebyshev type inequality.
Now, after proving general results (2.1), (2.2) and (2.10) we see that all the above-
mentioned results about fractional integral operators are simple consequences of our
basic results for one or two isotonic linear functionals.

3. Grüss type inequalities for two isotonic functionals

Estimations of the functional T ( f ,g, p) are usually called Grüss type inequalities
in honour to the result of G. Grüss who gave bounds for difference involving integrals,
[18, p. 206]. The Grüss inequality for normalized isotonic linear functionals were ob-
tained by Andrica and Badea in [1]. Here we write their result slightly modified using
non-normalized isotonic linear functional.

THEOREM 7. If p∈ L and f and g are functions such that p f , pg, p f g∈ L and

m � f � M, n � g � N

where m, M, n, N are real numbers, then for any isotonic linear functional A one has
the following inequality

|T ( f ,g, p)| � 1
4
(M−m)(N−n)A2(p), (3.1)

where T ( f ,g, p) = A(p)A(p f g)−A(p f )A(pg) . The constant 1
4 is the best possible.

In [2] (see also [19]) the following Grüss inequality is given:

T ( f ,g, p) �
√

T ( f , f , p)
√

T (g,g, p). (3.2)

In the following text we prove the Grüss type inequalities which involves two
linear functionals.

Let us consider a functional D defined as follows: let A and B be isotonic function-
als on L1 and L2 respectively, p : E1 → R and q : E2 → R be non-negative functions
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from L1 and L2 respectively. If h : E1 ×E2 → R , then we consider related function
hx defined as: hx : E2 → R , hx(y) = q(y)h(x,y) where x is a fixed element from E1 .
If hx ∈ L2 , acting by B on hx with respect on y we get a function B(hx) depending
on variable x . Then, we multiply it with p(x) and if it belongs to L1 , act by A on
p(x)B(hx) with respect on x . The gotten result is a value of functional D on function
h , i.e. D(h) = A(pB(hx)) . A functional D is isotonic and linear.

THEOREM 8. (The Grüss inequality for two functionals) Let A and B be isotonic
linear functionals on L, p, q be non-negative functions from L. If f ,g are functions
such that p f , q f , pg, qg, p f g, q f g ∈ L, then

T (A,B, p,q, f ,g)2 � T (A,B, p,q, f , f )T (A,B, p,q,g,g), (3.3)

where

T (A,B, p,q, f ,g) = B(q)A(p f g)+A(p)B(q f g)−A(p f )B(qg)−A(pg)B(q f ).

Proof. Let us consider a function h defined as

h(x,y) = ( f (x)− f (y))(g(x)−g(y)).

Multiplying with q(y) , acting by B with respect on y , multiplying with p(x) and acting
on it by A with respect on x we get

D(h) = A(p)B(q f g)+A(p f g)B(q)−A(p f )B(qg)−A(q f )B(pg).

Using the Cauchy inequality for an isotonic linear functional (see [18, p. 113]) we get

D2(h) � D(h2
1) ·D(h2

2),

where h1(x,y) = f (x)− f (y) and h2(x,y) = g(x)−g(y) . Since

D(h2
1) = A(p)B(q f 2)+A(p f 2)B(q)−2A(p f )B(q f )

and
D(h2

2) = A(p)B(qg2)+A(pg2)B(q)−2A(pg)B(qg)

we obtain inequality (3.3). �

REMARK 4. If A = B and p = q , then inequality (3.3) becomes inequality (3.2).
So, the previous theorem gives us a generalization of the Grüss inequality (3.2) to the
Grüss type inequality involving two functionals.

REMARK 5. If we use notation D(h) from the proof of the previous theorem, we
can get a generalization of Theorem 3.2 from [12]. Namely, if f and g are differen-
tiable on [0,∞) , f ′ ∈ Lr[0,∞) , g′ ∈ Lr′ [0,∞) , r > 1, 1

r + 1
r′ = 1, then

|D(h)| � ‖ f ′‖r‖g′‖r′D(h̃)
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where h̃(x,y) = |x− y| . Indeed

h(x,y) =
∫ y

x
f ′(s)ds

∫ y

x
g′(t)dt

and using the Hölder inequality we have

|h(x,y)| � |x− y|
(∫ y

x
| f ′(s)|r ds

) 1
r
(∫ y

x
|g′(t)|r′ dt

) 1
r′

.

Since
h(x,y) � |h(x,y)| � ‖ f ′‖r‖g′‖r′ |x− y|= ‖ f ′‖r‖g′‖r′ h̃(x,y)

and D is isotonic we get
|D(h)| � D(h̃)‖ f ′‖r‖g′‖r′ ,

which in the case p = q , A = Jα , B = Jβ gives the result of Theorem 3.2 from [12].
Using the Cauchy inequality

D2(h̃) � D((x− y)2) ·D(1)

=
(
A(px2)B(q)−2A(px)B(qy)+B(qy2)A(p)

)
·D(1)

we write that ∣∣∣B(q)A(p f g)+A(p)B(q f g)−A(p f )B(qg)−A(q f )B(pg)
∣∣∣

�
√(

A(px2)B(q)−2A(px)B(qy)+B(qy2)A(p)
)
·A(p)B(q)‖ f ′‖r‖g′‖r′ .

Let us look at the case p = q = 1 , A = Jα , B = Jβ and try to estimate D(h̃) . If
f (x) = xk then

Jα f (t) =
tα+kΓ(k+1)
Γ(α + k+1)

and we have

D((x− y)2) = 2tα+β+2
(

1
Γ(α +3)Γ(β +1)

− 1
Γ(α +2)Γ(β +2)

+
1

Γ(α +1)Γ(β +3)

)

= 2tα+β+2 1
Γ(α +3)Γ(β +3)

(α2 + β 2 + β + α −αβ ).

When α = β then

D2(h̃) � 2t2α+2 1
Γ2(α +3)

(α2 +2α)
t2α

Γ2(α +1)
=

2t4α+2(α2 +2α)
Γ2(α +3)Γ2(α +1)

.

In this case Theorem 3.1 from [12] says that

∣∣∣Jα(1)Jα( f g)− Jα( f )Jα (g)
∣∣∣� t2α+1

2Γ2(α +1)
‖ f ′‖r‖g′‖r′ .
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Our inequality is∣∣∣Jα(1)Jα( f g)− Jα( f )Jα (g)
∣∣∣� t2α+1

√
2(α2 +2α)

2Γ(α +3)Γ(α +1)
‖ f ′‖r‖g′‖r′ .

For α > 0 one can show that√
2(α2 +2α)

2Γ(α +3)Γ(α +1)
� 1

2Γ2(α +1)

which is equivalent to α3 +4α2 +3α +2 > 0.
So we see that in this case (p = 1) our estimate is better than one from Theorem

3.1 from [12].

In the following theorem we establish a generalization of inequality (3.1) using
two isotonic linear functionals. Furthermore, we replace the constants which appeared
as bounds of functions f and g with functions. Firstly we prove the following useful
identity.

LEMMA 1. Let A, B, p, q, f satisfy assumptions of Theorem 8. Let φ1, φ2 ∈ L
be functions such that all terms in the below identity exist. Then

A(p)B(q f 2)+A(p f 2)B(q)−2A(p f )B(q f ) (3.4)

= TA,B( f ,φ1,φ2)−A(p)B
(
q(φ2− f )( f −φ1)

)
−B(q)A

(
p(φ2− f )( f −φ1)

)
,

where

TA,B( f ,φ1,φ2) =
(
A(pφ2)−A(p f )

)(
B(q f )−B(qφ1)

)
+
(
B(qφ2)−B(q f )

)(
A(p f )−A(pφ1)

)
+A(pφ2)B(qφ1)−A(pφ2)B(q f )−A(p f )B(qφ1)+A(pφ1)B(qφ2)
−A(p f )B(qφ2)−A(pφ1)B(q f )+A(p)B(qφ2 f )−A(p)B(qφ1φ2)
+A(p)B(qφ1 f )+A(pφ2 f )B(q)−A(pφ1φ2)B(q)+A(pφ1 f )B(q).

Furthermore, if
φ1(x) � f (x) � φ2(x) for any x ∈ E,

then

A(p)B(q f 2)+A(p f 2)B(q)−2A(p f )B(q f ) � TA,B( f ,φ1,φ2). (3.5)

Proof. For any x,y ∈ E we have(
φ2(x)− f (x)

)(
f (y)−φ1(y)

)
+
(

φ2(y)− f (y)
)(

f (x)−φ1(x)
)

−
(

φ2(y)− f (y)
)(

f (y)−φ1(y)
)
−
(

φ2(x)− f (x)
)(

f (x)−φ1(x)
)

= f 2(x)+ f 2(y)−2 f (x) f (y)
+ φ2(x) f (y)+ φ1(y) f (x)−φ1(y)φ2(x)+ φ2(y) f (x)+ φ1(x) f (y)−φ1(x)φ2(y)
−φ2(y) f (y)−φ1(y) f (y)+ φ1(y)φ2(y)−φ2(x) f (x)+ φ1(x)φ2(x)−φ1(x) f (x).
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Expressing the sum f 2(x)+ f 2(y)−2 f (x) f (y) from the above identity, then multiply-
ing it with q(y) , acting by B with respect on y , multiplying with p(x) and acting on it
by A with respect on x we get the statement (3.4).

If φ1(x) � f (x) � φ2(x) , then(
φ2(x)− f (x)

)(
f (x)−φ1(x)

)
� 0

and since A and B are isotonic we obtain inequality (3.5). �

REMARK 6. If φ1 and φ2 are constants, i.e. φ1(x) = m and φ2(x) = M for all
x ∈ E , then the identity from Lemma 1 becomes

A(p)B(q f 2)+B(q)A(p f 2)−2A(p f )B(q f ) (3.6)

=
(
MA(p)−A(p f )

)(
B(q f )−mB(q)

)
+
(
MB(q)−B(q f )

)(
A(p f )−mA(p)

)
−A(p)B

(
q(M ·1− f )( f −m ·1)

)
−B(q)A

(
p(M ·1− f )( f −m ·1)

)
.

If m � f (x) � M , then inequality (3.5) becomes

A(p)B(q f 2)+B(q)A(p f 2)−2A(p f )B(q f )

�
(
MA(p)−A(p f )

)(
B(q f )−mB(q)

)
+
(
MB(q)−B(q f )

)(
A(p f )−mA(p)

)
.

If A = B , p = q , and φ1(x) = m and φ2(x) = M for all x ∈ E , then identity from
Lemma 1 becomes

A(p)A(p f 2)−A2(p f ) (3.7)

=
(
MA(p)−A(p f )

)(
A(p f )−mA(p)

)
−A(p)A

(
p(M ·1− f )( f −m ·1)

)
.

This result appears in the proof of Theorem 1 from paper [1]. Furthermore, if m �
f (x) � M , then inequality (3.5) becomes

A(p)A(p f 2)−A2(p f ) �
(
MA(p)−A(p f )

)(
A(p f )−mA(p)

)
,

see also [16]. Using the well-known AG inequality we get(
MA(p)−A(p f )

)(
A(p f )−mA(p)

)

�
(

(MA(p)−A(p f ))+ (A(p f )−mA(p))
2

)2

=
(

M−m
2

A(p)
)2

.

So, we have

A(p)A(p f 2)−A2(p f ) �
(

M−m
2

A(p)
)2

.
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THEOREM 9. Let A and B be isotonic linear functionals on L, p, q be non-
negative functions from L. Let f ,g, φ1, φ2, ψ1, ψ2 be functions such that

φ1(x) � f (x) � φ2(x), ψ1(x) � g(x) � ψ2(x), x ∈ E.

Then

T (A,B, p,q, f ,g)2 � TA,B( f ,φ1,φ2)TA,B(g,ψ1,ψ2) (3.8)

whenever all terms in the above inequality exist.
Particularly, if φ1(x) = m, φ2(x) = M, ψ1(x) = n, ψ2(x) = N for all x ∈ E , then

T (A,B, p,q, f ,g)2 (3.9)

� 1
16

{(
MA(p)−A(p f )+B(q f )−mB(q)

)2
+
(
MB(q)−B(q f )+A(p f )−mA(p)

)2}
×
{(

NA(p)−A(pg)+B(qg)−nB(q)
)2

+
(
NB(q)−B(qg)+A(pg)−nA(p)

)2}
.

Furthermore, if A = B, p = q, φ1(x) = m, φ2(x) = M, ψ1(x) = n, ψ2(x) = N , then

|A(p)A(p f g)−A(p f )A(pg)|� 1
4
(M−m)(N−n)A2(p), (3.10)

where T (A,B, p,q, f ,g) and TA,B( f ,φ1,φ2) are defined in Theorem 8 and Lemma 1.

Proof. Using inequalites from Theorem8 and Lemma 1 we obtain (3.8). If φ1(x)=
m , φ2(x) = M , ψ1(x) = n , ψ2(x) = N , then

TA,B( f ,φ1,φ2)

=
(
MA(p)−A(p f )

)(
B(q f )−mB(q)

)
+
(
MB(q)−B(q f )

)(
A(p f )−mA(p)

)
� 1

4

(
MA(p)−A(p f )+B(q f )−mB(q)

)2
+

1
4

(
MB(q)−B(q f )+A(p f )−mA(p)

)2

where in the last inequality the AG inequality is used. Inequality (3.9) follows from the
above result and similar result for TA,B(g,ψ1,ψ2) . If, furthermore, A = B , p = q , then
the last inequality collapsed to the following

TA,A( f ,φ1,φ2) = TA,A( f ,m,M) � 1
4

(
MA(p)−mA(p)

)2
+

1
4

(
MA(p)−mA(p)

)2

=
1
2
(M−m)2A2(p).

Together with a similar result for function g and equality

T (A,A, p, p, f ,g) = 2(A(p)A(p f g)−A(p f )A(pg))

we get inequality (3.10). �
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REMARK 7. If φ1, φ2, ψ1, ψ2 are constants and A = B , then inequality (3.8)
becomes (3.2). Estimation (3.10) is, in fact, the Grüss inequality for isotonic linear
functional described in Theorem 7. So, Theorem 9 contains Grüss type inequalities for
two isotonic linear functionals and two functions with variable bounds and it is a gen-
eralization of known results of Grüss type involving one functional and two functions
with constant bounds.

3.1. Applications in fractional integration

In recent literature we find several examples of Grüss type inequalites for the
Hadamard integral operators. For instance, if A = B =H Jα and p = q = 1 , then re-
sults (3.7) and (3.10) are given in [8], while inequality (3.8) for that case is given in
[22]. Inequality (3.3) for two Hadamard integral operators A =H Jα and B =H Jβ with
weights p = q = 1 is given in [8].

Results involving the Riemann-Liouville fractional integrals can be found in [11]
and [23]. Namely, if A = B = Jα and p = q = 1 then results (3.7) and (3.10) are given
in [11], while inequality (3.8) for that case is given in [23]. Results (3.3) and (3.6) for
two Riemann-Liouville fractional integrals A = Jα and B = Jβ with weights p = q = 1
are given in [11].

Results involving the Saigo fractional integrals can be found in [7] and [14] and
these are results for only one functional. Similar situation is valid for generalized hy-
pergeometric fractional integral. Only a case for the same functionals A = B = Iα ,β ,η,μ

with weights p = q = 1 is considered in [24]. So, here we give a general result for two
different functionals Iα ,β ,η,μ

t and Iγ,δ ,ζ ,ν
t with weights p = q = 1 .

COROLLARY 3. Let assumptions of Theorem 6 hold. Then[
Γ(μ +1)Γ(1−β + η)

Γ(1−β )Γ(1+ μ + α + η)
t−β−μIγ,δ ,ζ ,ν

t { f (t)g(t)}

+
Γ(ν +1)Γ(1− δ + ζ )

Γ(1− δ )Γ(1+ ν + γ + ζ )
t−δ−ν Iα ,β ,η,μ

t { f (t)g(t)}

− Iα ,β ,η,μ
t { f (t)}Iγ,δ ,ζ ,ν

t {g(t)}− Iα ,β ,η,μ
t {g(t)}Iγ,δ ,ζ ,ν

t { f (t)}
]2

�
[

Γ(μ +1)Γ(1−β + η)
Γ(1−β )Γ(1+ μ + α + η)

t−β−μIγ,δ ,ζ ,ν
t { f 2(t)}

+
Γ(ν +1)Γ(1− δ + ζ )

Γ(1− δ )Γ(1+ ν + γ + ζ )
t−δ−ν Iα ,β ,η,μ

t { f 2(t)}−2Iα ,β ,η,μ
t { f (t)}Iγ,δ ,ζ ,ν

t { f (t)}
]

×
[

Γ(μ +1)Γ(1−β + η)
Γ(1−β )Γ(1+ μ + α + η)

t−β−μIγ,δ ,ζ ,ν
t {g2(t)}

+
Γ(ν +1)Γ(1− δ + ζ )

Γ(1− δ )Γ(1+ ν + γ + ζ )
t−δ−ν Iα ,β ,η,μ

t {g2(t)}−2Iα ,β ,η,μ
t {g(t)}Iγ,δ ,ζ ,ν

t {g(t)}
]
.

And finally, let us mention paper [21] where inequalities (3.8) and (3.10) for one
Riemann-Liouville q -integral are occured.
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[17] L. NIKOLOVA, S. VAROŠANEC,Properties of mappings generated with inequalities for isotonic linear
functionals, Proceedings of Constructive Theory of Functions 2013, Sozopol, Bulgaria, Prof. Marin
Drinov Academic Publishing House, Sofia, 2014, pp. 199–215.
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[19] J. PEČARIĆ, B. TEPEŠ,On a Grüss type inequality for isotonic linear functionals I, Nonlinear Studies,
12 (2) (2005), 119–125.

[20] S. D. PUROHIT AND R. K. RAINA, Chebyshev type inequalities for the Saigo fractional integrals and
their q -analogues, Journal of Mathematical Inequalities 7 (2) (2013), 239–249.

[21] A. SECER, S. D. PUROHIT, K. A. SELVAKUMARAN, M. BAYRAM, A generalized q-Grüss inequal-
ity involving the Riemann-Liouville fractional q -integrals, Journal of Applied Mathematics, Volume
2014, Article ID 914320.



CHEBYSHEV INEQUALITY FOR TWO FUNCTIONALS 143

[22] W. SUDSUTAD, S. K. NTOUYAS, AND J. TARIBOON,Fractional integral inequalities via Hadamard’s
fractional integral, Abstract and Applied Analysis, Volume 2014 (2014), Article ID 563096.

[23] J. TARIBOON, S. K. NTOUYAS, W. SUDSUTAD, Some new Riemann-Liouville fractional integral
inequalities, International Journal Of Mathematics and Mathematics Sciences, Volumen 2014, Article
ID 869434.

[24] G. WANG, P. AGARWAL, M. CHAND, Certain Grüss type inequalites involving the generalized frac-
tional integral operator, Journal of Inequalities and Applications, 2014, 2014:147.

(Received January 12, 2015) Ludmila Nikolova
Department of Mathematics and Informatics

Sofia University
Sofia, Bulgaria

e-mail: ludmilan@fmi.uni-sofia.bg

Sanja Varošanec
Department of Mathematics, University of Zagreb

Zagreb, Croatia
e-mail: varosans@math.hr

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


