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ON SOME PROPERTIES OF STRICTLY CONVEX FUNCTIONS

WITOLD JARCZYK AND KAZIMIERZ NIKODEM

(Communicated by S. Varošanec)

Abstract. We prove that some careless modification of the definition of strong convexity leads
to a condition which is equivalent to that one of strict convexity.

Given a convex subset D of a real linear space a function f : D → R is called
convex if ∧

x,y∈D

∧
t∈(0,1)

f (tx+(1− t)y) � t f (x)+ (1− t) f (y)

and strictly convex if the above inequality is strict whenever x �= y :∧
x,y∈D
x�=y

∧
t∈(0,1)

f (tx+(1− t)y) < t f (x)+ (1− t) f (y).

Replacing the signs ” � ” and ” < ” by ” � ” and ” > ” above we come to the notions
of concavity and strict concavity, respectively. Clearly every strictly convex function is
convex but the converse fails to be true: the function R � x �−→ x serves as an example.

If the considered space is endowed with a norm ‖·‖ we can introduce one notion
related to the convexity more. Namely, a function f : D → R is said to be strongly
convex with modulus c ∈ (0,+∞) if

∧
x,y∈D

∧
t∈(0,1)

f (tx+(1− t)y) � t f (x)+ (1− t) f (y)− ct(1− t)‖x− y‖2 .

We say that f is strongly convex if it is strongly convex with some positive modulus.
Similarly we introduce the notion of strong concavity.

It seems that the notion of strong convexity was introduced by Polyak [6] in 1966.
Strongly convex functions play an important role in optimization theory and mathemat-
ical economics. Many properties and applications of them can be found in the literature.
Let us mention here the papers by Vial [8], Montrucchio [2], Jovanovič [1], Polovinkin
[5]. Also the classical book [7] due to Roberts and Varberg contains some information
on that notion. Finally let us mention the paper [4] by the second present author; that is
a survey article entirely devoted to strongly convex functions.
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Evidently every strongly convex function is strictly convex. However, the converse
is generally not the case: the exponential function R � x �−→ expx is strictly convex
but it is not strongly convex with any modulus c ∈ (0,+∞) ; as any two norms in R

(endowed with the usual linear operations) are equivalent, the latter does not depend on
the norm considered there.

The main aim of this note is to answer the following question: what can be said if
we make a typical ”student” mistake and formally change the order of quantifiers in the
definition of strong convexity: namely, instead of the condition∨

c∈(0,+∞)

∧
x,y∈D

∧
t∈(0,1)

f (tx+(1− t)y) � t f (x)+ (1− t) f (y)− ct(1− t)‖x− y‖2

we consider a weaker one∧
x,y∈D

∨
c∈(0,+∞)

∧
t∈(0,1)

f (tx+(1− t)y) � t f (x)+ (1− t) f (y)− ct(1− t)‖x− y‖2 . (1)

We prove that, rather unexpectedly, the following result holds.

THEOREM. Let D be a convex subset of a real normed space and let f : D → R .
Then condition (1) holds if and only if f is strictly convex.

Proof. Assume that the function f is strictly convex. To prove (1) fix points x,y ∈
D . Without loss of generality we may assume that x �= y . It is well known that the
function Fx,y : [0,1] → R , given by

Fx,y(t) = f (tx+(1− t)y),

is strictly convex (see for instance [3, Prop. 3.4.2]; the reader can also verify this fact
via routine calculation). Define the function Gx,y : [0,1] → R by

Gx,y(t) = t f (x)+ (1− t) f (y)− f (tx+(1− t)y).

Then

Gx,y(t) = t f (x)+ (1− t) f (y)−Fx,y(t), t ∈ [0,1],

so Gx,y is strictly concave as the difference of an affine function and a strictly convex
one. In what follows to simplify the notation write G instead of Gx,y . Observe that G
is continuous, G(0) = G(1) = 0 and, by the strict convexity of f , we have G(t) > 0
for every t ∈ (0,1) .

For any c ∈ (0,+∞) define a function Rc : (0,1) → R by

Rc(t) = ct(1− t)‖x− y‖2 .

To get (1) it is enough to prove the existence of a c ∈ (0,+∞) satisfying

Rc(t) � G(t), t ∈ (0,1).
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Suppose on the contrary that this is not the case. Then there exists a sequence (tn)n∈N

of numbers from (0,1) such that

R1/n (tn) > G(tn) , n ∈ N.

Choose a subsequence (tkn)n∈N
of (tn)n∈N

converging to a t0 ∈ [0,1] . Then, since
t(1− t) � 1/4 for all t ∈ R , we have

G(tkn) < R1/kn (tkn) =
1
kn

tkn (1− tkn)‖x− y‖2 � ‖x− y‖2

4kn

for each n∈N . Therefore, by the continuity of G , we get G(t0) � 0, and thus G(t0) =
0, whence either t0 = 0, or t0 = 1. Assume, for instance, that t0 = 0. Since G(0) =
0 < G(t) for t ∈ (0,1) and G is concave, it follows that G has a positive derivative at
0 . On the other hand

G(tkn)
tkn

<
R1/kn (tkn)

tkn

=
‖x− y‖2

kn
(1− tkn) <

‖x− y‖2

kn
, n ∈ N,

whence

G′(0) = lim
n→∞

G(tkn)
tkn

� 0,

a contradiction. Consequently, condition (1) holds.
The converse implication is obvious. �
It turns out that if we additionally assume the continuity of a strictly convex func-

tion f : D→R , then also c : D×D→ (0,+∞) provided by condition (1) can be chosen
regular in a sense.

COROLLARY. Let D be a convex subset of a real normed space and let f : D→R .
If the function f is continuous and strictly convex, then there exists an upper semicon-
tinuous function c0 : D×D \Δ → (0,+∞) , where Δ = {(x,y) ∈ D×D : x = y} , such
that

f (tx+(1− t)y) � t f (x)+ (1− t) f (y)− c0(x,y)t(1− t)‖x− y‖2

for all x,y ∈ D with x �= y and t ∈ (0,1) .

Proof. Since f is continuous it follows that for every t ∈ (0,1) the function

D×D � (x,y) �−→ Gx,y(t) = t f (x)+ (1− t) f (y)− f (tx+(1− t)y)

is continuous. Now putting

c0(x,y) := inf

{
Gx,y(t)

t(1− t)‖x− y‖2 : t ∈ (0,1)

}

for each x,y ∈D, x �= y , we see that the function c0 : D×D\Δ → R is upper semicon-
tinuous.
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On account of the Theorem, for all x,y ∈ D with x �= y , there exists a c(x,y) ∈
(0,+∞) such that

f (tx+(1− t)y) � t f (x)+ (1− t) f (y)− c(x,y)t(1− t)‖x− y‖2 , t ∈ (0,1),

that is

0 < c(x,y) � Gx,y(t)

t(1− t)‖x− y‖2 , t ∈ (0,1).

Thus

0 < c(x,y) � c0(x,y) � Gx,y(t)

t(1− t)‖x− y‖2 , t ∈ (0,1),

whenever x,y ∈ D and x �= y , which proves that the function c0 takes only positive
values and satisfies the inequality stated in the assertion. �
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