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GENERALIZED INTEGRAL INEQUALITIES FOR CONVEX FUNCTIONS

M. EMIN ÖZDEMIR AND ALPER EKINCI

(Communicated by S. Varošanec)

Abstract. In this paper, we prove some general inequalities for convex functions and give Os-
trowski, Hadamard and Simpson type results for a special case of these inequalities.

1. Introduction

The function f : [a,b] → R, is said to be convex, if we have

f (tx+(1− t)y) � t f (x)+ (1− t) f (y)

for all x,y ∈ [a,b] and t ∈ [0,1] . For more information see the papers [3], [1], [2].
Let f : I ⊆R→R be a convex function and let a,b∈ I, with a < b. The following

double inequality:

f

(
a+b

2

)
� 1

b−a

b∫
a

f (x)dx � f (a)+ f (b)
2

is known in the literature as Hadamard’s inequality.
In 1928 Ostrowski proved the following famous inequality:

THEOREM 1. Let f : [a,b] → R be continuous on [a,b] and differentiable on
(a,b) and its derivative f ′ : (a,b) → R be bounded on (a,b) , that is, || f ′||∞ :=
sup

t∈(a,b)
| f ′ (x)| < ∞. Then for any x ∈ [a,b] , the following inequality holds:

∣∣∣∣∣∣ f (x)− 1
b−a

b∫
a

f (t)dt

∣∣∣∣∣∣�
∣∣∣∣∣14 +

(
x− a+b

2

)2
(b−a)2

∣∣∣∣∣(b−a)
∣∣∣∣ f ′∣∣∣∣∞ .

The inequality is sharp in the sense that the constant 1/4 cannot be replaced by a
smaller one. In the rest of this section we list known results which we will generalize
in the following section.

Sarikaya et al. obtained following Simpson type inequalities in [5].
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THEOREM 2. Let f : I ⊆ R → R be a differential mapping on Io such that f ′ ∈
L1 [a,b] , where a,b ∈ I with a < b. If | f ′| is convex on [a,b] , then the following in-
equality holds:∣∣∣∣∣∣

1
6

[
f (a)+4 f

(
a+b

2

)
+ f (b)

]
− 1

b−a

b∫
a

f (x)dx

∣∣∣∣∣∣�
5(b−a)

72

[| f ′(a)|+ | f ′(b)|] .
(1)

THEOREM 3. Let f : Io ⊆ R → R be a differential mapping on Io such that f ′ ∈
L1 [a,b] , where a,b∈ I with a < b. If | f ′|q is convex on [a,b] , q � 1 , then the following
inequality holds: ∣∣∣∣∣∣

1
6

[
f (a)+4 f

(
a+b

2

)
+ f (b)

]
− 1

b−a

b∫
a

f (u)du

∣∣∣∣∣∣ (2)

� (b−a)
72

(5)1− 1
q

{[
61 | f ′ (b)|q +29 | f ′ (a)|q

18

] 1
q

+
[
61 | f ′ (a)|q +29 | f ′ (b)|q

18

] 1
q
}

.

Estimation for the difference between the middle and the leftmost term in the
Hadamard inequality was proved by Kirmaci in [8].

THEOREM 4. Let f : Io →R be a differential mapping on Io , a,b∈ Io with a < b.
If | f ′| is convex on [a,b] , then we have∣∣∣∣∣∣

1
b−a

b∫
a

f (x)dx− f

(
a+b

2

)∣∣∣∣∣∣�
b−a

4

( | f ′(a)|+ | f ′(b)|
2

)
. (3)

Similarly, bound for the difference between the middle and the right most term in
the Hadamard inequality was considered by Dragomir and Agarwal in [7] and has the
following forms.

THEOREM 5. Let f : Io ⊆ R → R be a differential mapping on Io , a,b ∈ Io with
a < b. If | f ′| is convex on [a,b] , then the following inequality holds:∣∣∣∣∣∣

f (a)+ f (b)
2

− 1
b−a

b∫
a

f (x)dx

∣∣∣∣∣∣ (4)

� (b−a)
8

[∣∣ f ′(a)
∣∣+ ∣∣ f ′(b)

∣∣] .
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THEOREM 6. Let f : Io ⊆ R → R be a differential mapping on Io , a,b ∈ Io with
a < b and let p > 1. If the new mapping | f ′|p/(p−1) is convex on [a,b] , then the fol-
lowing inequality holds:

∣∣∣∣∣∣
f (a)+ f (b)

2
− 1

b−a

b∫
a

f (x)dx

∣∣∣∣∣∣ (5)

� (b−a)

2(p+1)1/p

[
| f ′(a)|p/p−1 + | f ′(b)|p/p−1

2

](p−1)/p

.

In this paper we give inequalities involving m harmonic polynomials and a func-

tion f such that
∣∣∣ f (n)

∣∣∣q is convex for some q � 1 and n ∈ N. After each general

inequality we obtain a result related to particular case n = 1, m = 2 and point out that
for some especial values of our variables h and c, these results become the known
results given in the above text.

2. Main results

In the further text m and n are fixed integers, σ := {a = x0 < x1 < x2 < ... < xm =
b} is a division of an interval [a,b] with m+1 nodes, σ ′ := {0 = s0 < s1 < ... < sm = 1}
is a corresponding division of the interval [0,1] connectedwith σ by relation s j =

x j−a
b−a .

Let
{
Pjk
}

k∈N
, j = 1, ...,m be harmonic sequences of polynomials, i.e. P′

jk = Pj,k−1 ,
k ∈ N, Pj0 = 1, j = 1, ...,m. Let us define a kernel Sn as

Sn (t,σ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P1n (t) , t ∈ [a,x1]
P2n (t) , t ∈ (x1,x2]

...
Pmn (t) , t ∈ (xm−1,b] .

In paper [4] Pečarić and Varošanec gave the following identity for n -times differen-
tiable function f on [a,b] :

(−1)n
b∫

a

Sn (x,σ) f (n) (x)dx =
b∫

a

f (t)dt +
n

∑
k=1

(−1)k
[
Pmk (b) f (k−1) (b) (6)

+
m−1

∑
j=1

[
Pjk (x j)−Pj+1,k (x j)

]
f (k−1) (x j)−P1k (a) f (k−1) (a)

]
.

For further applications of this identity see [4], [6].
Let us denote the right-hand side of the above identity by Im. Using substitution
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x = tb+(1− t)a on the left handside of (6) we get

(−1)n
b∫

a

Sn (x,σ) f (n) (x)dx

= (−1)n (b−a)
1∫

0

Sn (tb+(1− t)a,σ) f (n) (tb+(1− t)a)dt.

Using notation Cn (t,σ ′) = (b−a)Sn (tb+(1− t)a) identity (6) becomes

(−1)n
1∫

0

Cn
(
t,σ ′) f (n) (tb+(1− t)a)dt = Im. (7)

Also, in the further text we use abbreviations Kjn (t) = (b−a)Pjn (tb+(1− t)a) , j =
1, ...,m, i.e.

Cn
(
t,σ ′)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

K1n (t) , t ∈ [0,s1]
K2n (t) , t ∈ (s1,s2]

...
Kmn (t) , t ∈ (sm−1,1] .

THEOREM 7. Let f : I ⊆ R → R be an n-times differentiable function on I◦,
a,b∈ I◦, a< b and

∣∣∣ f (n)
∣∣∣q be convex on [a,b] for some q � 1 such that Sn (t,σ) f (n) (t)

is integrable on [a,b] . Then

|Im| �
m

∑
j=1

⎛
⎝ s j∫

s j−1

∣∣Kjn (t)
∣∣dt

⎞
⎠

1− 1
q
⎧⎨
⎩
∣∣∣ f (n) (b)

∣∣∣q
⎛
⎝ s j∫

s j−1

t
∣∣Kjn (t)

∣∣dt

⎞
⎠ (8)

+
∣∣∣ f (n) (a)

∣∣∣q
⎛
⎝ s j∫

s j−1

(1− t)
∣∣Kjn (t)

∣∣dt

⎞
⎠
⎫⎬
⎭

1
q

.

Proof. Using (7) and the power-mean inequality for q � 1 we have

|Im| �
1∫

0

∣∣Cn
(
t,σ ′)∣∣ ∣∣∣ f (n) (tb+(1− t)a)

∣∣∣dt

=
m

∑
j=1

s j∫
s j−1

∣∣Kjn (t)
∣∣ ∣∣∣ f (n) (tb+(1− t)a)

∣∣∣dt

�
m

∑
j=1

⎛
⎝ s j∫

s j−1

∣∣Kjn (t)
∣∣dt

⎞
⎠

1− 1
q
⎛
⎝ s j∫

s j−1

∣∣Kjn (t)
∣∣ ∣∣∣ f (n) (tb+(1− t)a)

∣∣∣q dt

⎞
⎠

1
q

.
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Since
∣∣∣ f (n)

∣∣∣q is convex we have

|Im| �
m

∑
j=1

⎛
⎝ s j∫

s j−1

∣∣Kjn (t)
∣∣dt

⎞
⎠

1− 1
q

×
⎛
⎝ s j∫

s j−1

∣∣Kjn (t)
∣∣(t ∣∣∣ f (n) (b)

∣∣∣q +(1− t)
∣∣∣ f (n) (a)

∣∣∣q)dt

⎞
⎠

1
q

=
m

∑
j=1

⎛
⎝ s j∫

s j−1

∣∣Kjn (t)
∣∣dt

⎞
⎠

1− 1
q

×
⎛
⎝∣∣∣ f (n) (b)

∣∣∣q
s j∫

s j−1

t
∣∣Kjn (t)

∣∣dt +
∣∣∣ f (n) (a)

∣∣∣q
s j∫

s j−1

(1− t)
∣∣Kjn (t)

∣∣dt

⎞
⎠

1
q

.

So, we deduce the desired result. �

The case when q = 1 is significant, so we write that result as the following corol-
lary.

COROLLARY 1. If f satisfies assumptions of Theorem 7 with q = 1 which also

means
∣∣∣ f (n)

∣∣∣ is convex on [a,b] , then

|Im| �
∣∣∣ f (n) (b)

∣∣∣ m

∑
j=1

s j∫
s j−1

t
∣∣Kjn (t)

∣∣dt +
∣∣∣ f (n) (a)

∣∣∣ m

∑
j=1

s j∫
s j−1

(1− t)
∣∣Kjn (t)

∣∣dt. (9)

COROLLARY 2. If f satisfies assumptions of Theorem 7 with n = 1, m = 2, then

∣∣∣∣∣∣h [ f (a)+ f (b)]+ (1−2h) f (x)− 1
b−a

b∫
a

f (u)du

∣∣∣∣∣∣ (10)

� (b−a)

⎧⎨
⎩
(

c2

2
−hc+h2

)1− 1
q [

λ1
∣∣ f ′ (b)

∣∣q + λ2
∣∣ f ′ (a)

∣∣q] 1
q

+
(

c2 +1
2

− (c+h)(1−h)
)1− 1

q [
λ3
∣∣ f ′ (b)

∣∣q + λ4
∣∣ f ′ (a)

∣∣q] 1
q ,
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where x ∈ [a,b] , h ∈ [0, 1
2

]
, c = x−a

b−a such that h � c � 1−h and

λ1 =
1
6

(
2c3−3c2h+2h3)

λ2 =
1
6

(−6ch+6h2−2h3−2c3 +3c2 +3c2h
)

λ3 =
1
6

(
2c3 +3c2h−3c2−2h3 +6h2−3h+1

)
λ4 =

1
6

(
2−2c3 +6c2−3c2h+6ch−6c+2h3−3h

)
.

Proof. Let us consider a division σ = {a � x � b} of an interval [a,b] . Let us
define the kernel S1(t,σ) as

S1(t,σ) =
{

P11(t) = t− (1−h)a−hb, t ∈ [a,x]
P21(t) = t−ha− (1−h)b, t ∈ (x,b] .

Polynomials P11 and P21 are obviously harmonic. Denote by c := x−a
b−a . Then we

consider a corresponding division σ ′ = {0 � c � 1} of the interval [0,1] and the kernel
C1(t,σ ′) is equal to

C1(t,σ ′) =
{

K11(t) = (b−a)2(t−h), t ∈ [0,c]
K21(t) = (b−a)2(t−1+h), t ∈ (c,1] .

Putting in Theorem 7 the kernel C1(t,σ ′) after simple calculation with taking into
account the condition h � c � 1−h that is,

c∫
0

|t−h|dt =
h∫

0

(h− t)dt +
c∫

h

(t−h)dt =
c2

2
− ch+h2

and
1∫

c

|t −1+h|dt =
1−h∫
c

(1−h− t)dt +
1∫

1−h

(t−1+h)dt =
c2 +1

2
− (c+h)(1−h),

we get the desired inequality. �

REMARK 1. If we set h = 1
6 and c = 1

2 in (10) we obtain inequality (2) .

REMARK 2. For different selections of parameters h and c in (10) we obtain the
following Ostrowski, Simpson and Hadamard type inequalities.

(i) For the case q = 1, h = 0 we have∣∣∣∣∣∣ f (x)− 1
b−a

b∫
a

f (u)du

∣∣∣∣∣∣
� b−a

6

[(
1−3c2 +4c3)∣∣ f ′ (b)

∣∣+ (2−6c+9c2−4c3)∣∣ f ′ (a)
∣∣]
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which is an Ostowski type inequality. Furthermore, if c = 1
2 we get inequality

(3) .

(ii) For the case q = 1, h = 1
6 we obtain the following Simpson type inequality

∣∣∣∣∣∣
1
6

[ f (a)+4 f (x)+ f (b)]− 1
b−a

b∫
a

f (u)du

∣∣∣∣∣∣
� (b−a)

6

[(
2
3
−3c2 +4c3

)∣∣ f ′ (b)
∣∣+(5

3
−6c+9c2−4c3

)∣∣ f ′ (a)
∣∣]

which for c = 1
2 collapses to inequality (1) .

(iii) If q = 1, h = c = 1
2 we obtain the following Hadamard type inequality (4) .

THEOREM 8. Let f : I ⊆ R → R be an n-times differentiable mapping on I◦,
a,b ∈ I◦, a < b, and

∣∣∣ f (n)
∣∣∣q is convex on [a,b] for some q > 1, Sn (t,σ) f (n) (t) is

integrable on [a,b] . Then the following inequality holds:

|Im| �
⎛
⎝ m

∑
j=1

s j∫
s j−1

∣∣Kjn (t)
∣∣p dt

⎞
⎠

1
p
⎛
⎝
∣∣∣ f (n) (a)

∣∣∣q +
∣∣∣ f (n) (b)

∣∣∣q
2

⎞
⎠

1
q

, (11)

where 1
p + 1

q = 1 .

Proof. From (7) and property of modulus we have

|Im| =

∣∣∣∣∣∣
1∫

0

Cn
(
t,σ ′) f (n) (tb+(1− t)a)dt

∣∣∣∣∣∣
�

1∫
0

∣∣∣Cn
(
t,σ ′) f (n) (tb+(1− t)a)

∣∣∣dt.

By using Hölder inequality we have∣∣∣∣∣∣
1∫

0

Cn
(
t,σ ′) f (n) (tb+(1− t)a)dt

∣∣∣∣∣∣
�

⎛
⎝ 1∫

0

∣∣Cn
(
t,σ ′)∣∣p dt

⎞
⎠

1
p
⎛
⎝ 1∫

0

∣∣∣ f (n) (tb+(1− t)a)
∣∣∣q dt

⎞
⎠

1
q

.
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Since
∣∣∣ f (n)

∣∣∣q is convex, by Hadamard inequality we get

1∫
0

∣∣∣ f (n) (tb+(1− t)a)
∣∣∣q dt �

∣∣∣ f (n) (a)
∣∣∣q +

∣∣∣ f (n) (b)
∣∣∣q

2
.

Also we have
1∫

0

∣∣Cn
(
t,σ ′)∣∣p dt =

m

∑
j=1

s j∫
s j−1

∣∣Kjn (t)
∣∣p dt.

By combining these we deduce the desired result. �

COROLLARY 3. If f satisfies assumptions of Theorem 8 with n = 1, m = 2, then∣∣∣∣∣∣h [ f (a)+ f (b)]+ (1−2h) f (x)− 1
b−a

b∫
a

f (u)du

∣∣∣∣∣∣ (12)

� (b−a)

(
2h1+p +(c−h)1+p +(1− c−h)1+p

1+ p

) 1
p ( | f ′ (a)|q + | f ′ (b)|q

2

) 1
q

,

where x ∈ [a,b] , h ∈ [0, 1
2

]
, c = x−a

b−a such that h � c � 1−h.

Proof. Putting in Theorem 8 the kernel C1 (t,σ ′) defined as in the proof of Corol-
lary 2, after simple calculation we get desired inequality. �

REMARK 3. For different selections of the parameters h and c in (12) we obtain
the following Ostrowski, Hadamard and Simpson type inequalities

(i) For the case h = 0 we have∣∣∣∣∣∣ f (x)− 1
b−a

b∫
a

f (u)du

∣∣∣∣∣∣� (b−a)

(
c1+p+(1−c)1+p

1+p

) 1
p ( | f ′ (a)|q + | f ′ (b)|q

2

) 1
q

.

(ii) For the case h = 1
2 and c = 1

2 we obtain (5) .

(iii) For h = 1
6 and c = 1

2 we have∣∣∣∣∣∣
1
6

[
f (a)+4 f

(
a+b

2

)
+ f (b)

]
− 1

b−a

b∫
a

f (u)du

∣∣∣∣∣∣
� (b−a)

6

(
21+p +1
3(p+1)

) 1
p
( | f ′ (a)|q + | f ′ (b)|q

2

) 1
q

.
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THEOREM 9. Let f : I ⊆ R → R be an n-times differentiable mapping on I◦,
a,b ∈ I◦, a < b, and

∣∣∣ f (n)
∣∣∣q is convex on [a,b] for some q > 1, Sn (t,σ) f (n) (t) is

integrable on [a,b] . Then the following inequality holds:

|Im| �
m

∑
j=1

⎛
⎝ s j∫

s j−1

∣∣Kjn (t)
∣∣p dt

⎞
⎠

1
p
⎛
⎝
∣∣∣ f (n) (x j)

∣∣∣q +
∣∣∣ f (n)

(
x j−1

)∣∣∣q
2

⎞
⎠

1
q

, (13)

where 1
p + 1

q = 1 .

Proof. By using (7) , property of modulus and Hölder Inequality we have

|Im| �
1∫

0

∣∣∣Cn
(
t,σ ′) f (n) (tb+(1− t)a)

∣∣∣dt.

�
m

∑
j=1

s j∫
s j−1

∣∣∣Kjn (t) f (n) (tb+(1− t)a)
∣∣∣dt

�
m

∑
j=1

⎛
⎝ s j∫

s j−1

∣∣Kjn (t)
∣∣p dt

⎞
⎠

1
p
⎛
⎝ s j∫

s j−1

∣∣∣ f (n) (tb+(1− t)a)
∣∣∣q dt

⎞
⎠

1
q

.

Since
∣∣∣ f (n)

∣∣∣q is convex, by using Hadamard inequality we get

s j∫
s j−1

∣∣∣ f (n) (tb+(1− t)a)
∣∣∣q dt �

∣∣∣ f (n) (x j)
∣∣∣q +

∣∣∣ f (n) (x j−1
)∣∣∣q

2
.

So, this implies (13) . �

COROLLARY 4. If f satisfies assumptions of Theorem 8 with n = 1, m = 2, then∣∣∣∣∣∣h [ f (a)+ f (b)]+ (1−2h) f (x)− 1
b−a

b∫
a

f (u)du

∣∣∣∣∣∣ (14)

� (b−a)

⎧⎨
⎩
(

h1+p +(c−h)1+p

1+ p

) 1
p ( | f ′ (a)|q + | f ′ (x)|q

2

) 1
q

+

(
h1+p +(1− c−h)1+p

1+ p

) 1
p ( | f ′ (b)|q + | f ′ (x)|q

2

) 1
q

⎫⎬
⎭ ,

where x ∈ [a,b] , h ∈ [0, 1
2

]
, c = x−a

b−a such that h � c � 1−h.
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Proof. Putting in Theorem 9 the kernel Cn (t,σ ′) defined as in the proof of Corol-
lary 2, after simple calculation we get desired inequality. �

REMARK 4. For different selections of the parameters h and c in (14) we obtain
the following Ostrowski, Hadamard and Simpson type inequalities

(i) For the case h = 0 we have∣∣∣∣∣∣ f (x)− 1
b−a

b∫
a

f (u)du

∣∣∣∣∣∣
� (b−a)

⎧⎨
⎩
(

c1+p

1+ p

) 1
p
( | f ′ (a)|q + | f ′ (x)|q

2

) 1
q

+

(
(1− c)1+p

1+ p

) 1
p ( | f ′ (b)|q + | f ′ (x)|q

2

) 1
q

⎫⎬
⎭ .

(ii) For the case h = 1
2 and c = 1

2 we get the following inequality

∣∣∣∣∣∣
f (a)+ f (b)

2
− 1

b−a

b∫
a

f (u)du

∣∣∣∣∣∣
� (b−a)

2

(
1

2(1+ p)

) 1
p

⎧⎨
⎩
(
| f ′ (a)|q +

∣∣ f ′ ( a+b
2

)∣∣q
2

) 1
q

+

(
| f ′ (b)|q +

∣∣ f ′ ( a+b
2

)∣∣q
2

) 1
q

⎫⎬
⎭ .

(iii) For h = 1
6 and c = 1

2 we have the following Simpson type inequality

∣∣∣∣∣∣
1
6

[
f (a)+4 f (

a+b
2

)+ f (b)
]
− 1

b−a

b∫
a

f (u)du

∣∣∣∣∣∣
� (b−a)

6

(
21+p +1
6(p+1)

) 1
p

⎧⎨
⎩
(
| f ′ (a)|q +

∣∣ f ′ ( a+b
2

)∣∣q
2

) 1
q

+

(
| f ′ (b)|q +

∣∣ f ′ ( a+b
2

)∣∣q
2

) 1
q

⎫⎬
⎭ .
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