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INEQUALITIES AND BOUNDS FOR A

CERTAIN BIVARIATE ELLIPTIC MEAN

EDWARD NEUMAN

(Communicated by S. Varošanec)

Abstract. This paper deals with a new mean introduced recently by this author. This mean is a
degenerate case of the completely symmetric elliptic integral of the second kind. In particular
inequalities involving mean under discussion are obtained. Also, bounds in the mean in question
are obtained. Bounding expressions are convex combinations of some quantities depending on
variables of the mean.

1. Introduction and notation

In recent years certain bivariate means have been investigated extensively by sev-
eral researchers. A complete list of research papers which deal with this subject is too
long to be included here even if we would restrict our attention to papers published in
the last ten years. The goal of this paper is to obtain inequalities and optimal bounds
for the particular mean introduced recently by this author (see [15]). Its definition is
included below (see (2)). In what follows the letters a and b will always stand for
positive and unequal numbers.

First we recall definition of the Schwab-Borchardt mean of a and b :

SB(a,b)≡ SB =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
b2−a2

cos−1(a/b)
if a < b,

√
a2−b2

cosh−1(a/b)
if a > b

(1)

(see, e.g., [2], [3]). This mean has been studied extensively in [19], [20] and in [8]. It is
well known that the mean SB is strict, nonsymmetric and homogeneous of degree one
in its variables.

Mean SB can also be expressed in terms of the degenerated completely symmetric
elliptic integral of the first kind (see, e.g., [15]). It has been pointed out in [19] that
some well known bivariate means such as logarithmic mean and two Seiffert means
(see [23, 24]) can be represented by the Schwab-Borchardt mean of two simpler means
such as geometric and arithmetic means or as the Schwab-Borchardt mean of arithmetic
and the square - mean root mean. This idea was utilized lately by this author and other
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researchers as well. For more details the interested reader is referred to [4, 5, 6, 7, 8, 9,
10, 13, 14, 18, 21, 22, 25, 26]

The mean studied in this paper is defined as follows:

N(a,b) ≡ N =
1
2

(
a+

b2

SB(a,b)

)
(2)

(see [15]). It’s easy to see that mean N is also strict, nonsymmetric and homogeneousof
degree one in its variables. Some authors call this mean, Neuman mean of the second
kind (see, e.g., [5, 7, 21, 22, 25, 26]). Mean N can also be represented in terms of
the degenerated completely symmetric elliptic integral of the second kind (see, e.g.,
[15]). By taking the N -mean of two other means one can generate several new bivariate
means. This idea was utilized in [15].

This paper can be regarded as continuation of investigations initiated in author’s
earlier papers [18, 8, 15, 11, 10, 9, 13, 16, 14, 12, 17] and is organized as follows.
Some preliminary results and formulas needed in this paper are given in Section 2.
Inequalities involving mean N are derived in Section 3. Bounds for the mean under
discussion are obtained in Section 4. The Ky Fan type inequalities are established in
Section 5.

2. Preliminary results and formulas needed in this paper

First of all let us record another formulas for means SB and N . Those will be
utilized frequently in susequent sections of this paper.

One can easily verify that (1) implies

SB(a,b)≡ SB =

⎧⎪⎪⎨
⎪⎪⎩

b
sinr
r

= a
tanr

r
if a < b,

b
sinhs

s
= a

tanhs
s

if b < a,

(3)

where

cosr = a/b if a < b and coshs = a/b if a > b. (4)

Clearly

0 < r <
π
2

(5)

and
s > 0. (6)

Corresponding formulas for the mean N , obtained with the aid of (2) and (3), read
as follows:

N(a,b) ≡ N =
1
2
b
(
cosr+

r
sinr

)
=

1
2
a
(
1+

r
sinrcosr

)
(7)
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provided a < b . Similarly, if a > b , then

N(a,b) ≡ N =
1
2
b
(
coshs+

s
sinhs

)
=

1
2
a
(
1+

s
sinhscoshs

)
. (8)

Here the domains for r and s are the same as these in (5) and (6).
For later use let

v =
a−b
a+b

. (9)

Clearly 0 < |v| < 1.
The unweighted arithmetic mean A of a and b is defined as

A =
a+b

2
.

For the reader’s convenience let us recall definitions of the first and the second
Seiffert means, denoted by P and T , respectively, the Neuman-Sándor mean M , and
the logarithmic mean L :

P = A
v

sin−1 v
, T = A

v
tan−1 v

,

M = A
v

sinh−1 v
, L = A

v

tanh−1 v
,

(10)

(see [23], [24], [19]).
We will also utilize the l’Hôpital Monotone Rule [1]:
Let c,d ∈ R (c < d) and let f ,g : [c,d]→ R be continuous functions that are dif-

ferentiable on (c,d) . Assume that g′(x) �= 0 for each x ∈ (c,d). If f ′/g′ is increasing

(decreasing) on (c,d) , then so are
f (x)− f (c)
g(x)−g(c)

and
f (x)− f (d)
g(x)−g(d)

. If mono-

tonicity of f ′/g′ is strict, then so is monotonicity of two functions represented by the
above quotients.

3. Inequalities involving mean N

The goal of this section is to establish two inequalities which connect the Schwab-
Borchardt mean SB with the mean N . We have the following:

THEOREM 1. Let a,b > 0 , a �= b. Then

SB(a,b) <
a+2b

3
<

b+N(b,a)
2

< N(a,b). (11)

If a > b, then

N(a,b) < A < SB(b,a). (12)
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Proof. The first inequality in (11) has been established in [19]. In the proof of the
second inequality in (11) we apply the following one

b+2a
3

< N(b,a)

(see [15]) to the third member of (11) to obtain the desired result. The third inequality
in (11) appears in [15, Theorem 4.1]. It is included here for the sake of completeness.
For the proof of the first inequality in (12) we use the first part of (8) together with the
formula coshs = a/b to obtain

N(a,b) =
1
2

(
a+b

s
sinhs

)

Taking into account that (s/sinhs) < 1 we obtain the desired inequality N(a,b) < A .
For the proof of the second inequality in (12) we will utilize the invariance property of
the Schwab-Borchardt mean

SB(A,
√

Aa) = SB(b,a) (13)

(see [2, 3]) and the inequality [19]:

(xy2)1/3 < SB(x,y) (14)

(x,y > 0,x �= y). In (14) we let x = A and y =
√

Aa and next apply (13) to obtain

A2/3a1/3 < SB(b,a). (15)

The assumption that a > b yields A < a . This in conjunction with (15) gives the desired
inequality A < SB(b,a) . This completes the proof of the second inequality in (12). �

4. Bounds for N

For the sake of presentation we introduce two auxiliary functions

Φ1(r) =
2sinr− sinrcosr− r

2(sinr)(1− cosr)
(16)

(0 < r < π/2) and

Ψ1(s) =
s+ sinhscoshs−2sinhs

2(sinhs)(coshs−1)
(17)

(s > 0) . It is known [15] that the function Φ1(r) is strictly decreasing while the func-
tion Ψ1(s) is strictly increasing. Moreover, Φ1(0+) = 1/3 and Φ1(π/2) = 1−π/4.
Also, Ψ1(0+) = 1/3 and Ψ1(∞−) = 1/2.

We are in a position to establish the following:
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THEOREM 2. If a < b, then the simultaneous inequality

αa+(1−α)b < N(a,b) < βa+(1−β )b (18)

holds true if

α � 1
3

and β � 1− π
4

= 0.214 . . . . (19)

If a > b, then the inequality (18) is valid if

α � 1
3

and β � 1
2
. (20)

Proof. We shall prove first the theorem in the case when a < b . It follows from
(18) that

β <
N/b−1
a/b−1

< α. (21)

Utilizing (7) and the first formula in (4) we can write (21) as follows

β < 1− π
4

� Φ1(r) � 1
3

< α.

Hence the assertion follows. Assume now that a > b . We follow the idea used in the
first part of this proof. Let us note that in this case inequalities in (21) are reversed, i.e.
we have α < Ψ1(s) < β . Combining this with relevant parts of l’Hôpital Monotone
Rule yields

α <
1
3

� Ψ1(s) � 1
2

< β .

The proof is complete. �
In the proof of the next result we will utilize the following function

Φ2(r) =
r2 + r sinrcosr−2sin2 r

2(sinr)(r− sin r)
(22)

(0 < r < π/2) .
Our next task is to determine all the parameters α and β for which the following

inequality

αb+(1−α)SB(a,b)< N(a,b) < βb+(1−β )SB(a,b), (23)

is satisfied for positive numbers a and b which satisfy the condition a < b .
We shall prove now the following:

THEOREM 3. Inequality (23) holds true if

α � 0 and β � π2−8
4π −8

= 0.409 . . . . (24)
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Proof. Let a < b . Making use of (3) and (7) we can easily show that the two-sided
inequality (23) can be written in the form

α < Φ2(r) < β . (25)

Taking into account that the function Φ2(r) is strictly increasing (see [22, Lemma 2.4])
and also that Φ2(0+) = 0 and Φ2(π/2) = (π2−8)/(4π−8)) we conclude, using (25),
that conditions (24) must be satisfied in order for the inequality (23) to be valid. �

We shall now illustrate the last result with the following:

EXAMPLE 1. Let A and G stand for the unweighted arithmetic and geometric
means of two positive unequal numbers, and also let P be the first Seiffert mean of
the same numbers. Writing NGA for N(G,A) we obtain using (23) and the fact that
P = SB(G,A)

αA+(1−α)P < NGA < βA+(1−β )P,

where α and β must to satisfy conditions (24). In particular, with α = 0 and β = 1
2 ,

we obtain the inequality

P < NGA <
1
2
(A+P)

which is a possibly a new one.

We shall discuss now a problem of finding bounds for N(a,b) in the form of
geometric means of a and b :

aαb1−α < N(a,b) < aβ b1−β . (26)

We have the following:

THEOREM 4. If a < b, then the inequality (26) is satisfied for all numbers α and
β such that α � 1/3 and β � 0 . Otherwise, if a > b, then (26) is valid if α � 1/3
and β � 1 .

Proof. For the proof of the first part of the assertion we rewrite (26) a as follows

β <
log(N/b)
log(a/b)

< α, (27)

where N ≡ N(a,b) . Using (4) and (7) we write the above two-sided inequality as

β < Φ3(r) < α

where

Φ3(r) =
log(sin2r+2r)− log(2sinr)− log2

log(cosr)

(0 < r < π/2) . It is known (see [6, Lemma 2.3]) that the function Φ3(r) is strictly
decreasing on (0,π/2) . Moreover, 0 � Φ3(r) � 1/3 on the stated domain. Hence the
assertion follows.
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The second part of the thesis can be established in a similar manner. Using (26)
we have

α <
log(N/b)
log(a/b)

< β

Utilizing (4) and (8) we can write the above inequality in the form

α < Ψ3(s) < β ,

where

Ψ3(s) =
log(sinh2s+2s)− log(2sinhs)− log2

log(coshs)

(s > 0) . Making use of Lemma 2.4 in [6] we conclude that the function Ψ3(s) is
strictly increasing provided s > 0 and also that 1/3 � Ψ3(s) � 1. The assertion now
follows. The proof is complete. �

We shall now deal with problems of finding bounds for the reciprocals of the mean
N in terms of reciprocals of its variables a and b . Let now a < b . More exactly we are
looking for all numbers α and β for which the inequality

α
1
a

+(1−α)
1
b

<
1
N

< β
1
a

+(1−β )
1
b

(28)

holds true.

THEOREM 5. If a < b, then the inequality (28) is satisfied provided α � 0 and
β � 1/3 . Otherwise, if a > b, then the inequalities (28) hold true if α � 1 and β �
1/3 .

Proof. It is easy to see that (28) is equivalent to

α <

a
b

1− a
b

1− N
b

N
b

< β

provided a < b . Let us denote the second member of the above inequality by Φ4 . Then
utilizing (4) and (7) we get

Φ4 ≡ Φ4(r) =
cosr

1− cosr
2sinr− sinrcosr− r

sinrcosr+ r

(0 < r < π/2) . Making use of Lemma 2.8 in [4] we conclude that the function Φ4(r)
is strictly decreasing on its domain and also that Φ4(0+) = 1/3 and Φ4(π/2)= 0. This
yields

α < 0 � Φ4(r) � 1/3 < β (29)

This completes the proof of the first part of the thesis of our theorem.
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Assume now that a > b . It is easy to see that the two-sided inequality (28) can be
written as

β <
a/b

1−a/b
1−N/b

N/b
< α.

Denote the middle member of the above inequality by Ψ4 ≡Ψ4(s) (s > 0) . Using
(4) and (8) we get

Ψ4(s) =
cosh(s)

1− coshs
2sinh(s)− sinhscoshs− s

sinhscoshs+ s
.

Making use of Lemma 2.6 in [4] we conclude that the function Ψ4(s) is strictly increas-
ing for all s > 0 and also that Ψ4(0+) = 1/3. and Ψ4(∞−) = 1. Hence the assertion
follows. �

5. The Ky Fan inequalities involving mean N

Ky Fan inequalities for various pairs of means have been a subject of many re-
search papers published in mathematical literature. The Ky Fan inequalities for the
Schwab-Borchardt mean are derived in [19] while the Ky Fan inequalities for particular
means derived from the N mean are established in [15].

The goal of this section is to establish Ky Fan inequalities for the means N(a,b)
and N(b,a) . Before we will state and prove the main result of this section let us intro-

duce more notation. To this end we will assume that 0 < a,b � 1
2

. Also, let a′ = 1−a

and b′ = 1−b . Research in this section is motivated by validity of the inequality [15,
Theorem 4.1]:

b < N(a,b) < N(b,a) < a

provided b < a . It is natural to ask whether this inequality has its counterpart in the
form of Ky Fan inequality? The answer is provided in the following:

THEOREM 6. Let 0 < b < a � 1
2

. Then the inequalities

b
b′

<
N(a,b)
N(a′,b′)

<
N(b,a)
N(b′,a′)

<
a
a′

(30)

are valid. Inequalities (30) are reversed if 0 < a < b � 1
2

.

Proof. It is elementary to show that assumption 0 < b < a � 1
2

implies the in-

equality
b
b′

<
a
a′

. (31)

We shall establish now inequalities (30). For, let us write the leftmost inequality in (30)
as follows

N(a′,b′)
b′

<
N(a,b)

b
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and also introduce f1 , where

f1 =
N(a,b)

b
.

Application of (8) gives

f1 ≡ f1(s) =
sinhscoshs+ s

2sinhs
=:

n1(s)
d1(s)

,

where coshs = a/b. It is known that the function f1(s) is even and strictly increasing
for s > 0 (see [15, p. 287]). Let s′ be defined implicitly as coshs′ = a′/b′ . Then (31)
implies coshs′ < coshs and this in turn yields s′ < s . Further, monotonicity of f1 gives
f1(s′) < f1(s) or what is the same that

N(a′,b′)
b′

<
N(a,b)

b
.

Hence the first inequality in (30) follows. For the proof of the second inequality in (30)
we introduce

f2 =
N(b,a)
N(a,b)

.

Using (7) and (8) we obtain

f2 =
sinrcosr+ r

(sinr)
(
1+

s
sinhscoshs

) . (32)

Taking into account that coshs = sec r we obtain sinhs = tanr and s = cosh−1(sec r) .
With the aid of these formulas we can write (32) as

f2(r) =
sinrcosr+ r

sin r+ cos2 rcosh−1(sec r)
=:

n2(r)
d2(r)

(0 < r < π/2) . We shall show now that the function f2(r) is strictly increasing on its
domain. Differentiating we obtain

(
n′2(r)
d′

2(r)

)′
=

cosh−1(sec r)
[(sinr)cosh−1(sec r)−1]2

> 0.

Thus the function n′2(r)
d′2(r)

is strictly increasing. Using l’Hôpital Monotone Rule we con-

clude that the function f2 = n2(r)
d2(r)

is also strictly increasing. Thus f2(s′) < f2(s). The
last inequality can be written in terms of the mean N as

N(b′,a′)
N(a′,b′)

<
N(b,a)
N(a,b)

which gives the second inequality in (30). In the proof of the third inequality in (30) we
shall use quantity f3 , where

f3 =
a

N(b,a)
.
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Making use of (7) we obtain

f3 ≡ f3(r) =
2sinr

sinrcosr+ r
=:

n3(r)
d3(r)

(0 < r < π/2) . It follows from the proof of Theorem 6.1 in [15] that f3(r) is strictly
increasing on 0 < r < π/2. This in turn implies that f3(s′) < f3(s). Thus the last
inequality gives

a′

N(b′,a′)
<

a
N(b,a)

.

The third inequality in (30) now follows. The second assertion of the Theorem 6 can
be derived from the first one. It is easy to see that replacing a by b and b′ by a′ gives

the desired result. Let us note that the assumption 0 < a < b � 1
2

yields

b
b′

>
a
a′

.

The proof is complete. �
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