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CHEBYSHEV–GRÜSS TYPE INEQUALITIES ON TIME

SCALES VIA TWO LINEAR ISOTONIC FUNCTIONALS

LUDMILA NIKOLOVA AND SANJA VAROŠANEC

(Communicated by K. Nikodem)

Abstract. We give a generalization of the Chebyshev-Grüss inequality by using the concept of
derivative on time scales combined with application of the Chebyshev inequality involving two
linear isotonic functionals. This approach covers integral case, discrete case, results from frac-
tional and quantum calculus.

1. Introduction and preliminaries

The well-known classical Chebyshev inequality for Riemann integrals states that
if p, f and g are integrable real functions on [a,b] ⊂ R , p � 0, and if f and g are
similarly ordered, then

∫ b

a
p(x)dx

∫ b

a
p(x) f (x)g(x)dx �

∫ b

a
p(x) f (x)dx

∫ b

a
p(x)g(x)dx. (1)

If f and g are oppositely ordered then the reverse of the inequality in (1) is valid, [12,
p. 239].

There is another inequality which is also joined with the name of Chebyshev. In
literature it is known as the Chebyshev-Grüss inequality. It is an inequality which
gives an upper bound for the absolute value of the Chebyshev difference involving the
supremum of the first derivative of functions f and g . Precisely, the Chebyshev-Grüss
inequality is the following result, [12, p. 297].

THEOREM 1. Let f ,g : [a,b] → R be absolutely continuous functions. If f ′,g′ ∈
L∞[a,b] , then∣∣∣∣ 1

b−a

∫ b

a
f (x)g(x)dx−

(
1

b−a

∫ b

a
f (x)dx

)(
1

b−a

∫ b

a
g(x)dx

)∣∣∣∣
� 1

12
(b−a)2‖ f ′‖∞ · ‖g′‖∞. (2)
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The difference on the right hand side, under the sign of absolute value, is called
the Chebyshev difference or the Chebyshev functional. Usually it is given in weighted
version as follows

T ( f ,g, p) =
∫ b

a
p(x)dx

∫ b

a
p(x) f (x)g(x)dx−

∫ b

a
p(x) f (x)dx

∫ b

a
p(x)g(x)dx.

There exist a lot of estimations for T , but the most known is the Grüss inequality
which states that

|T ( f ,g, p)| �
√

T ( f , f , p)T (g,g, p)

and if numbers m,M,n,N are such that m � f (x) � M , n � g(x) � N for all x ∈ [a,b] ,
then

|T ( f ,g, p)| � 1
4
(M−m)(N−n)

(∫ b

a
p(x)dx

)2

.

Until now, Grüss type inequalities are investigated in different settings. There exist
results involving sequences, functions, functionals, matrices, operators etc. In the paper
[13] authors open new direction of investigation using two linear functionals instead of
only one.

The lower bound for the Chebyshev difference is given in the following theorem,
[14].

THEOREM 2. Let f and g be two differentiable functions on [a,b] , monotonic in
the same direction and p � 0 . If | f ′(x)| � m � 0 and |g′(x)| � r � 0 on [a,b] , then

T ( f ,g, p) � mrT (x−a,x−a, p). (3)

Since discrete versions of inequalities (1), (2) and (3) are also known, see for
example [12, p. 240], [14], it is a natural question to ask: Does a general approach
which covers integral and discrete versions of the above-mentioned inequalities exist?
The answer is affirmative and it is given by a method of calculus on time scales. In
this approach the Chebyshev inequality involving two isotonic linear functionals plays
a main role. Let us mention some definitions and theorems related to that topic.

Let E be a non-empty set and L be a class of real-valued functions on E satisfying
that a linear combination of functions from L is also in L and the function 1 belongs to
L , (1(t) = 1 for t ∈ E ). A functional A : L → R is called an isotonic linear functional
if it is linear and has a property: if f ∈ L is non-negative, then A( f ) � 0.

The main subject in the Chebyshev inequality is a pair of similarly or oppositely
ordered functions. We say that functions f and g on E are similarly ordered (or syn-
chronous) if for each x,y ∈ E

( f (x)− f (y))(g(x)−g(y)) � 0.

If the reversed inequality holds, then we say that f and g are oppositely ordered or
asynchronous.

Let us mention very recently proved result, [13].
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THEOREM 3. (The Chebyshev inequality for two isotonic linear functionals) Let A
and B be two isotonic linear functionals on L and let f ,g be two functions on E such
that f , g , f g ∈ L. If f and g are similarly ordered functions, then

A( f g)B(1)+A(1)B( f g) � A( f )B(g)+A(g)B( f ). (4)

If f and g are oppositely ordered functions, then the reverse inequality in (4) holds.

Putting A = B in (4) and divided by 2 we get the Chebyshev inequality for one
isotonic positive functional. As we see, in the Chebyshev-Grüss inequality the first
derivative of functions f and g has appeared. In this paper we use a Δ-derivative
of function defined on a time scale set T . Let us mention here some definitions and
properties from the time scale theory which we use in our research. For more details
see [1, 5, 6, 11, 18].

A time scale T is an arbitrary non-empty closed subset of the set R . A segment
[a,b] in T is defined as [a,b] = {t ∈T : a � t � b} . Other kinds of intervals are defined
similarly. On T we define two jump operators ρ and σ :

ρ(t) = sup{s ∈ T : s < t}, σ(t) = inf{s ∈ T : s > t}.
A point t ∈ T is called left-dense if t > infT and ρ(t) = t , left scattered if ρ(t) <
t , right-scattered if σ(t) > t and right-dense if t < supT and σ(t) = t . If T has a
left- scattered maximum M , then T

k = T\{M} , otherwise T
k = T . If T has a right-

scattered minimum m , then Tk = T\{m} , otherwise Tk = T .
We say that f : T → R has the delta derivative f Δ(t) ∈ R at t ∈ T

k (provided it
exists) if for each ε > 0 there exists a neighborhood U of t in T such that

| f (σ(t))− f (s)− f Δ(t)(σ(t)− s)| � ε|σ(t)− s| for all s ∈U.

On a similar way we define the nabla derivative (∇-derivative) f ∇(t) , [18]. For f :
T → R and t ∈ Tk the nabla derivative at t is the number (provided it exists) such that
for each ε > 0 there exists a neighborhood U of t in T such that

| f (ρ(t))− f (s)− f ∇(t)(ρ(t)− s)|� ε|ρ(t)− s| for all s ∈U.

A function f : T → R is called Δ-predifferentiable with region of differentiation
D provided that the following conditions hold: f is continuous on T ; D⊂ T

k , T
k −D

is countable and contains no right-scattered elements of T and f is Δ-differentiable
at each t ∈ D , ([6, 11, 18]). Similarly, a ∇-predifferentiable function is defined in
[18]. As a consequence of the mean-value theorem we have the following statement,
([6, 11]):

Let f : T → R be a Δ-predifferentiable function with region of differentiation D.
If f Δ(t) � 0 for all t ∈ D, then f is increasing on T .

Similar statement holds for ∇-predifferentiable f , [18].
The paper is organized in the following way. After this chapter with described

motivation, definitions and useful properties, we follow with Chebyshev-Grüss type
inequality involving two linear isotonic functionals in general settings - in time scales
theory. The third section is devoted to results involving lower bounds for the Chebyshev
difference and in the last chapter we give several examples.
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2. Upper bound for the Chebyshev difference

As we say at the beginning of the paper we estimate a difference between two
sides in the Chebyshev inequality for two functionals (4). For that difference we use
the abbreviation T ( f ,g) , i.e.

T ( f ,g) = A(1)B( f g)+B(1)A( f g)−A( f )B(g)−A(g)B( f ).

By linearity of functionals A and B we have that T is linear in each argument.
In this section, set E is a time scale T and L is a set of real functions defined on

T . This section is devoted to generalization of the classical Chebyshev-Grüss inequality
(2). The main theorem is the following.

THEOREM 4. Let A and B be two isotonic linear functionals on L. Let f , g ,
h1 , h2 : T → R be Δ-predifferentiable functions with region of differentiation D, such
that T ( f ,g) , T (h1,g) , T ( f ,h2) and T (h1,h2) exist and hΔ

1 , hΔ
2 don’t change the sign,

hΔ
1 (t) , hΔ

2 (t) �= 0 for t ∈ D. Then

|T ( f ,g)| �
∥∥∥∥ f Δ

hΔ
1

∥∥∥∥
∞

∥∥∥∥gΔ

hΔ
2

∥∥∥∥
∞
|T (h1,h2)|, (5)

where

∥∥∥∥ f Δ

hΔ
1

∥∥∥∥
∞

= sup
t∈D

∣∣∣∣ f Δ(t)
hΔ

1 (t)

∣∣∣∣ .

Proof. Let us suppose that hΔ
1 > 0, hΔ

2 > 0. Denote by

F =
∥∥∥∥ f Δ

hΔ
1

∥∥∥∥
∞

, G =
∥∥∥∥gΔ

hΔ
2

∥∥∥∥
∞

.

Without loss of generality we may assume that F,G < ∞ . Then functions Fh1 + f ,

Gh2 + g are increasing. Namely, from assumptions we get
∣∣∣ f Δ

hΔ
1

∣∣∣ � F , i.e. −FhΔ
1 �

f Δ � FhΔ
1 , so (Fh1 + f )Δ � 0 on D and Fh1 + f is increasing on T . Similarly, we

get (Gh2 +g)Δ � 0. Using the same arguments we obtain that functions Fh1− f and
Gh2−g are increasing.

So we can use the Chebyshev inequality for two functionals, i.e. we have

T (Fh1 + f ,Gh2 +g) � 0 and T (Fh1− f ,Gh2−g) � 0.

By properties of T we get

T ( f ,g)+FG ·T (h1,h2)+F ·T (h1,g)+G ·T( f ,h2) � 0

T ( f ,g)+FG ·T (h1,h2)−F ·T (h1,g)−G ·T( f ,h2) � 0.

Adding these two inequalities we obtain

T ( f ,g) � −FG ·T (h1,h2).

Since G =
∥∥∥ (−g)Δ

hΔ
2

∥∥∥
∞

we can write T ( f ,−g) � −FG ·T(h1,h2) and we get

T ( f ,g) � FG ·T(h1,h2).
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Since h1 and h2 are similarly ordered, we have T (h1,h2) � 0, that means

|T ( f ,g)| � FG ·T (h1,h2) = FG · |T (h1,h2)|,
which is in fact, inequality (5).

Suppose that hΔ
1 > 0, hΔ

2 < 0. We apply the above-proved result replacing the
function h2 by −h2 . Since ∣∣∣∣ gΔ(t)

(−h2)Δ(t)

∣∣∣∣ =
∣∣∣∣g

Δ(t)
hΔ

2 (t)

∣∣∣∣
we get (5) also in this case. The other two possibilities for h1 and h2 can be regarded
in the same way. �

In the previous theorem we can substitute Δ with ∇ . Then the previous theorem
becomes as the following:

THEOREM 5. Let A and B be two isotonic linear functionals. Let f , g , h1 ,
h2 : T → R be ∇-predifferentiable functions with region of differentiation D, such that
T ( f ,g) , T (h1,g) , T ( f ,h2) and T (h1,h2) exist and h∇

1 , h∇
2 don’t change the sign,

h∇
1 (t) , h∇

2 (t) �= 0 for t ∈ D. Then

|T ( f ,g)| �
∥∥∥∥∥

f ∇

h∇
1

∥∥∥∥∥
∞

∥∥∥∥∥
g∇

h∇
2

∥∥∥∥∥
∞

|T (h1,h2)|. (6)

3. Additional results for bounds of T ( f ,g)

The following theorem is a generalization of (3). In fact this result gives us ad-
ditional information about bounds for T ( f ,g) together with the Chebyshev-Grüss in-
equality.

THEOREM 6. Let A and B be two isotonic linear functionals. Let f , g , h1 ,
h2 : T → R be Δ-predifferentiable functions with region of differentiation D, such that
T ( f ,g),T ( f ,h2) , T (h1,g) and T (h1,h2) exist.

(i) If hΔ
1 ,hΔ

2
�

(�)0 and if

(
f Δ �

(�)mhΔ
1 and gΔ �

(�) rhΔ
2

)
or

(
f Δ �

(�) −mhΔ
1 and gΔ �

(�) − rhΔ
2

)

for some non-negative m,r , then

T ( f ,g) � mr ·T (h1,h2) � 0.

(ii) If hΔ
1

�
(�)0 , hΔ

2
�

(�) 0 and if

(
f Δ �

(�)mhΔ
1 and gΔ �

(�) rhΔ
2

)
or

(
f Δ �

(�) −mhΔ
1 and gΔ �

(�) − rhΔ
2

)

for some m,r � 0 , then
T ( f ,g) � mr ·T (h1,h2) � 0.



1422 L. NIKOLOVA AND S. VAROŠANEC

(iii) If hΔ
1 ,hΔ

2
�

(�) 0 and if(
f Δ �

(�)mhΔ
1 and gΔ �

(�) − rhΔ
2

)
or

(
f Δ �

(�) −mhΔ
1 and gΔ �

(�) rhΔ
2

)
,

m,r � 0 , then
T ( f ,g) � −mr ·T (h1,h2) � 0.

(iv) If hΔ
1

�
(�) 0 , hΔ

2
�

(�) 0 and if(
f Δ �

(�)mhΔ
1 and gΔ �

(�) − rhΔ
2

)
or

(
f Δ �

(�) −mhΔ
1 and gΔ �

(�) rhΔ
2

)
,

m,r � 0 , then
T ( f ,g) � −mr ·T (h1,h2) � 0.

Proof. Let us prove one case (among possible 16 cases) in details. Let hΔ
1 ,hΔ

2 � 0
and f Δ � mhΔ

1 , and gΔ � rhΔ
2 . Considering Δ-derivatives of functions f −mh1 and

g− rh2 we find that
( f −mh1)Δ � 0 and (g− rh2)Δ � 0,

hence f −mh1 and g−rh2 are increasing. Furthermore, from assumption f Δ � mhΔ
1 �

0 we conclude that f is increasing. Applying the Chebyshev inequality (4) on two
increasing functions f −mh1 and h2 we get

T ( f −mh1,h2) � 0, i.e. T ( f ,h2) � mT (h1,h2). (7)
Similarly, applying the Chebyshev inequality for two functionals (4) on two increasing
functions g− rh2 and f we get

T (g− rh2, f ) � 0, i.e. T ( f ,g) � rT ( f ,h2). (8)
From (7) and (8) we get

T ( f ,g) � rT ( f ,h2) � mr ·T (h1,h2) � 0,
where the last inequality is true since h1 and h2 are increasing. Other cases are proved
in a similar manner. �

COROLLARY 1. Let A and B be isotonic linear functionals on L, and let f ,g :
T → R be Δ-predifferentiable functions with region of differentiation D such that 0 �
m � gΔ(x) � M for x ∈ D.

(i) If f Δ � 0 , then
m ·T ( f ,e1) � T ( f ,g) � M ·T ( f ,e1), (9)

where e1(x) = x .

(ii) If f Δ � 0 , then the reverse signs in the above inequality hold.

Proof. Putting in the previous theorem 6(i):
f = f , g = g, h1 = f , h2 = e1, m = 1, r = m

we get the first inequality in (9). The second inequality is a consequence of Theorem 4.
Of course, this corollary can be proved directly applying the Chebyshev inequality on
pairs of functions f and g−me1 , or f and Me1 −g . �

REMARK 1. If in Theorem 6 and Corollary 1 we substitute Δ with ∇ we get
corresponding results from ∇ calculus.
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4. Applications

In this section we give applications of the previous theorems for some particular
cases. Also, we list papers in which particular cases of results from Sections 2 and 3
appear.

4.1. Δ-integral

Let a,b ∈ T with a < b and let A and B be Cauchy Δ-integrals of f , i.e. A( f ) =
B( f ) =

∫ b
a w(x) f (x)Δx , w � 0. Definition and properties of it are given in [5] and [11].

Using the fact that A is an isotonic linear functional (see [2]), and if assumptions of
Theorem 4 are satisfied we get the following Chebyshev-Grüss inequality:∣∣∣∣

∫ b

a
w(x)Δx

∫ b

a
w(x) f (x)g(x)Δx−

∫ b

a
w(x) f (x)Δx

∫ b

a
w(x)g(x)Δx

∣∣∣∣
�

∥∥∥∥ f Δ

hΔ
1

∥∥∥∥
∞

∥∥∥∥gΔ

hΔ
2

∥∥∥∥
∞

∣∣∣∣
∫ b

a
w(x)Δx

∫ b

a
w(x)h1(x)h2(x)Δx

−
∫ b

a
w(x)h1(x)Δx

∫ b

a
w(x)h2(x)Δx

∣∣∣∣ . (10)

Let us mention that, in general, Theorem 4 gives us a result for two different linear
functionals, so we can, for example, use integrals with different weights.

REMARK 2. In paper [16, Theorem 9] another version of the Chebyshev-Grüss
inequality (10) is given. They used h1(t) = h2(t) = t and it is proved via the generalized
Montgomery identity.

Results of Theorem 6 and Corollary 1 for Δ-integral seem to be quite new.

4.2. ∇-integral

Let us define A as A( f ) =
∫ b
a w(x) f (x)∇x = B( f ) . More about ∇-integral, es-

pecially about its properties and connections with the theory of linear functionals can
be found in [2] and [5]. Applying Theorem 5 we get the following Chebyshev-Grüss
inequality:∣∣∣∣

∫ b

a
w(x)∇x

∫ b

a
w(x) f (x)g(x)∇x−

∫ b

a
w(x) f (x)∇x

∫ b

a
w(x)g(x)∇x

∣∣∣∣
�

∥∥∥∥∥
f ∇

h∇
1

∥∥∥∥∥
∞

∥∥∥∥∥
g∇

h∇
2

∥∥∥∥∥
∞

∣∣∣∣
∫ b

a
w(x)∇x

∫ b

a
w(x)h1(x)h2(x)∇x

−
∫ b

a
w(x)h1(x)∇x

∫ b

a
w(x)h2(x)∇x

∣∣∣∣ , (11)

where f ,g,h1,h2 satisfy assumptions of Theorem 5. We don’t find any results of that
type in literature and it seems new to us. Also, a ∇-analogue of Theorem 6 containts
new results.
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4.3. q -integral

Let 0 < q < 1, b > 0 and T = {0}∪ {bqn : n = 0,1,2, . . .} . For a function f :
T → R we have

f ∇(t) =
f (qt)− f (t)

(q−1)t
, t �= 0,

and f ∇(0) = lims→0
f (s)− f (0)

s if this limit exists. In q -calculus the number f ∇(t) is
usually noted as Dq( f )(t) and called a q -derivative of a function f at a point t . The
Jackson integral of f (or q -integral) is defined as

Iq( f ) =
∫ b

0
f (x)dq(x) := b(1−q)

∞

∑
n=0

qn f (bqn).

In particular case, when h1(x) = h2(x) = x , A = B = Iq inequality (6) becomes

|bIq( f g)− Iq( f )Iq(g)| � ||Dq( f )|| ||Dq(g)|| qb4

(1+q+q2)(1+q)2 ,

with ||Dq( f )|| = supt∈T |Dq( f )(t)| .
In [20] one can find a similar result proved by the Montgomery identity, while in

[17] an inequality of Chebyshev-Grüss type involving q -derivative and q -integral on a
general interval [a,b] is given. The proof of the last-mentioned result is based on the
properties of Lipschitz functions.

4.4. Continuous case – isotonic functionals, the Riemann integral

If Δ-derivative coincides with classical derivative a result from Theorem 4 for one
linear functional, i.e. a case A = B is given in [15]. In that paper the proof is based on
the Cauchy mean-value theorem. A case when h1 = h2 = h is rediscovered in [10] but
using different proof. In fact, that proof is based on the Chebyshev inequality and we
use their idea in our proof of Theorem 4.

Furthermore, if A( f ) = B( f ) =
∫ b
a w(x) f (x)dx , w � 0, then inequality (5) be-

comes: ∣∣∣∣
∫ b

a
w(x)dx

∫ b

a
w(x) f (x)g(x)dx−

∫ b

a
w(x) f (x)dx

∫ b

a
w(x)g(x)dx

∣∣∣∣ (12)

�
∥∥∥∥ f ′

h′1

∥∥∥∥
∞

∥∥∥∥ g′

h′2

∥∥∥∥
∞

∣∣∣∣
∫ b

a
w(x)dx

∫ b

a
w(x)h1(x)h2(x)dx −

∫ b

a
w(x)h1(x)dx

∫ b

a
w(x)h2(x)dx

∣∣∣∣ ,
where f ,g,h1,h2 satisfy assumptions of Theorem 4 for this particular case. The case
when h1(x) = h2(x) = x is proved in [9]. For w = 1 we get inequality (2).

Putting in Theorem 6(i): A( f ) = B( f ) =
∫ b
a w(t) f (t)dt , h1(x) = h2(x) = x−a , f

and g are two differentiable, monotonic functions in the same direction with | f ′(x)| �
m and |g′(x)| � r on [a,b] , then we get result from [14].

If h1(x) = x−a , h2(x) = b− x , f and g are two differentiable, monotonic func-
tions in the opposite direction with | f ′(x)| � m and |g′(x)|� r on [a,b] , then Theorem
6(ii) gives result from [14], also.



CHEBYSHEV-GRÜSS TYPE INEQUALITIES 1425

4.5. Continuous case – fractional integral operators

Let us consider a fractional hypergeometric operator Iα ,β ,η,μ
t which covers several

types of well-known fractional operators: the Riemann-Liouville fractional integral op-
erator (β = −α , η = μ = 0), the Erdélyi-Kober operator (β = 0,μ = 0) and Saigo
operator (μ = 0).

If t > 0, α > max{0,−β −μ} , μ > −1, β −1 < η < 0, then a fractional hyper-
geometric operator is defined as

A( f )= Iα ,β ,η,μ
t { f} :=

t−α−β−2μ

Γ(α)

∫ t

0
σ μ(t−σ)α−1

2 F1

(
α+β+μ ,−η ,α;1−σ

t

)
f (σ)dσ

where the function 2F1(a,b,c,t) =
∞

∑
n=0

(a)n(b)n

(c)n

tn

n!
is the Gaussian hypergeometric

function and (a)n is the Pochhammer symbol: (a)n = a(a+1) . . .(a+n−1) , (a)0 =
1, [3]. A functional A( f ) = Iα ,β ,η,μ

t { f (t)} is isotonic linear, so we can write the
Chebyshev-Grüss type inequality for fractional hypergeometric operators.

THEOREM 7. Let p, q , f , g , h1 , h2 be functions on [0,∞) , p , q � 0 , f , g
differentiable, h1 , h2 differentiable, strictly monotonic in the same direction. Let t >
0 , α > max{0,−β − μ} , μ > −1 , β − 1 < η < 0 , γ > max{0,−δ − ν} , ν > −1 ,
δ −1 < ζ < 0 .

If
∥∥∥ f ′

h′1

∥∥∥
∞

,
∥∥∥ g′

h′2

∥∥∥
∞

< ∞ , then

|Iα ,β ,η,μ
t {p}Iγ,δ ,ζ ,ν

t {q f g}+ Iα ,β ,η,μ
t {p f g}Iγ,δ ,ζ ,ν

t {q}− Iα ,β ,η,μ
t {p f}Iγ,δ ,ζ ,ν

t {qg}
−Iα ,β ,η,μ

t {pg}Iγ,δ ,ζ ,ν
t {q f}|

�
∥∥∥∥ f ′

h′1

∥∥∥∥
∞

∥∥∥∥ g′

h′2

∥∥∥∥
∞

∣∣∣Iα ,β ,η,μ
t {p}Iγ,δ ,ζ ,ν

t {qh1h2}+ Iα ,β ,η,μ
t {ph1h2}Iγ,δ ,ζ ,ν

t {q}

−Iα ,β ,η,μ
t {ph1}Iγ,δ ,ζ ,ν

t {qh2}− Iα ,β ,η,μ
t {ph2}Iγ,δ ,ζ ,ν

t {qh1}
∣∣∣ .

Proof. It is a consequence of Theorem 4 for A( f ) = Iα ,β ,η,μ
t {p f} and B( f ) =

Iγ,δ ,ζ ,ν
t {q f} . �

A particular case of Theorem 7 for two Riemann-Liouville fractional operators
A( f ) = Jα p f (t) , B( f ) = Jβ q f (t) and h(t) = t is given in [8]. An analogue result for
two Riemann-Liouville q -integrals can be find in [7]. Furthermore, the Chebyshev-
Grüss type inequality for the Saigo q -integral operators is given in [19].

Some results of the third section also can be found in recent literature. For exam-
ple, if A and B are the same non-weighted Riemann-Liouville fractional integrals, i.e.
A( f ) = B( f ) = Jα f (t) , then results from Corollary 1 are given in [4]. Results of the
same Corollary but for one fractional hypergeometric operator are given in [3].

Here we give results for only one class of fractional integral operators, i.e. for frac-
tional hypergeometric operators. Of course, analogue results, which are consequences
of Theorems 4 and 6 and Corollary 1 hold for other types of fractional integral oper-
ators which have isotonic property, for example, for the Hadamard operator, for the
Katugampola operator, the Agrawal integral operator etc.
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4.6. Discrete case

Let T ⊆ N . Then functions f ,g,h1,h2 become sequences ( fk)k , (gk)k , (h1k)k ,
(h2k)k , and Δ-derivative becomes a difference Δ between two consecutive elements of
a sequence, i.e. Δak = ak+1 − ak . For this particular case a part (i) of Theorem 6 has
the following form.

THEOREM 8. Let (pk)k and (qk)k be non-negative n-tuples. If real n-tuples
(h1k)k , (h2k)k are monotonic in the same direction with property: Δhik �= 0 for all
k = 1, . . . ,n, i = 1,2 , and if for some non-negative m,r(

Δ fk
Δh1k

� m and
Δgk

Δh2k
� r

)
or

(
Δ fk
Δh1k

� −m and
Δgk

Δh2k
� −r

)

for k = 1, . . . ,n, then

∑ pk fkgk ∑qk +∑ pk ∑qk fkqk −∑ pk fk ∑qkgk −∑ pkgk ∑qk fk

� mr
(
∑ pkh1kh2k ∑qk +∑ pk ∑qkh1kh2k −∑ pkh1k ∑qkh2k −∑ pkh2k ∑qkh1k

)
.

The above result for same n -tuples p and q , h1k = h2k = k , and corresponding
variant of Theorem 4 is given in [14]. Other parts of Theorem 6 can also be given in
discrete form.
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