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BOAS–TYPE INEQUALITY FOR 3–CONVEX FUNCTIONS AT A POINT

JOSIP PEČARIĆ, DORA POKAZ AND MARJAN PRALJAK

(Communicated by C. P. Niculescu)

Abstract. Starting from a very general form of Boas-type inequality from [5] we get Boas-type
inequality for 3 -convex functions at a point. For special λ -balanced sets, weight functions and
measures we derive various examples.

1. Introduction

In [2], R. P. Boas proved that the inequality

∫ ∞

0
Φ
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M

∫ ∞

0
f (tx)dm(t)

)
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x

�
∫ ∞

0
Φ( f (x))
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x

(1)

holds for all continuous convex functions Φ : [0,∞) → R , measurable non–negative
functions f : R+ → R , and non–decreasing bounded functions m : [0,∞) → R , where
M = m(∞)−m(0)> 0 and the inner integral on the left-hand side of (1) is the Lebesgue–
Stieltjes integral with respect to m . This inequality represent one direction of gener-
alization of the famous Hardy inequality. After its author, relation (1) was named the
Boas inequality. In the case of a concave function Φ , (1) holds with the sign of inequal-
ity reversed.

S. Kaijser et al. [6] (see also the paper [7] of N. Levinson) established the so-called
general Hardy-Knopp-type inequality
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, (2)

for positive measurable functions f : R+ → R , and a real convex function Φ on R+ .
Later on, A. Čižmešija et al. [4] generalized relation (2) to the so-called strengthened
Hardy-Knopp-type inequality by inserting a weight function and integrating over in-
tervals of non-negative real numbers. Further, in [3] A. Čižmešija et al. considered a

general Borel measure λ on R+ , such that L = λ (R+) =
∫ ∞

0
dλ (t) < ∞ , and proved
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that for a convex function Φ on an interval I ⊆ R and a weight function u on R+ the
inequality ∫ ∞

0
u(x)Φ(A f (x))

dx
x

� 1
L

∫ ∞

0
w(x)Φ( f (x))

dx
x

holds for all measurable functions f : R+ →R such that f (x)∈ I for all x∈R+ , where

A f (x) =
1
L

∫ ∞

0
f (tx)dλ (t) and w(x) =

∫ ∞

0
u
(x

t

)
dλ (t) < ∞ , x ∈ R+ .

Observe that a non-decreasing and bounded function m : [0,∞) → R such that
M = m(∞)−m(0) > 0 induces a finite Borel measure λ on R+ and vice versa. For
such a function and measure, related Lebesgue and Lebesgue-Stieltjes integrals are
equivalent. Thus, all the above results can be stated for A f (x) defined by

A f (x) =
1
M

∫ ∞

0
f (tx)dm(t), x ∈ R+,

so they refine and generalize inequality (1).
Another generalization of (1) was given by D. Luor [8] in a setting with σ -finite

Borel measures μ and ν on a topological space X and a Borel probability measure λ
on R+ . The weighted version of that Luor’s result is obtained in [5] in a setting with a
topological space and σ -finite Borel measures as following.

Let λ be a finite Borel measure on R+ . By supp λ we denote its support, that is,
the set of all t ∈ R+ such that λ (Nt) > 0 holds for all open neighbourhoods Nt of t .
Hence,

L =
∫

supp λ
dλ (t) =

∫ ∞

0
dλ (t) = λ (R+) < ∞. (3)

On the other hand, let X be a topological space equipped with a continuous scalar
multiplication (a,x) �→ ax ∈ X , for a ∈ R+ , x ∈ X , such that

1x = x, a(bx) = (ab)x, x ∈ X , a,b ∈ R+.

Further, let the Borel set Ω ⊆ X be λ -balanced, that is, tΩ = {tx : x ∈ Ω} ⊆ Ω , for
all t ∈ supp λ . For a Borel measurable function f : Ω → R , we define its Hardy–
Littlewood average A f as

A f (x) =
1
L

∫ ∞

0
f (tx)dλ (t), x ∈ Ω. (4)

Finally, suppose that μ and ν are σ –finite Borel measures on X . For t > 0 and
a Borel set S ⊆ X we define

μt(S) = μ
(

1
t
S

)
. (5)

Obviously, μt is a σ -finite Borel measure on X for each t ∈ R+ . Throughout this
paper, we suppose that the measures μt are absolutely continuous with respect to the

measure ν , that is, μt � ν for each t ∈ supp λ . As usual, by
dμt

dν
we denote the

related Radon–Nikodym derivative.
Thus, the following weighted general Boas-type inequality is given in [5].
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THEOREM 1. Let λ be a finite Borel measure on R+ and L be defined by (3).
Let μ and ν be σ -finite Borel measures on a topological space X , μt be defined by
(5) and such that μt � ν for all t ∈ supp λ . Further, let Ω ⊆ X be a λ -balanced set
and u be a non-negative function on X , such that

v(x) =
∫ ∞

0
u

(
1
t
x
)

dμt

dν
(x)dλ (t) < ∞, x ∈ Ω. (6)

Suppose Φ : I → R is a non-negative convex function on an interval I ⊆ R . If f : Ω →
R is a Borel measurable function, such that f (x) ∈ I for all x ∈ Ω , and A f is defined
by (4), then A f (x) ∈ I for all x ∈ Ω and the inequality

∫
Ω

u(x)Φ(A f (x))dμ(x) � 1
L

∫
Ω

v(x)Φ( f (x))dν(x) (7)

holds. For a non-positive concave function Φ , the sign of inequality in (7) is reversed.

Notice that the condition on non-negativity of the convex function Φ in Theorem
1 can be omitted only in a particular setting with cones in X . More precisely, the
following corollary holds.

COROLLARY 1. If in Theorem 1 we have tΩ = Ω for λ -a.e. t ∈ supp λ , then (7)
holds for all convex functions Φ on an interval I ⊆ R . In that case, for all concave
functions Φ relation (7) holds with the sign of inequality reversed.

We will make further generalization based on the inequality (7) . Instead of convex
functions we will introduce a different class of functions, following the idea of I. A.
Baloch et al. [1] and J. Pečarić et al. [10].

This paper is organized in following way: after the Introduction, in Section 2 we
define class of functions K c

1 (I) and prove the Boas inequality of Levinson type for
such functions. We point out the dual class of functions and corresponding dual in-
equality. We discuss 3-convexity at the point and give several one-dimensional results.
In Section 3 we obtain multidimensional results and examples of Levinson type con-
cerning balls in R

n centred at the origin and their dual sets.

CONVENTIONS. An interval I in R is any convex subset of R , while by IntI we
denote its interior. By R+ we denote the set of all positive real numbers i.e. R+ =
(0,∞) . A k th order divided difference of a function f : I → R , where I is an interval
in R , at distinct points x0, . . . ,xk ∈ I is defined recursively by

[xi] f = f (xi), for i = 0, . . . ,k

and

[x0, . . . ,xk] f =
[x1, . . . ,xk] f − [x0, . . . ,xk−1] f

xk − x0
.

A function f : I → R is called k -convex if [x0, . . . ,xk] f � 0 for all choices of k + 1
distinct points x0, . . . ,xk ∈ I . If the k th derivative f (k) of a k -convex function exists,
then f (k) � 0, but f (k) may not exist (for properties of divided differences and k -convex
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functions see [11]). For R > 0 we denote by B(R) a ball in R
n centred at the origin and

of radius R , that is, B(R) = {x ∈ R
n : |x| � R} , where |x| denotes the Euclidean norm

of x ∈ R
n . By its complementary set we mean the set R

n \B(R) = {x ∈ R
n : |x| > R} .

2. Main results

In order to make generalization of the inequality (7) in Levinson’s sense we will
replace convex functions with the following class of functions.

DEFINITION 1. Let f : I → R , where I is an interval in R , be a function and c ∈
IntI . We say that f ∈ K c

1 (I) (resp. f ∈ K c
2 (I)) if there exists a constant α such that

the function F(x) = f (x)− α
2 x2 is concave (resp. convex) on I ∩ (−∞,c] and convex

(resp. concave) on I∩ [c,∞) .

REMARK 1. If f ∈ K c
i (a,b) , i = 1,2, and f ′′(c) exists, then f ′′(c) = α . Let

f ∈ K c
1 (a,b) . Due to the concavity and convexity of F for every distinct points x j ∈

(a,c] and y j ∈ [c,b) , j = 1,2,3, we have

[x1,x2,x3]F = [x1,x2,x3] f −α � 0 � [y1,y2,y3] f −α = [y1,y2,y3]F.

Therefore, if f ′′−(c) and f ′′+(c) exist, letting x j ↗ c and y j ↘ c , we get

f ′′−(c) � α � f ′′+(c).

Similary, for f ∈ K c
2 (a,b) , we have f ′′+(c) � α � f ′′−(c) . �

REMARK 2. Function f : I → R is 3-convex (resp. 3-concave) if and only if f ∈
K c

1 (I) (resp. f ∈ K c
2 (I)) for every c ∈ IntI . In other words, a function is 3-convex

on an interval if and only if it is 3-convex at every point of its interior, so the property
from the definition of K c

1 (I) can be described as “3-convexity at point c”.

For the main result we need another set of measures, sets and functions that also
satisfying Theorem1. So, let λ̂ be a finite Borel measure on R+ such that

L̂ =
∫ ∞

0
dλ̂ (t) =

∫
suppλ̂

dλ̂(t) < ∞. (8)

Let Ω̂ ⊆ X be a λ̂ -balanced Borel set, let measures μ̂ , μ̂t ,t ∈ R+ and ν̂ be σ -
finite Borel measures on X such that μ̂t(S) = μ̂

( 1
t S

)
, for t ∈ R+ and S ⊆ X Borel set

and μ̂t � ν̂ , t ∈ supp λ̂ . Finally, let û be a non-negative function on X , such that

v̂(x) =
∫ ∞

0
û

(
1
t
x
)

dμ̂t

dν̂
(x)dλ̂(t) < ∞, x ∈ Ω̂. (9)

For a Borel measurable function g : Ω̂ → R the Hardy-Littlewood average Âg of
g defined by

Âg(x) =
1

L̂

∫ ∞

0
g(tx)dλ̂ (t), x ∈ Ω̂.
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THEOREM 2. Let X , Ω , λ , μ , ν , μt , L , u , v be as in Theorem 1. Furthermore,
let Ω̂ , λ̂ , μ̂ , ν̂ , μ̂t , L̂ , û , v̂ be another set of measures and functions that satisfy
Theorem 1. If f : Ω → I ∩ (−∞,c] and g : Ω̂ → I ∩ [c,∞) are measurable functions
satisfying

∫
Ω

u(x)(A f (x))2dμ(x)− 1
L

∫
Ω

v(x) f 2(x)dν(x)

=
∫

Ω̂
û(x)(Âg(x))2dμ̂(x)− 1

L̂

∫
Ω̂

v̂(x)g2(x)dν̂(x) (10)

then for every Φ ∈ K c
1 (I) the following inequality holds

∫
Ω̂

û(x)Φ(Âg(x))dμ̂(x)− 1

L̂

∫
Ω̂

v̂(x)Φ(g(x))dν̂(x)

�
∫

Ω
u(x)Φ(A f (x))dμ(x)− 1

L

∫
Ω

v(x)Φ( f (x))dν(x). (11)

If Φ ∈ K c
2 (I) in the above setting, then (11) holds with the sign of inequality reversed.

Proof. From Definition 1 there exists a constant α such that F(x) = Φ(x)− α
2 x2

is concave on I∩ (−∞,c] so we can apply Theorem 1 on the function F and get

∫
Ω

u(x)F(A f (x))dμ(x)− 1
L

∫
Ω

v(x)F( f (x))dν(x) � 0

By the definition of the function F we have

∫
Ω

u(x)
[
Φ(A f (x))− α

2
(A f (x))2

]
dμ(x)− 1

L

∫
Ω

v(x)
[
Φ( f (x))− α

2
f 2(x)

]
dν(x) � 0.

Since integral is a linear functional we can write

∫
Ω

u(x)Φ(A f (x))dμ(x)− 1
L

∫
Ω

v(x)Φ( f (x))dν(x)

� α
2

[∫
Ω

u(x)(A f (x))2dμ(x)− 1
L

∫
Ω

v(x) f 2(x)dν(x)
]
. (12)

For the same constant α , the second part of Definition 1 gives us a convex function
F(x) = Φ(x)− α

2 x2 on I∩ [c,∞) . Now, from Theorem 1 we have

∫
Ω̂

û(x)F(Âg(x))dμ̂(x)− 1

L̂

∫
Ω̂

v̂(x)F(g(x))dν̂(x) � 0.

Similarly as in the first part of the proof, we obtain

∫
Ω̂

û(x)
[
Φ(Âg(x))− α

2
(Âg(x))2

]
dμ̂(x)− 1

L̂

∫
Ω̂

v̂(x)
[
Φ(g(x))− α

2
g2(x)

]
dν̂(x) � 0
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and also
∫

Ω̂
û(x)Φ(Âg(x))dμ̂(x)− 1

L̂

∫
Ω̂

v̂(x)Φ(g(x))dν̂(x)

� α
2

[∫
Ω̂

û(x)(Âg(x))2dμ̂(x)− 1

L̂

∫
Ω̂

v̂(x)g2(x)dν̂(x)
]
. (13)

Due to assumption (10) the right hand sides of inequalities (12) and (13) are equal.
Hence, we obtain (11). In the case Φ ∈ K c

2 (I) , the function F(x) = Φ(x)− α
2 x2 is

convex on I∩ (−∞,c] and concave on I∩ [c,∞) . Following the idea of the first part of
the proof we get our statement. �

Similarly as in [9] we analize α from the Definition 1.

REMARK 3. The assumption of equality (10) in Theorem 2 can be weakened.
More concretely, if

(a) α � 0 and

∫
Ω

u(x)(A f (x))2dμ(x)− 1
L

∫
Ω

v(x) f 2(x)dν(x)

�
∫

Ω̂
û(x)(Âg(x))2dμ̂(x)− 1

L̂

∫
Ω̂

v̂(x)g2(x)dν̂(x), (14)

or

(b) α � 0 and

∫
Ω

u(x)(A f (x))2dμ(x)− 1
L

∫
Ω

v(x) f 2(x)dν(x)

�
∫

Ω̂
û(x)(Âg(x))2dμ̂(x)− 1

L̂

∫
Ω̂

v̂(x)g2(x)dν̂(x), (15)

then (11) holds. Indeed, if we multiply (14) with α
2 � 0 we get

α
2

[∫
Ω

u(x)(A f (x))2dμ(x)− 1
L

∫
Ω

v(x) f 2(x)dν(x)
]

� α
2

[∫
Ω̂

û(x)(Âg(x))2dμ̂(x)− 1

L̂

∫
Ω̂

v̂(x)g2(x)dν̂(x)
]

(16)

so we can chain inequalities (12) and (13) to get (11). In the case when we multiply
(15) with α

2 � 0 we again get (16) and the conclusion is the same.

COROLLARY 2. Let X , Ω , Ω̂ , λ , λ̂ , μ , μ̂ , ν , ν̂ , μt , μ̂t , L , L̂ , u , û , v , v̂ be
as in Theorem 2 and assume that (10) holds. If Φ is 3 -convex on the interval I , then
(11) holds. If Φ is 3 -concave, then (11) holds with the sign reversed.
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Proof. If Φ is 3-convex, then by Remark 2 it also belongs to K c
1 (I) for every

c ∈ Int I , so we can again apply Theorem 2. �
For Lebesgue measures and some intervention on the weight functions, from The-

orem 2 we obtain the following result.

COROLLARY 3. Let λ and λ̂ be finite Borel measures on R+ and L and L̂ be
defined by (3) and (8) respectively. Let Ω ⊆R+ be a λ -balanced set such that tΩ = Ω
for λ -a.e. t ∈ supλ and Ω̂ ⊆ R+ be a λ̂ -balanced such that tΩ̂ = Ω̂ for λ̂ -a.e.
t ∈ sup λ̂ . Suppose that u and û are non-negative functions on R+ , such that

w(x) =
∫ ∞

0
u
(x

t

)
dλ (t) < ∞, x ∈ Ω

and
ŵ(x) =

∫ ∞

0
û
(x

t

)
dλ̂ (t) < ∞, x ∈ Ω̂.

If f : Ω → I∩ (−∞,c] and g : Ω̂ → I∩ [c,∞) are measurable functions satisfying

∫
Ω

u(x)(A f (x))2 dx
x
− 1

L

∫
Ω

w(x) f 2(x)
dx
x

=
∫

Ω̂
û(x)(Âg(x))2 dx

x
− 1

L̂

∫
Ω̂

ŵ(x)g2(x)
dx
x

,

the following inequality

∫
Ω̂

û(x)Φ(Âg(x))
dx
x
− 1

L̂

∫
Ω̂

ŵ(x)Φ(g(x))
dx
x

�
∫

Ω
u(x)Φ(A f (x))

dx
x
− 1

L

∫
Ω

w(x)Φ( f (x))
dx
x

(17)

holds for Φ ∈ K c
1 (I) . If Φ ∈ K c

2 (I) in the above setting, then (17) holds with the sign
of inequality reversed.

Proof. It follows directly from Theorem 2 if we set X = R+ , the measures μ , ν ,
μ̂ and ν̂ to be the Lebesgue measures and replace the weight functions u and û with

x �→ u(x)
x

, x �→ û(x)
x

respectively. For such measures we get
dμt

dν
(x) =

dμ̂t

dν̂
(x) =

1
t

,

t ∈ R+ . In this setting, we have

v(x) =
∫ ∞

0
u
(x

t

)
· t
x
· 1
t

dλ (t) =
1
x

∫ ∞

0
u
(x

t

)
dλ (t) =

w(x)
x

, x ∈ Ω,

and v̂(x) =
ŵ(x)

x
, x ∈ Ω̂ where the function v and v̂ are defined by (6) and (9). �

EXAMPLE 1. Consider the Theorem 2 with X = Ω = R+ dλ (t) = χ(0,1)(t)dt .
For 0 < b � ∞ , let dμ(x) = χ(0,b)(x)dx , and ν(x) = dx . Instead of the weight u
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we take the function x �→ u(x)
x

χ(0,b)(x) . Then supp λ = (0,1] , L = 1, tΩ = Ω for

t ∈ supp λ ,
dμt

dν
(x) =

1
t

χ(0,tb)(x) ,

A f (x) =
∫ 1

0
f (tx)dt = H f (x),

and

v(x) =
∫ 1

0

u
(

1
t x

)
1
t x

· 1
t

χ(0,tb)(x)dt =
1
x

∫ 1

x
b

u
(x

t

)
dt =

∫ b

x
u(y)

dy
y2 =

w(x)
x

,

for x ∈ (0,b) .
For measurable functions f : R+ → I∩ (−∞,c] and g : Ω̂ → I∩ [c,∞) the condi-

tion (10) becomes
∫ b

0
u(x)(H f (x))2 dx

x
−

∫ b

0
w(x) f 2(x)

dx
x

=
∫

Ω̂
û(x)(Âg(x))2 dμ̂(x)− 1

L̂

∫
Ω̂

v̂(x)g2(x)dν̂(x),

and for a function Φ from K c
1 (I) the following inequality

∫
Ω̂

û(x)Φ(Âg(x))dμ̂(x)− 1

L̂

∫
Ω̂

v̂(x)Φ(g(x))dν̂(x)

�
∫ b

0
u(x)Φ(H f (x))

dx
x
−

∫ b

0
w(x)Φ( f (x))

dx
x

(18)

holds. If Φ is from K c
2 (I) , then the sign of inequality (18) is reversed.

On the other hand, we have dual example.

EXAMPLE 2. Let X = Ω̂ = R+ and dλ̂ (t) = χ[1,∞)(t)
dt
t2

in the Theorem 2. For

0 � b < ∞ , let û : (b,∞) → R be a non-negative locally integrable function on its do-
main. Let dμ̂(x) = χ(b,+∞)(x)dx and dν̂(x) = dx . Then we get a dual result to (18)

(see also [3, 4, 6]). So supp λ̂ = [1,∞) , L̂ = 1, ŵ(x) =
1
x

∫ x

b
û(t)dt and

Âg(x) =
∫ ∞

1
g(tx)

dt
t2

= x
∫ ∞

x
g(t)

dt
t2

= Ĥg(x), x ∈ (b,∞).

For measurable functions f : Ω → I∩(−∞,c] and g : Ω̂ → I∩ [c,∞) the condition
(10) becomes

∫
Ω

u(x)(A f (x))2 dμ(x)− 1
L

∫
Ω

v(x) f 2(x)dν(x)

=
∫ ∞

0
û(x)(Ĥg(x))2 dx

x
−

∫ ∞

0
ŵ(x)g2(x)

dx
x

,
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and for Φ ∈ K c
1 (I) the following inequality
∫ ∞

0
û(x)Φ(Ĥg(x))

dx
x
−

∫ ∞

0
ŵ(x)Φ(g(x))

dx
x

�
∫

Ω
u(x)Φ(A f (x))dμ(x)− 1

L

∫
Ω

v(x)Φ( f (x))dν(x) (19)

holds. If Φ ∈ K c
2 (I) , then the sign of inequality (19) is reversed.

3. Multidimensional examples

In Corollary 1 the condition tΩ = Ω , λ -a.e. t ∈ supp λ is emphasized, so the
logical choice of the multidimensional examples is setting with balls in R

n centred at
the origin.

COROLLARY 4. Suppose that 0 < b � ∞ and that a positive function ψ on [0,1]
and a non-negative function u on R

n are such that

v(x) =
∫ 1

|x|
b

u

(
1
t
x
)

t−nψ(t)dt < ∞, x ∈ B(b) (20)

and

P1 =
∫ 1

0
ψ(t) dt < ∞. (21)

If f : B(b) → I∩ (−∞,c] and g : Ω̂ → I∩ [c,∞) are measurable functions satisfying

1

P2
1

∫
B(b)

u(x)
(∫ 1

0
ψ(t) f (tx)dt

)2

dx− 1
P1

∫
B(b)

v(x) f 2(x)dx

=
∫

Ω̂
û(x)(Âg(x))2dμ̂(x)− 1

L̂

∫
Ω̂

v̂(x)g2(x)dν̂(x), (22)

then for Φ ∈ K c
1 (I) the inequality

∫
Ω̂

û(x)Φ(Âg(x))dμ̂(x)− 1

L̂

∫
Ω̂

v̂(x)Φ(g(x))dν̂(x)

�
∫

B(b)
u(x)Φ

(
1
P1

∫ 1

0
ψ(t) f (tx)dt

)
dx− 1

P1

∫
B(b)

v(x)Φ( f (x))dx (23)

holds.

Proof. Follows from Theorem 2 rewritten with X = R
n , Ω = B(b) , dλ (t) =

ψ(t)χ(0,1)(t)dt , dμ(x) = χB(b)(x)dx , and dν(x) = dx . Here we have supp λ = (0,1] ,
dμt

dν
(x) = t−nχB(tb)(x) , and A f (x) =

1
P1

∫ 1

0
ψ(t) f (tx)dt . It is easy to see that in this

setting (20) reduces to (6), and (10) and (11) becomes (22) and (23). �
Applying Corollary 4 to some particular u and Φ we get the following result.
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EXAMPLE 3. Apply Corollary 4 for u(x) ≡ 1 and the 3-convex function Φ(x) =
xp , p > 2 or p ∈ (0,1) . In this setting, if f : B(b) → I∩ (−∞,c] and g : Ω̂ → I∩ [c,∞)
are measurable functions satisfying

1

P2
1

∫
B(b)

(∫ 1

0
ψ(t) f (tx)dt

)2

dx− 1
P1

∫
B(b)

v(x) f 2(x)dx

=
∫

Ω̂
û(x)(Âg(x))2dμ̂(x)− 1

L̂

∫
Ω̂

v̂(x)g2(x)dν̂(x),

then the following inequality

∫
Ω̂

û(x)(Âg(x))pdμ̂(x)− 1

L̂

∫
Ω̂

v̂(x)gp(x)dν̂(x)

� 1
Pp

1

∫
B(b)

(∫ 1

0
ψ(t) f (tx)dt

)p

dx− 1
P1

∫
B(b)

v(x) f p(x)dx

holds, where P1 is defined by (21). Notice that Φ(x) = xp , p ∈ (1,2) or p < 0 is a
3-concave function.

Similarly, we get the dual result by using the set R
n \B(b) .

COROLLARY 5. Suppose that 0 � b < ∞ and that the positive function ψ on
[1,∞) and the non-negative function u on R

n are such that

v̂(x) =
∫ |x|

b

1
û

(
1
t
x
)

t−nψ(t)dt < ∞, x ∈ R
n \B(b) (24)

and

P∞ =
∫ ∞

1
ψ(t) dt < ∞. (25)

If f : Ω→ I∩(−∞,c] and g : R
n\B(b)→ I∩[c,∞) are measurable functions satisfying

∫
Ω

u(x)(A f (x))2dμ(x)− 1
L

∫
Ω

v(x) f 2(x)dν(x)

=
1
P2

∞

∫
Rn\B(b)

û(x)
(∫ ∞

1
ψ(t)g(tx)dt

)2

dx− 1
P∞

∫
Rn\B(b)

v̂(x)g2(x)dx (26)

then for Φ ∈ K c
1 (I) the following inequality

∫
Rn\B(b)

û(x)Φ
(

1
P∞

∫ ∞

1
ψ(t)g(tx)dt

)
dx− 1

P∞

∫
Rn\B(b)

v̂(x)Φ(g(x))dx

�
∫

Ω
u(x)Φ(A f (x))dμ(x)− 1

L

∫
Ω

v(x)Φ( f (x))dν(x) (27)

holds.
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Proof. The proof follows from Theorem 2 if we set dλ̂ (t) = ψ(t)χ(1,∞)(t)dt , X =
R

n , Ω̂ = R
n \B(b) , dμ̂(x) = χRn\B(b)(x)dx and dν̂(x) = dx . Then we get supp λ̂ =

[1,∞) ,
dμ̂t

dν̂
(x) = t−nχRn\B(tb)(x) and Âg(x) =

1
P∞

∫ ∞

1
ψ(t)g(tx)dt . So (6), (10) and

(11) become (24), (26) and (27), respectively. �

EXAMPLE 4. Apply Corollary 5 for û(x) ≡ 1 and the 3-convex function Φ(x) =
xp , p > 2 or p ∈ (0,1) . If f : Ω → I ∩ (−∞,c] and g : R

n \ B(b) → I ∩ [c,∞) are
measurable functions satisfying

∫
Ω

u(x)(A f (x))2dμ(x)− 1
L

∫
Ω

v(x) f 2(x)dν(x)

=
1
P2

∞

∫
Rn\B(b)

(∫ ∞

1
ψ(t)g(tx)dt

)2

dx− 1
P∞

∫
Rn\B(b)

v̂(x)g2(x)dx,

then the following inequality

∫
Rn\B(b)

(
1
P∞

∫ ∞

1
ψ(t)g(tx)dt

)p

dx− 1
P∞

∫
Rn\B(b)

v̂(x)gp(x)dx

�
∫

Ω
u(x)(A f (x))pdμ(x)− 1

L

∫
Ω

v(x) f p(x)dν(x)

holds, where P∞ is defined by (25).
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inequalities, J. Funct. Spaces Appl. 7 (2) (2009), 167–186.
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