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BOAS-TYPE INEQUALITY FOR 3-CONVEX FUNCTIONS AT A POINT

Josip PEéARIé, DORA POKAZ AND MARJAN PRALJAK

(Communicated by C. P. Niculescu)

Abstract. Starting from a very general form of Boas-type inequality from [5] we get Boas-type
inequality for 3-convex functions at a point. For special A -balanced sets, weight functions and
measures we derive various examples.

1. Introduction

In [2], R. P. Boas proved that the inequality

/qu><%/()wf(mdm(t)) < [Couen S W

holds for all continuous convex functions @: [0,o0) — R, measurable non—negative
functions f: Ry — R, and non—decreasing bounded functions m: [0,) — R, where
M =m(ee) —m(0) > 0 and the inner integral on the left-hand side of (1) is the Lebesgue—
Stieltjes integral with respect to m. This inequality represent one direction of gener-
alization of the famous Hardy inequality. After its author, relation (1) was named the
Boas inequality. In the case of a concave function @, (1) holds with the sign of inequal-
ity reversed.

S. Kaijser et al. [6] (see also the paper [7] of N. Levinson) established the so-called
general Hardy-Knopp-type inequality

[o(s [ roa) %< [“orm . @

for positive measurable functions f: R, — R, and a real convex function ® on R} .
Later on, A. Cizmesija et al. [4] generalized relation (2) to the so-called strengthened
Hardy-Knopp-type inequality by inserting a weight function and integrating over in-
tervals of non-negative real numbers. Further, in [3] A. Ciirgce§ija et al. considered a

general Borel measure A on R, such that L=A(Ry) = / dA(t) < oo, and proved
0
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that for a convex function @ on an interval / C R and a weight function u on R the
inequality

dx

X

oo dx 1 (=
/0 u@®Afx) — < 7 /0 w(x)®@(f(x))

holds for all measurable functions f: R — R such that f(x) € I forall x € Ry, where

1 00 00
Af(x) = Z/ F(x)dA (1) and w() :/ w(2)arm <, xR,
0 0
Observe that a non-decreasing and bounded function m: [0,00) — R such that
M = m(es) —m(0) > 0 induces a finite Borel measure A on R, and vice versa. For
such a function and measure, related Lebesgue and Lebesgue-Stieltjes integrals are
equivalent. Thus, all the above results can be stated for Af(x) defined by

AF =7 [ reant), veR.,

so they refine and generalize inequality (1).

Another generalization of (1) was given by D. Luor [8] in a setting with ¢ -finite
Borel measures g and v on a topological space X and a Borel probability measure 4
on R, . The weighted version of that Luor’s result is obtained in [5] in a setting with a
topological space and o -finite Borel measures as following.

Let A be a finite Borel measure on R,. By supp A we denote its support, that is,
the set of all # € Ry such that A(N;) > 0 holds for all open neighbourhoods N; of .
Hence, .

L— d/l(t):/ dA(1) = A(R.) < oo. 3)
supp 4 0
On the other hand, let X be a topological space equipped with a continuous scalar
multiplication (a,x) — ax € X, for a € R}, x € X, such that

Ix=x, a(bx)=(ab)x, x€X, a,beR,.

Further, let the Borel set  C X be A-balanced, that is, 1Q = {tx: x € Q} C Q, for
all 7 € supp A. For a Borel measurable function f: Q — R, we define its Hardy—
Littlewood average Af as

Af(x) = % /0 T %) dA(), xeQ. )

Finally, suppose that ¢ and v are o —finite Borel measures on X . For ¢t > 0 and
a Borel set S C X we define

1
1 (S) = (—S> ~ )
Obviously, u; is a o-finite Borel measure on X for each € R, . Throughout this
paper, we suppose that the measures p; are absolutely continuous with respect to the

d
measure V, that is, y, < v for each ¢ € supp A. As usual, by d—ll‘L/t we denote the

related Radon—Nikodym derivative.
Thus, the following weighted general Boas-type inequality is given in [5].
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THEOREM 1. Let A be a finite Borel measure on R, and L be defined by (3).
Let 1 and v be o -finite Borel measures on a topological space X, |, be defined by
(5) and such that [, < v forall t € supp A. Further, let Q C X be a A-balanced set
and u be a non-negative function on X, such that

v(X):/Omu<1X) ‘fl‘:’( VaA() <o, XEQ. ©)

Suppose ®: I — R is a non-negative convex function on an interval  CR. If f: Q —
R is a Borel measurable function, such that f(x) € I forall x € Q, and Af is defined
by (4), then Af(x) €1 for all x € Q and the inequality

[ utos)dut < 7 [ veirx)dve @

holds. For a non-positive concave function @, the sign of inequality in (7) is reversed.

Notice that the condition on non-negativity of the convex function @ in Theorem
1 can be omitted only in a particular setting with cones in X. More precisely, the
following corollary holds.

COROLLARY 1. Ifin Theorem 1 we have tQ = Q for A-a.e. t € supp A, then (7)
holds for all convex functions ® on an interval I C R. In that case, for all concave
functions @ relation (7) holds with the sign of inequality reversed.

We will make further generalization based on the inequality (7). Instead of convex
functions we will introduce a different class of functions, following the idea of I. A
Baloch et al. [1] and J. Pecari¢ et al. [10].

This paper is organized in following way: after the Introduction, in Section 2 we
define class of functions #{°(I) and prove the Boas inequality of Levinson type for
such functions. We point out the dual class of functions and corresponding dual in-
equality. We discuss 3-convexity at the point and give several one-dimensional results.
In Section 3 we obtain multidimensional results and examples of Levinson type con-
cerning balls in R" centred at the origin and their dual sets.

CONVENTIONS. Aninterval I in R is any convex subset of R, while by Int/ we
denote its interior. By R we denote the set of all positive real numbers i.e. Ry =
(0,00). A kth order divided difference of a function f : I — R, where I is an interval
in R, at distinct points xo,...,x; € I is defined recursively by

x]f = f(x), for i=0,....k

and
[xl PR 7xk]f - [)C()7 ... 7xk—1]f
Xk — X0 '

[x0, .-, xi]f =

A function f: 1 — R is called k-convex if [xg,...,x¢]f = O for all choices of &+ 1
distinct points xg,...,x; € I. If the kth derivative f () of a k-convex function exists,
then £ >0, but £¥) may not exist (for properties of divided differences and k-convex
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functions see [11]). For R > 0 we denote by B(R) aballin R” centred at the origin and
of radius R, that is, B(R) = {x € R": |x| < R}, where |x| denotes the Euclidean norm
of x € R". By its complementary set we mean the set R”\ B(R) = {x € R": |x| > R}.

2. Main results

In order to make generalization of the inequality (7) in Levinson’s sense we will
replace convex functions with the following class of functions.

DEFINITION 1. Let f:1 — R, where [ is an interval in R, be a function and ¢ €
Int/. We say that f € #°(I) (resp. f € J#,°(I)) if there exists a constant & such that
the function F(x) = f(x) — $x? is concave (resp. convex) on I (—e,c] and convex
(resp. concave) on I N |[c,eo).

REMARK 1. If f € % (a,b), i=1,2, and f"(c) exists, then f”(c) = a. Let
f € #(a,b). Due to the concavity and convexity of F for every distinct points x; €
(a,c] and y; € [c,b), j=1,2,3, we have

[e1,%2,03]F = [x1,%2,%3]f — & < O < [y1,32,¥3]f — & = [y1,2,y3] F.
Therefore, if f”(c) and fY(c) exist, letting x; /" ¢ and y; \, ¢, we get
fe) Sa< fi(e).

Similary, for f € ¢ (a,b), we have f7(c) < a < f"(c). O

REMARK 2. Function f: I — R is 3-convex (resp. 3-concave) if and only if f €
JE(I) (resp. f € (1)) for every ¢ € Int/. In other words, a function is 3-convex

on an interval if and only if it is 3-convex at every point of its interior, so the property
from the definition of .Z°(I) can be described as *“3-convexity at point ¢”.

For the main result we need another set of measures, sets and functions that also
satisfying Theorem1. So, let A be a finite Borel measure on R such that

i= /0 dA(r) = /Suppidx(z) < oo, ®)

Let QC X bea 2 -balanced Borel set, let measures {1, (I, € R, and V be o-

finite Borel measures on X such that fi;(S) = 2 (+S), for r € Ry and S C X Borel set
and [, K V, t € suppi . Finally, let i be a non-negative function on X, such that

9(x) = /O i Gx> ‘ffg (X)dA (1) < o0, x € Q. ©)

For a Borel measurable function g: Q — R the Hardy-Littlewood average Ag of
g defined by

Ag(x) = % /O o)A (), x € Q.
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TH}EOREM 2. Let X, Q, A, W, v, Wy, L, u, v be as in Theorem 1. Furthermore,
let Q, A, o, v, [, L, 4, v be another set of measures and functions that satisfy
Theorem 1. If f: Q — IN(—oo,c] and g:  — IN|c,) are measurable functions

satisfying
1
et arm)Pdut) — [ v, 0av(x)
= [LaAe 2t - 1 [ 902 Mav(x) (10

then for every ® € J#\°(I) the following inequality holds

JL a0~ 5 [ 1x0P(e(x)d7x)

< [ u@aro)due) 1 [ v m)dv(). (11

-7/
If ® € (1) in the above setting, then (11) holds with the sign of inequality reversed.

Proof. From Definition 1 there exists a constant & such that F(x) = ®(x) — $x?
is concave on N (—oo,c] so we can apply Theorem 1 on the function F and get

| P @re)duix) 7 [ veF(F0)av(x) >0

-7/
By the definition of the function F we have

[ utx) [@(ar(0) - S (ar()] dux) () [@(/(x) = 3/ dv(x) > 0.

—— |
Lo
Since integral is a linear functional we can write

1
| u@rm)due -7 [ vxo(rx)dvi
(04

> | [uwareraue -1 [ormaw]. a2

For the same constant ¢, the second part of Definition 1 gives us a convex function
F(x) = ®(x) — $x? on IN[c,es). Now, from Theorem 1 we have

A L[ N

ax) — 5 [ 9F(g(x)dv(x) <0.

LJG

Similarly as in the first part of the proof, we obtain
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and also
LA~ 5 [ HxP(e(x)d7x)

< % [/Q a(x)(Ag(x))*dfu(x) — %/ﬁﬁ(X)gz(X)d\?(X)} - (13)

Due to assumption (10) the right hand sides of inequalities (12) and (13) are equal.
Hence, we obtain (11). In the case ® € J#5(I), the function F(x) = ®(x) — $x? is
convex on /N (—oe,c] and concave on 1N |c,e). Following the idea of the first part of
the proof we get our statement. [

Similarly as in [9] we analize o from the Definition 1.

REMARK 3. The assumption of equality (10) in Theorem 2 can be weakened.
More concretely, if

(a) >0 and

> [ i0)(Ae(0)aam) 7 [ o0 ®ave), a4
or

(b) oo <0 and

< [ (iePaa) - [swemarm. a9

then (11) holds. Indeed, if we multiply (14) with § > 0 we get

o
5 | Luoane)ant - 7 [ v wiavi)
> 2| famieranm - ; [sfeanm|  ao

so we can chain inequalities (12) and (13) to get (11). In the case when we multiply
(15) with % < 0 we again get (16) and the conclusion is the same.

COROLLARY 2. Let X, Q, Q, A, A, w, i, v, ¥, w, fiy, L, L, u, @, v, ¥ be
as in Theorem 2 and assume that (10) holds. If ® is 3-convex on the interval I, then
(11) holds. If @ is 3-concave, then (11) holds with the sign reversed.
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Proof. If @ is 3-convex, then by Remark 2 it also belongs to .#°(I) for every
c € Int I, so we can again apply Theorem 2. [J

For Lebesgue measures and some intervention on the weight functions, from The-
orem 2 we obtain the following result.

COROLLARY 3. Let A and A be finite Borel measures on Ry and L and L be
defined by (3) and (8) respectlvely Let QC Ry bea A -balanced set such that 1Q = Q

for A-ae. t€suph and Q CR. be a A-balanced such that i1Q = Q for A-a.e.
t € supA. Suppose that u and @i are non-negative functions on R, such that

w(x) :/Omu(;f) A1) <o, xEQ

and

v [T (XY oo A
w(x)—/o i(3) diin <= xed.
If f: Q— 1IN (—eo,c] and g: Q — IN|c,e0) are measurable functions satisfying
dx
)2
[uwarwrs-1 [

wo)f
:/gﬁ@“)( 2?‘2/

the following inequality

| i) < - % R
< [utoar) S -1 [ wwor) S a7)

holds for ® € #°(I). If ® € (1) in the above setting, then (17) holds with the sign
of inequality reversed.

Proof. 1t follows directly from Theorem 2 if we set X =R, the measures u, v,
[ and V to be the Lebesgue measures and replace the weight functions u and 4 with
u(x) i(x) [.1;( - d[ftt( ) 1

— ——=, x — —— respectively. For such measures we get v & =
X %

— (X
dav t

’

X
t € R, . In this setting, we have

v(x):/owu(§>-§~%d7t(t):§/omu<;—c> dx(z)z@, reQ,

and V(x) = w(x) , x € Q where the function v and ¥ are defined by (6) and (9). [
X
EXAMPLE 1. Consider the Theorem 2 with X =Q =R, dA(t) = x(,)(?)dr.
For 0 < b < oo, let du(x) = xop)(x)dx, and v(x) = dx. Instead of the weight u
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. u(x)
we take the function x — ——=x(9;)(x). Then supp A = (0,1], L= 1, 1Q = Q for
¥ ;
1

du;
t€supp A, —(x) = —X(0an) (%)

= [ sy = 5,

and
Lu(lx) 1 1 rto/x b dy w(x)
- - dt = - N dr = @ _wx)
v = [} S Tt = ¢ [u(F)ar= [Tut) G =25,
for x € (0,b).

For measurable functions f: Ry — I'N(—oo,c] and g: Q—1In [c,00) the condi-
tion (10) becomes

b d b p
[ utw)ar o2 xx [ worm
_/ )2 dfi(x) — i/ﬁﬁ(x)gz(x)d\‘;(x)’
and for a function ® from #°(I) the following inequality

/ A(x)P(Ag(x))dft(x) = = [ 9(x)D(g(x))dV(x)

< [Mutooirsen [ w2 (1s)

holds. If ® is from #;°(I), then the sign of inequality (18) is reversed.

On the other hand, we have dual example.

A A dt
EXAMPLE 2. Let X = Q=R and dA(t) = x| (t)t—2 in the Theorem 2. For

0<b<eoo,letii: (b,o) — R be a non-negative locally integrable function on its do-
main. Let dfi(x) = ¥(p,4)(x)dx and dV(x) = dx. Then we get a dual result to (18)

A R 1
(see also [3, 4, 6]). So supp A = [1,00), L=1, w(x) = —/ i(t)dt and
x Jb

/gtxd—z—x/ g(t)f—jzflg(x% X € (b,0).

For measurable functions f: Q — IN(—ee,c] and g: Q — IN|c,e0) the condition

(10) becomes
[ uare2due - [ v wave

= [Tt >>2‘ff I w(x)g()dx,

0 X
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and for @ € #°(I) the following inequality

[ - [ it S
< [ utwear)aut - [ el (19)

holds. If ® € JZ°(I), then the sign of inequality (19) is reversed.

3. Multidimensional examples

In Corollary 1 the condition 1Q = Q, A-a.e. t € supp A is emphasized, so the
logical choice of the multidimensional examples is setting with balls in R” centred at
the origin.

COROLLARY 4. Suppose that 0 < b < oo and that a positive function y on [0,1]
and a non-negative function u on R" are such that

y(x) = /Q " Gx> (1) d < o, x € B(b) 20)

and

1
P :/o y(t) dt < eo. (1)

If f: B(b) — IN (—oo,c] and g: Q — IN[c,) are measurable functions satisfying

» / ( / w(t) f(1x dt) x—%l /B Re £2(x)dx
= [ idsx)Panm) — 5 [ s x)av () 22)

then for ® € °(I) the inequality
[ a0g)dam - 7 [ $0@(etx)as

1/t 1
< [, w0 (5 [vorea) i [ oyt @
holds.

Proof. Follows from Theorem 2 rewritten with X = R", Q = B(b), dA(r) =
w(t)x0,1)(t)dt, du(x) = xp@p) (x)dx, and dv(x) = dx. Here we have supp 4 = (0, 1],

1
d,u,( ) =1" X (X), and Af(x) = i/ (1) f(rx)dr. Tt is easy to see that in this
dv P Jo

setting (20) reduces to (6), and (10) and (11) becomes (22) and (23). O

Applying Corollary 4 to some particular # and @ we get the following result.
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EXAMPLE 3. Apply Corollary 4 for u(x) = 1 and the 3-convex function ®(x)

x?, p>2or pe(0,1). In this setting, if £: B(b) — IN(—oco,c] and g: Q — IN|[c,o0)
are measurable functions satisfying

=/, ([ wiorox dt) ax= g [, O
= /Q ﬁ(x)(Ag(x))zdﬂ(X)—% /Q 0(x)g* (x)d¥ (),

then the following inequality
" . | N
/ A(0(Ag(x)) A (x) - 7 [ 9x)g” (7 (x)
Q LJa

/ (/ () f(rx dt) dx — }%/B(h)v(x)fp(x)dx

holds, where P is defined by (21). Notice that ®(x) =x”, p € (1,2) or p <0 isa
3-concave function.

Similarly, we get the dual result by using the set R"”\ B(b).

COROLLARY 5. Suppose that 0 < b < oo and that the positive function W on
[1,%0) and the non-negative function u on R" are such that

o

B(x) = / " (1 ) (1) di < oo, x € R"\ B(b) 24)

and

oo

P.= () dt < oo. (25)
1

If f: Q—1IN(—oo,c] and g: R"\ B(b) — IN|[c,) are measurable functions satisfying

u(x) (Af ()2t (%) (x)
Q L
N 112 /R”\B </ Vgl ) - é Rn\B(b)‘;(X)gz(X)dX (26)

then for ® € J°(I) the following inequality

/R - ( / w(1)g(ix) dt) dx—— [ TP
< /Q WA~ 7 [ VP ()v(x) e

holds.
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Proof. The proof follows from Theorem 2 if we set dA (1) = y(¢) (1) (1) dt, X =
R", Q=R"\B(b), dii(x) = Xrn\B(p)(X)dx and d\?( ) = dx. Then we get supp A =

d —n
[1,00), d—llg(x) =t""Xrn\B(p)(X) and Ag(x) / y(r)g(rx)dt. So (6), (10) and
(11) become (24), (26) and (27), respectively. D

EXAMPLE 4. Apply Corollary 5 for 4(x) = 1 and the 3-convex function ®(x) =
X, p>2o0r pe(0,1). If f: Q— IN(—oo,c|] and g: R"\ B(b) — IN|c,e) are
measurable functions satisfying

[ utarmPant) - 1 [ v aves
Q

i Lo w(r)g(zx)dt) g [ i

then the following inequality

P 1 )
</Qu(x)(Af(x))Pdu( ) — 114 Vv(x) P (x)dV(x)

holds, where P.. is defined by (25).
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