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Abstract. The aim of this paper is twofold. First we give a new norm equivalents of the variable

Herz spaces Kα(·)
p(·),q(·) (R

n) and K̇α(·)
p(·),q(·) (R

n) . Secondly we use these results to prove the atomic
decomposition for Herz-type Hardy spaces of variable smoothness and integrability. Also, we
prove the boundedness of a wide class of sublinear operators on these spaces, which includes
maximal, potential and Calderón-Zygmund operators.

1. Introduction

It is well-known that function spaces have been a central topic in modern anal-
ysis, and are now of increasing applications in areas such as harmonic analysis and
partial differential equations. Some examples of these spaces can be mentioned such
as: Herz spaces. It is well known that these spaces play an important role in Harmonic
Analysis. After they have been introduced in [11], the theory of these spaces had a
remarkable development in part due to its usefulness in applications. For instance, they
appear in the characterization of multipliers on Hardy spaces [3], in the summability of
Fourier transforms [10] and in regularity theory for elliptic and parabolic equations in
divergence form [20], [21].

In recent years, there has been growing interest in generalizing classical spaces
such as Lebesgue, Sobolev spaces, Besov spaces, Triebel-Lizorkin spaces to the case
with either variable integrability or variable smoothness. The motivation for the in-
creasing interest in such spaces comes not only from theoretical purposes, but also from
applications to fluid dynamics [22], image restoration [4] and PDE with non-standard
growth conditions.

Herz spaces Kα(·)
p(·),q (Rn) and K̇α(·)

p(·),q (Rn) with variable exponent p but fixed α ∈R

and q ∈ (0,∞] were recently studied by Izuki [12, 13]. These spaces with variable ex-
ponents α(·) and p(·) were studied in [2], where they gave the boundedness results for

a wide class of classical operators on these function spaces. The spaces Kα(·)
p(·),q(·) (R

n)

and K̇α(·)
p(·),q(·) (R

n) , were first introduced by Izuki and Noi in [14]. Many authors are
interested in Herz spaces with variable exponents, for example, [8], [9], [23], [24] and
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[26]. See also [5] and [27] for further results on Herz type Besov and Triebel-Lizorkin
spaces with fixed exponents.

The main purpose of this paper is to consider Herz-typeHardy spaces HKα(·)
p(·),q(·) (R

n)

and HK̇α(·)
p(·),q(·) (R

n) , where the exponents α and q are variables.
The paper is organized as follows. First we give some preliminaries where we fix

some notations and recall some basic facts on function spaces with variable integra-
bility. In the preliminary section we also give some key technical lemmas needed in

the proofs of the main statements. We then define the Herz spaces Kα(·)
p(·),q(·) (R

n) and

K̇α(·)
p(·),q(·) (R

n) in Section 3 and give several basic properties. We show that for some

special parameters, the spaces Kα(·)
p(·),q(·) (R

n) are just the Herz spaces Kα(·)
p(·),q∞

(Rn) and

‖ f‖
K̇

α(·)
p(·),q(·)

≈ ‖{2kα(0) f χk}‖�
q(0)
< (Lp(·)) +‖{2kα∞ f χk}‖�

q∞
> (Lp(·)).

Also we define the Herz-type Hardy spaces HKα(·)
p(·),q(·) (R

n) and HK̇α(·)
p(·),q(·) (R

n) and
we present the relation between these function spaces and Herz spaces by using the
boundedness results for a wide class of classical operators, where for making the pre-
sentation clearer, we give the proofs of the boundedness of these class of operators
later in Section 5. The main statements are formulated in Section 4, where we give the
atomic decomposition of these function spaces.

2. Preliminaries

As usual, we denote by Rn the n -dimensional real Euclidean space, N the col-
lection of all natural numbers and N0 = N∪{0} . The letter Z stands for the set of all
integer numbers. For a multi-index α = (α1, ...,αn)∈ Nn

0 , we write |α|= α1 + ...+αn .
The Euclidean scalar product of x = (x1, ...,xn) and y = (y1, ...,yn) is given by x · y =
x1y1 + ...+ xnyn . The expression f � g means that f � cg for some independent con-
stant c (and non-negative functions f and g ), and f ≈ g means f � g � f . As usual
for any x ∈ R , [x] stands for the largest integer smaller than or equal to x .

For x ∈ Rn and r > 0 we denote by B(x,r) the open ball in Rn with center x and
radius r . By supp f we denote the support of the function f , i.e., the closure of its
non-zero set. If E ⊂Rn is a measurable set, then |E| stands for the (Lebesgue) measure
of E and χE denotes its characteristic function.

The symbol S (Rn) is used in place of the set of all Schwartz functions on Rn

and we denote by S ′(Rn) the dual space of all tempered distributions on Rn .

The variable exponents that we consider are always measurable functions on Rn

with range in [c,∞[ for some c > 0. We denote the set of such functions by P0 . The
subset of variable exponents with range [1,∞) is denoted by P . For p ∈ P0(Rn) , we
use the notation

p+ = esssup
x∈Rn

p(x) , p− = ess inf
x∈Rn

p(x).
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Everywhere below we shall consider bounded exponents.
Let p ∈ P0(Rn) . The variable exponent Lebesgue space Lp(·)(Rn) is the class of

all measurable functions f on Rn such that the modular

ρp(·)( f ) :=
∫

Rn
| f (x)|p(x) dx

is finite. This is a qausi-Banach function space equipped with the norm

‖ f‖p(·) := inf
{

μ > 0 : ρp(·)
( 1

μ
f
)

� 1
}
.

If p(x) ≡ p is constant, then Lp(·)(Rn) = Lp(Rn) is the classical Lebesgue space.
A useful property is that ρp(·)( f ) � 1 if and only if ‖ f‖p(·) � 1 (unit ball property).

This property is clear for constant exponents due to the obvious relation between the
norm and the modular in that case.

We say that a function g : Rn →R is locally log -Hölder continuous, if there exists
a constant clog > 0 such that

|g(x)−g(y)|� clog

ln(e+1/|x− y|)
for all x,y ∈ Rn . If

|g(x)−g(0)|� clog

ln(e+1/|x|)
for all x ∈ Rn , then we say that g is log-Hölder continuous at the origin (or has a log
decay at the origin). If, for some g∞ ∈ R and clog > 0, there holds

|g(x)−g∞| � clog

ln(e+ |x|)
for all x ∈ Rn , then we say that g is log-Hölder continuous at infinity (or has a log
decay at infinity).

By P ln
0 (Rn) and P ln

∞ (Rn) we denote the class of all exponents p∈P(Rn) which
have a log decay at the origin and at infinity, respectively. The notation P ln(Rn) is
used for all those exponents p ∈ P(Rn) which are locally log-Hölder continuous and
have a log decay at infinity, with p∞ := lim|x|→∞ p(x) . Obviously we have P ln(Rn) ⊂
P ln

0 (Rn)∩P ln
∞ (Rn) . Note that p ∈ P ln(Rn) if and only if p′ ∈ P ln(Rn) , and since

(p′)∞ = (p∞)′ we write only p′∞ for any of these quantities.
Let p,q ∈ P0 . The mixed Lebesgue-sequence space �q(·)(Lp(·)) is defined on

sequences of Lp(·) -functions by the modular

ρ�q(·)(Lp(·))(( fv)v) = ∑
v

inf
{

λv > 0 : ρp(·)
( fv

λ 1/q(·)
v

)
� 1

}
.

The (quasi)-norm is defined from this as usual:

‖( fv)v‖�q(·)(Lp(·)) = inf
{

μ > 0 : ρ�q(·)(Lp(·))

( 1
μ

( fv)v

)
� 1

}
. (2.1)
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Since q+ < ∞ , then we can replace (2.1) by the simpler expression ρ�q(·)(Lp(·))(( fv)v) =

∑
v

∥∥∥| fv|q(·)
∥∥∥ p(·)

q(·)
. Furthermore, if p and q are constants, then �q(·)(Lp(·)) = �q(Lp) . It

is known, cf. [1] and [15], that �q(·)(Lp(·)) is a norm if q(·) � 1 is constant almost
everywhere (a.e.) on Rn and p(·) � 1, or if 1

p(x) + 1
q(x) � 1 a.e. on Rn , or if 1 �

q(x) � p(x) < ∞ a.e. on Rn .
Very often we have to deal with the norm of characteristic functions on balls (or

cubes) when studying the behavior of various operators in Harmonic Analysis. In clas-
sical Lp spaces the norm of such functions is easily calculated, but this is not the case
when we consider variable exponents. Nevertheless, it is known that for p ∈ P log we
have

‖χB‖p(·)‖χB‖p′(·) ≈ |B|. (2.2)

Also,

‖χB‖p(·) ≈ |B| 1
p(x) , x ∈ B (2.3)

for small balls B ⊂ Rn ( |B| � 2n ), and

‖χB‖p(·) ≈ |B| 1
p∞ (2.4)

for large balls ( |B| � 1), with constants only depending on the log-Hölder constant of
p (see, for example, [7, Section 4.5]). Here p′ denotes the conjugate exponent of p
given by 1/p(·)+1/p′(·) = 1.

We refer the reader to the recent monograph [7, Section 4.5] for further details,
historical remarks and more references on variable exponent spaces.

The following lemma is from [6, Lemma 2.11], see also [17, Lemma 2.6].

LEMMA 1. Let p ∈ P log . For any cubes (balls) P and Q, such that P ⊂ Q, we
have

C

( |Q|
|P|

)1/p+

�
‖χQ‖p(·)
‖χP‖p(·)

� c

( |Q|
|P|

)1/p−

with c,C > 0 are independent of |Q| and |P| .
The next lemma is a Hardy-type inequality which is easy to prove.

LEMMA 2. Let 0 < a < 1 and 0 < q � ∞ . Let {εk}k∈Z be a sequence of positive
real numbers, such that ∥∥{εk}k∈Z

∥∥
�q = I < ∞.

Then the sequences
{

δk : δk = ∑ j�k ak− jε j
}

k∈Z
and

{
ηk : ηk = ∑ j�k a j−kε j

}
k∈Z

be-
long to �q , and ∥∥{δk}k∈Z

∥∥
�q +

∥∥{ηk}k∈Z

∥∥
�q � cI,

with c > 0 only depending on a and q.

The proof of the following results are given in [2], where the second lemma is a
generalization of (2.2) , (2.3) and (2.4) to the case of dyadic annuli.
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LEMMA 3. Let α ∈ L∞(Rn) and r1 > 0 . If α is log -Hölder continuous both at
the origin and at infinity, then

rα(x)
1 � rα(y)

2 ×

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
r1
r2

)α+

if 0 < r2 � r1
2

1 if r1
2 < r2 � 2r1(

r1
r2

)α−
if r2 > 2r1

for any x ∈ B(0,r1)\B(0, r1
2 ) and y ∈ B(0,r2)\B(0, r2

2 ) , with the implicit constant not
depending on x,y,r1 and r2 .

LEMMA 4. Let p ∈ P ln
∞ (Rn) and let R = B(0,r)\B(0, r

2 ) . If |R| � 2−n , then

‖χR‖p(·) ≈ |R| 1
p(x) ≈ |R| 1

p∞

with the implicit constants independent of r and x ∈ R.
The left-hand side equivalence remains true for every |R| > 0 if we assume, addition-
ally, p ∈ P ln

0 (Rn)∩P ln
∞ (Rn) .

3. Variable Herz-type Hardy spaces

For convenience, we set

Bk := B(0,2k) , Rk := Bk \Bk−1 and χk = χRk , k ∈ Z.

DEFINITION 1. Let p,q ∈ P0(Rn) and α : Rn → R with α ∈ L∞(Rn) . The in-

homogeneous Herz space Kα(·)
p(·),q(·) (R

n) consists of all f ∈ Lp(·)
loc (Rn) such that

‖ f‖
K

α(·)
p(·),q(·)

:= ‖ f χB0‖p(·) +
∥∥∥∥(2kα(·) f χk

)
k�1

∥∥∥∥
�q(·)(Lp(·))

< ∞. (3.1)

Similarly, the homogeneous Herz space K̇α(·)
p(·),q(·) (R

n) is defined as the set of all f ∈
Lp(·)

loc (Rn \ {0}) such that

‖ f‖
K̇α(·)

p(·),q(·)
:=

∥∥∥(2kα(·) f χk

)
k∈Z

∥∥∥
�q(·)(Lp(·))

< ∞. (3.2)

If α and p,q are constant, then Kα(·)
p(·),q(·) (R

n) = Kα
p,q (Rn) and K̇α(·)

p(·),q(·) (R
n) =

K̇α
p,q (Rn) are the classical Herz spaces.

Let us denote

‖{gk}‖�
q
>(Lp(·)) :=

(
∞

∑
k=0

‖gk‖q
p(·)

)1/q

and ‖{gk}‖�
q
<(Lp(·)) :=

(
−1

∑
k=−∞

‖gk‖q
p(·)

)1/q

for sequences {gk}k∈Z of measurable functions (with the usual modification if q = ∞).
Now we present the main result of this section.
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PROPOSITION 1. Let α ∈ L∞(Rn) , p,q ∈ P0(Rn) . If α and q are log-Hölder
continuous at infinity, then

Kα(·)
p(·),q(·) (R

n) = Kα∞
p(·),q∞

(Rn) .

Additionally, if α and q have a log decay at the origin, then

‖ f‖
K̇

α(·)
p(·),q(·)

≈ ‖{2kα(0) f χk}‖�
q(0)
< (Lp(·)) +‖{2kα∞ f χk}‖�

q∞
> (Lp(·)). (3.3)

Proof. Step 1. We will prove that Kα∞
p(·),q∞

(Rn) ↪→ Kα(·)
p(·),q(·) (R

n) , which is equiva-

lent to ‖ f‖
K

α(·)
p(·),q(·)

� ‖ f‖Kα∞
p(·),q∞

for any f ∈ Kα∞
p(·),q∞

(Rn) . By the scaling argument, we

see that it suffices to consider the case ‖ f‖Kα∞
p(·),q∞

= 1 and show that the modular of f

on the left-hand side is bounded. In particular, we will show that

∞

∑
k=1

∥∥∥∥∣∣∣c 2kα(·) f χk

∣∣∣q(·)∥∥∥∥ p(·)
q(·)

� 1 (3.4)

for some constant c > 0. Since α has logarithmic decay at infinity, then for k � 1 and
x ∈ Rk we have

k|α(x)−α∞| � k
ln(e+ |x|) � 1.

Therefore, 2kα(x) ≈ 2kα∞ with constants independent of k and x , and hence

∞

∑
k=1

∥∥∥∥∣∣∣c 2kα(·) f χk

∣∣∣q(·)∥∥∥∥ p(·)
q(·)

≈
∞

∑
k=1

∥∥∥∥∣∣∣c 2kα∞ f χk

∣∣∣q(·)∥∥∥∥ p(·)
q(·)

.

Our estimate (3.4) , clearly follows from the inequality∥∥∥∥∣∣∣c 2kα∞ f χk

∣∣∣q(·)∥∥∥∥ p(·)
q(·)

�
∥∥∥2kα∞ f χk

∥∥∥q∞

p(·)
+2−k = δ . (3.5)

This claim can be reformulated as showing that∥∥∥∥δ−1
∣∣∣c 2kα∞ f χk

∣∣∣q(·)∥∥∥∥ p(·)
q(·)

� 1,

which is equivalent to ∥∥∥∥c δ− 1
q(·) 2kα∞ f χk

∥∥∥∥
p(·)

� 1.

We have for any x ∈ Rk

δ− 1
q(x) = (2kδ )

1
q∞ − 1

q(x) 2
k( 1

q(x)− 1
q∞ )δ− 1

q∞ .
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Since q has logarithmic decay at infinity, then for k � 1 and x ∈ Rk we have

k|q(x)−q∞|
q∞q(x)

� k|q(x)−q∞|
q∞q−

� k
ln(e+ |x|) � 1.

Therefore, 2
k( 1

q∞ − 1
q(x) ) ≈ 1 with constants independent of k and x . Also, since 1 <

2kδ < 2k+1 ,

(2kδ )
1

q∞ − 1
q(x) � (2k+1)|

1
q∞ − 1

q(x) | � 1.

Hence, with an appropriate choice of c > 0∥∥∥∥c δ− 1
q(·) 2kα∞ f χk

∥∥∥∥
p(·)

�
∥∥∥δ− 1

q∞ 2kα∞ f χk

∥∥∥
p(·)

� 1,

because of
∥∥2kα∞ f χk

∥∥
p(·) � δ

1
q∞ .

Step 2. We will prove that Kα(·)
p(·),q(·) (R

n) ↪→ Kα∞
p(·),q∞

(Rn) , which is equivalent to

‖ f‖Kα∞
p(·),q∞

� ‖ f‖
K

α(·)
p(·),q(·)

for any f ∈ Kα(·)
p(·),q(·) (R

n) . By the scaling argument, we see

that it suffices to consider the case ‖ f‖
K

α(·)
p(·),q(·)

= 1 and show that

∞

∑
k=1

∥∥∥c 2kα∞ f χk

∥∥∥q∞

p(·)
� 1 (3.6)

for some constant c > 0. As before, we have for k � 1∥∥∥2kα∞ f χk

∥∥∥q∞

p(·)
�

∥∥∥2kα(·) f χk

∥∥∥q∞

p(·)
.

Now, our estimate (3.6) , clearly follows from the inequality∥∥∥c 2kα(·) f χk

∥∥∥q∞

p(·)
�

∥∥∥∥∣∣∣2kα(·) f χk

∣∣∣q(·)∥∥∥∥ p(·)
q(·)

+2−k = δ . (3.7)

This claim can be reformulated as showing that∥∥∥c δ− 1
q∞ 2kα(·) f χk

∥∥∥
p(·)

� 1.

From above, δ− 1
q∞ � δ− 1

q(x) , then with an appropriate choice of c > 0∥∥∥c δ− 1
q∞ 2kα(·) f χk

∥∥∥
p(·)

�
∥∥∥∥δ− 1

q(·) 2kα(·) f χk

∥∥∥∥
p(·)

.

The left-hand side is less than or equal 1 if and only if∥∥∥∥∥
∣∣∣∣δ− 1

q(·) 2kα(·) f χk

∣∣∣∣q(·)∥∥∥∥∥ p(·)
q(·)

� 1.
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We see that the right-hand side can be rewritten us

δ−1

∥∥∥∥∣∣∣2kα(·) f χk

∣∣∣q(·)∥∥∥∥ p(·)
q(·)

� 1

which follows immediately from the definition of δ .
Step 3. Let us prove that

‖{2kα(0) f χk}‖�
q(0)
< (Lp(·)) +‖{2kα∞ f χk}‖�

q∞
> (Lp(·)) � ‖ f‖

K̇α(·)
p(·),q(·)

.

We suppose that ‖ f‖
K̇α(·)

p(·),q(·)
� 1. If, in addition, α has a log decay at the origin,

then we also have 2kα(x) ≈ 2kα(0) for k < 0 and x ∈ Rk . Thus

‖{2kα(0) f χk}‖�
q(0)
< (Lp(·)) ≈ ‖{2kα(·) f χk}‖�

q(0)
< (Lp(·)).

As in Step 2 we can prove that∥∥∥c 2kα(·) f χk

∥∥∥q(0)

p(·)
�

∥∥∥∥∣∣∣2kα(·) f χk

∣∣∣q(·)∥∥∥∥ p(·)
q(·)

+2k

for any k < 0 and for some constant c > 0. Then ‖{2kα(0) f χk}‖�
q(0)
< (Lp(·)) � 1. Using

the estimate (3.7) we obtain ‖{2kα∞ f χk}‖�
q∞
> (Lp(·)) � 1. Therefore,

‖{2kα(0) f χk}‖�
q(0)
< (Lp(·)) +‖{2kα∞ f χk}‖�

q∞
> (Lp(·)) � 1.

The desired estimate can be obtained by the scaling argument.
Now let ‖{2kα(0) f χk}‖�

q(0)
< (Lp(·)) � 1 and ‖{2kα∞ f χk}‖�

q∞
> (Lp(·)) � 1. As in Step 1

we have for any k < 0 and for some constant c > 0∥∥∥∥∣∣∣c 2kα(·) f χk

∣∣∣q(·)∥∥∥∥ p(·)
q(·)

�
∥∥∥2kα(0) f χk

∥∥∥q(0)

p(·)
+2k

and using (3.5) we obtain

∞

∑
k=−∞

∥∥∥∥∣∣∣2kα(·) f χk

∣∣∣q(·)∥∥∥∥ p(·)
q(·)

� 1.

Therefore, ‖ f‖
K̇

α(·)
p(·),q(·)

� 1 and hence the result follows by the scaling argument. �

Let GN f be the grand maximal function of f defined by

GN f (x) = sup
ϕ∈AN

|ϕ∗
N( f )(x)|,

where AN = {ϕ ∈S (Rn) : sup|α |�N,|β |�N |xα ∂ β ϕ(x)|� 1} and ϕ∗
N( f )(x)= supt>0 |ϕt ∗

f (x)| , with ϕt = t−nϕ( ·t ) .
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DEFINITION 2. Let p,q ∈ P0(Rn) and α : Rn → R with α ∈ L∞(Rn) and N >

n+1. The inhomogeneous Herz-type Hardy space HKα(·)
p(·),q(·) (R

n) consists of all f ∈
S ′(Rn) such that GN f ∈ Kα(·)

p(·),q(·) (R
n) and we define ‖ f‖

HKα(·)
p(·),q(·)

= ‖GN f‖
Kα(·)

p(·),q(·)
.

Similarly, the homogeneous Herz-type Hardy space HK̇α(·)
p(·),q(·) (R

n) is defined as

the set of all f ∈S ′(Rn) such that GN f ∈ K̇α(·)
p(·),q(·) (R

n) and we define ‖ f‖
HK̇

α(·)
p(·),q(·)

=

‖GN f‖
K̇

α(·)
p(·),q(·)

.

We consider sublinear operators satisfying the size condition

|T f (x)| �
∫

Rn

| f (y)|
|x− y|n dy, x /∈ supp f (3.8)

for integrable and compactly supported functions f . Condition (3.8) is satisfied by
several classical operators in Harmonic Analysis, such as Calderón-Zygmund opera-
tors, the Carleson maximal operator and the Hardy-Littlewood maximal operator (see
[18] and [25]).

Using the same of arguments as in [2], we obtain the following results.

THEOREM 1. Let q ∈ P0(Rn) , p ∈ P ln
∞ (Rn) with 1 < p− � p+ < ∞ , and let α

and q are log-Hölder continuous at infinity, with α ∈ L∞(Rn) and

− n
p∞

< α∞ <
n
p′∞

.

Suppose that T is a sublinear operator satisfying estimate (3.8). If T is bounded on

Lp(·)(Rn) , then T is bounded on Kα(·)
p(·),q(·)(R

n) .

For homogeneous spaces we have the following statement:

THEOREM 2. Let q∈P0(Rn) , p∈P ln
0 (Rn)∩P ln

∞ (Rn) with 1 < p− � p+ < ∞ ,
and let α and q are log -Hölder continuous, both at the origin and at infinity, such that
α ∈ L∞(Rn) and

− n
p+ < α− � α+ < n

(
1− 1

p−

)
.

Then every sublinear operator T satisfying (3.8) which is bounded on Lp(·)(Rn) is also

bounded on K̇α(·)
p(·),q(·)(R

n) .

The proof of Theorems 1 and 2 is postponed to the Appendix.
We have GN satisfies the size condition (3.8). Let α,q , p as in Theorem 1, with

p ∈ P ln(Rn) . Then

HKα(·)
p(·),q(·) (R

n)∩Lp(·)
loc (Rn) = Kα(·)

p(·),q(·) (R
n) .

Let α,q , p as in Theorem 2, with p ∈ P ln(Rn) . Then

HK̇α(·)
p(·),q(·) (R

n)∩Lp(·)
loc (Rn \ {0}) = K̇α(·)

p(·),q(·) (R
n) .
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4. Atomic decomposition

In recent years, it turned out that atomic decomposition of some function spaces
are extremely useful in many aspects. This concerns, for instance, the investigation of
(compact) embeddings between function spaces. But this applies equally to questions
of mapping properties of some operators, such as Calderón-Zygmund operators, the
commutator of Calderón-Zygmund operator with a BMO function and to trace prob-
lems, where arguments can be equivalently transferred to the sequence space, which is
often more convenient to handle. The main goal of this section is to prove an atomic

decomposition result for HKα(·)
p(·),q(·) (R

n) and HK̇α(·)
p(·),q(·) (R

n) . First we introduce the
basic notation.

DEFINITION 3. Let α ∈ L∞(Rn) , p ∈ P(Rn) , q ∈P0(Rn) and s ∈ N0 . A func-
tion a is said to be a central (α(·), p(·))-atom, if

(i) suppa ⊂ B(0,r) = {x ∈ Rn : |x| � r} , r > 0.
(ii) ‖a‖p(·) � |B(0,r)|−α(0)/n , 0 < r < 1.

(iii) ‖a‖p(·) � |B(0,r)|−α∞/n , r � 1.

(iv)
∫
Rn xβ a(x)dx = 0, |β | � s.

A function a on Rn is said to be a central (α(·), p(·))-atom of restricted type, if
it satisfies the conditions (iii), (vi) above and suppa ⊂ B(0,r) , r � 1.

Now we come to the atomic decomposition theorems.

THEOREM 3. Let α and q are log-Hölder continuous at infinity and p∈P ln(Rn)
with 1 < p− � p+ < ∞ . For any f ∈ HKα(·)

p(·),q(·) (R
n) , we have

f =
∞

∑
k=0

λkak, (4.1)

where the series converges in the sense of distributions, λk � 0 , each ak is a central
(α(·), p(·))-atom of restricted type with suppa ⊂ Bk and(

∞

∑
k=0

|λk|q∞

)1/q∞

� c‖ f‖
HKα(·)

p(·),q(·)
.

Conversely, if α∞ � n(1− 1
p∞

) and s � [α∞ + n( 1
p∞

− 1)] , and if (4.1) holds, then

f ∈ HKα(·)
p(·),q(·) (R

n) , and

‖ f‖
HK

α(·)
p(·),q(·)

≈ inf

⎧⎨⎩
(

∞

∑
k=0

|λk|q∞

)1/q∞
⎫⎬⎭ ,

where the infimum is taken over all the decompositions of f as above.
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THEOREM 4. Let α and q are be log-Hölder continuous, both at the origin and

at infinity and p ∈ P ln(Rn) with 1 < p− � p+ < ∞ . For any f ∈ HK̇α(·)
p(·),q(·) (R

n) , we
have

f =
∞

∑
k=−∞

λkak, (4.2)

where the series converges in the sense of distributions, λk � 0 , each ak is a central
(α(·), p(·))-atom with suppa ⊂ Bk and(

−1

∑
k=−∞

|λk|q(0)

)1/q(0)

+

(
∞

∑
k=0

|λk|q∞

)1/q∞

� c‖ f‖
HK̇

α(·)
p(·),q(·)

.

Conversely,if α(·) � n(1− 1
p− ) and s � [α+ + n( 1

p− − 1)] , and if (4.2) holds, then

f ∈ HK̇α(·)
p(·),q(·) (R

n) , and

‖ f‖
HK̇

α(·)
p(·),q(·)

≈ inf

⎧⎨⎩
( −1

∑
k=−∞

|λk|q(0)

)1/q(0)

+

(
∞

∑
k=0

|λk|q∞

)1/q∞
⎫⎬⎭ ,

where the infimum is taken over all the decompositions of f as above.

REMARK 1. Corresponding statements to Theorems 3 and 4 were proved by Liu
and Wang [19], with α and q constants, under the assumption that the maximal oper-
ator M is bounded on Lp(·) (Rn) (both in the homogeneous and the inhomogeneous
situation). Here we are requiring the log-Hölder continuity at two points only (zero and
infinity).

Proof. By similarity, we only consider HK̇α(·)
p(·),q(·) (R

n) . The proof follows the
ideas in [18], see also [19].

Step 1. We prove the necessity part of the theorem. Let f ∈ S ′(Rn) , ϕ ∈ D (Rn)
such that ϕ � 0,

∫
ϕ(x)dx = 1 and suppϕ ⊂ B0 . Set ϕ j = 2 jnϕ(2 j·) and f j = f ∗ϕ j ,

j ∈N0 . It is well know that f j ∈C∞ (Rn) and lim j→∞ f j = f . Let ψ be a radial smooth
function such that suppψ ⊂ {x : 1

2 − ε � |x| � 1 + ε} , 0 < ε < 1
4 , and ψ(x) = 1,

if 1
2 � |x| � 1. Let R̃k,ε = {x : 2k−1 − 2kε � |x| � 2k + 2kε} and ψk = ψ(2−k·) . It

is easy to see that suppψk ⊂ R̃k,ε , ψk(x) = 1 if x ∈ Rk and 1 � ∑∞
k=−∞ ψk(x) � 2,

x �= 0. Set Φk(x) =

{
ψk(x)

∑∞
j=−∞ ψ j(x)

, x �= 0

0, x = 0
. Then ∑∞

k=−∞ Φk(x) = 1, x �= 0. We denote

by Pm the class of all the real polynomials with the degree less than m . Let P( j)
k (x) =

PR̃k,ε
( f jΦk)(x)χR̃k,ε

(x) ∈ Pm be the unique polynomial satisfying

∫
R̃k,ε

(
f j(x)Φk(x)−P( j)

k (x)
)

xβ dx = 0, |β | �
[

α+ +n

(
1
p−

−1

)]
= m.
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Observe that

f j(x) =
∞

∑
k=−∞

(
f j(x)Φk(x)−P( j)

k (x)
)

+
∞

∑
k=−∞

P( j)
k (x)

= I j + II j.

For I j , let g( j)
k (x) = f j(x)Φk(x)−P( j)

k (x) and a( j)
k = g

( j)
k
λk

, where

λk = b
k+1

∑
l=k−1

∥∥∥|Bk+1|α(·)/n (GN f )χl

∥∥∥
p(·)

and b is a constant which will be chosen later. It is easy to see that suppg( j)
k ⊂ R̃k,ε ⊂

Bk+1 and I j = ∑∞
k=−∞ λka

( j)
k .

Let us prove that a( j)
k is a central (α(·), p(·))-atom. Let {ϕk

d : |d| � m} be the

orthogonal polynomials restricted to R̃k,ε with respect to the weight 1
|R̃k,ε |

, which are

obtained from {xβ : |β | � m} by Gram-Schmidt’s method, that is

〈ϕk
d ,ϕk

v 〉 =
1

|R̃k,ε |
∫

R̃k,ε
ϕk

d(x)ϕ
k
v (x)dx = δdv.

Therefore, P( j)
k (x) = ∑|d|�m〈 f jΦk,ϕk

d〉ϕk
d(x) for x ∈ R̃k,ε . Observe that ϕk

v (x) =
ϕ1

v (2k−1x) a.e for x ∈ R̃k,ε , by the Hölder inequality

|Bk+1|α(x)/n|P( j)
k (x)| � c

|R̃k,ε |
∫

R̃k,ε
|Bk+1|α(x)/n| f j(y)||Φk(y)|dy

�
c
∥∥∥|Bk+1|α(x)/n f jΦk

∥∥∥
p(·)

∥∥∥χR̃k,ε

∥∥∥
p′(·)

|R̃k,ε |
.

Using Lemma 3 to obtain |Bk+1|α(x)/n ≈ 2kα(x) ≈ 2kα(y) for any x,y ∈ R̃k,ε . Hence∥∥∥|Bk+1|α(·)/ng( j)
k

∥∥∥
p(·)

� c
∥∥∥|Bk+1|α(·)/n f jΦk

∥∥∥
p(·)

+
c

|R̃k,ε |
∥∥∥|Bk+1|α(·)/n f jΦk

∥∥∥
p(·)

∥∥∥χR̃k,ε

∥∥∥
p′(·)

∥∥∥χR̃k,ε

∥∥∥
p(·)

� c
∥∥∥|Bk+1|α(·)/n f jΦk

∥∥∥
p(·)

� C
k+1

∑
l=k−1

∥∥∥|Bk+1|α(·)/nGN( f )χl

∥∥∥
p(·)

,

where we used the fact that
∥∥∥χR̃k,ε

∥∥∥
p′(·)

∥∥∥χR̃k,ε

∥∥∥
p(·)

≈ |R̃k,ε | , see Lemma 4. Choose

b = C , we obtain ∥∥∥|Bk+1|α(·)/na( j)
k

∥∥∥
p(·)

� c.
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This relation is equivalent to the inequalities (ii) and (iii) in Definition 3 and hence each

a( j)
k is a central (α(·), p(·))-atom with support contained in Bk+1 . Furthermore, since

|Bk+1|α(x)/n ≈ 2kα(x) ≈ 2lα(x) ≈ 2lα(0) for any x∈Rl with k �−1 and k−1 � l � k+1,

−1

∑
k=−∞

|λk|q(0) � C
−1

∑
k=−∞

(
k+1

∑
l=k−1

∥∥∥|Bk+1|α(·)/n (GN f )χl

∥∥∥
p(·)

)q(0)

� C
−1

∑
k=−∞

(
k+1

∑
l=k−1

∥∥∥2lα(0) (GN f )χl

∥∥∥
p(·)

)q(0)

� c‖GN f‖q(0)

K̇α(·)
p(·),q(·)

,

which is the desired estimate. Similarly, there exists a constant c > 0 such that

∞

∑
k=0

|λk|q∞ � c‖GN f‖q∞

K̇
α(·)
p(·),q(·)

.

Here we use the fact that |Bk+1|α(x)/n ≈ 2kα(x) ≈ 2lα(x) ≈ 2lα∞ for any x ∈ Rl with
k � 0 and k−1 � l � k+1.

It remains to estimate II j . Let {ψk
d : |d| � m} be the dual basis of {xβ : |β | � m}

with respect to the weight 1
|R̃k,ε |

, on R̃k,ε , that is

〈ψk
d ,xβ 〉 =

1

|R̃k,ε |
∫

R̃k,ε
ψk

d(x)x
β dx = δβd .

Let

h( j)
k,d(x) =

k

∑
l=−∞

⎛⎝ψk
d(x)χR̃k,ε

(x)

|R̃k,ε |
−

ψk+1
d (x)χ

R̃k+1,ε
(x)

|R̃k+1,ε |

⎞⎠∫
Rn

f j(x)Φl(x)xddx.

Therefore,

II j =
∞

∑
k=−∞

∑
|d|�m

〈 f jΦk,x
d〉ϕk

d(x)χR̃k,ε
(x)

= ∑
|d|�m

∞

∑
k=−∞

k

∑
l=−∞

〈 f jΦl,x
d〉

⎛⎝ψk
d(x)χR̃k,ε

(x)

|R̃k,ε |
−

ψk+1
d (x)χ

R̃k+1,ε
(x)

|R̃k+1,ε |

⎞⎠
= ∑

|d|�m

∞

∑
k=−∞

h( j)
k,d(x) = ∑

|d|�m

∞

∑
k=−∞

σk,da( j)
k,d(x),

where

a( j)
k,d(x) =

h( j)
k,d(x)

σk,d

and

σk,d = b̃
k+2

∑
l=k−1

∥∥∥|Bk+2|α(·)/n (GN f )χl

∥∥∥
p(·)

,
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where b̃ > 0 is a constant which will be chosen later. Observe that∣∣∣∣∣ k

∑
l=−∞

∫
Rn

f j(y)Φl(y)yddy

∣∣∣∣∣ � c 2k(n+|d|) (GN f ) (x), x ∈ Bk+2

and ∣∣∣∣∣∣
ψk

d(x)χR̃k,ε
(x)

|R̃k,ε |
−

ψk+1
d (x)χ

R̃k+1,ε
(x)

|R̃k+1,ε |

∣∣∣∣∣∣ � c 2−k(n+|d|)
k+1

∑
l=k−1

χl(x),

then ∥∥∥|Bk+2|α(·)/nh( j)
k,d

∥∥∥
p(·)

� C
k+2

∑
l=k−1

∥∥∥|Bk+2|α(·)/n (GN f ) χl

∥∥∥
p(·)

.

Thus if we take b̃ = C , then a( j)
k,d is a central (α(·), p(·))-atom with support contained

in R̃k,ε ∪ R̃k+1,ε ⊂ Bk+2 . Furthermore, since |Bk+1|α(x)/n ≈ 2kα(x) ≈ 2lα(x) ≈ 2lα(0) for
any x ∈ Rl with k � −1 and k−1 � l � k+2,

−1

∑
k=−∞

|σk,d |q(0) � C
−1

∑
k=−∞

(
k+1

∑
l=k−1

∥∥∥2lα(0) (GN f )χl

∥∥∥
p(·)

)q(0)

� c‖GN f‖q(0)

K̇α(·)
p(·),q(·)

and
∞

∑
k=0

|σk,d |q∞ � c‖GN f‖q∞

K̇
α(·)
p(·),q(·)

,

by Proposition 1. Hence f j can be written as

f j =
∞

∑
k=−∞

λka
( j)
k

where a( j)
k is a central (α(·), p(·))-atom with support contained in R̃k,ε ∪ R̃k+1,ε ⊂

Bk+2 , λk is independent of j and(
−1

∑
k=−∞

|λk|q(0)

)1/q(0)

+

(
∞

∑
k=0

|λk|q∞

)1/q∞

� c‖GN f‖
K̇

α(·)
p(·),q(·)

,

where c is independent of j and f .
Using the Banach-Alaoglu theorem and the usual diagonal method, we can fined a

subsequence { jv} of N such that for each k ∈ Z , limv→∞ a( jv)
k = ak in S ′(Rn) , which

is a central (α(·), p(·))-atom supported on Bk+2 . Now it remain to prove that

f =
∞

∑
k=−∞

λkak (4.3)

in S ′(Rn) . For each ϕ ∈ S (Rn) , note that suppa( jv)
k ⊂ ∪k+2

i=k−1Ri = R̃k and

〈 f ,ϕ〉 = lim
v→∞

∞

∑
k=−∞

λk

∫
a( jv)

k (x)ϕ(x)dx.
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It will know that, see [19]∣∣∣∣∫ a( jv)
k (x)ϕ(x)dx

∣∣∣∣ � c 2k(m+1)
∥∥∥a( jv)

k χR̃k

∥∥∥
1
.

This term is bounded by

c 2k(m+1−α(0))
∥∥∥2kα(·)a( jv)

k χR̃k

∥∥∥
1

� c 2k(m+1−α(0))
∥∥∥2kα(·)a( jv)

k χR̃k

∥∥∥
p(·)

∥∥∥χR̃k

∥∥∥
p′(·)

� c 2
k(m+1−α(0)+n(1− 1

p− )
∥∥∥2kα(·)a( jv)

k χR̃k

∥∥∥
p(·)

, k � 0

� c 2
k(m+1−α(0)+n(1− 1

p− ))

where we have used successively 2kα(·) ≈ 2kα(0) , k < 0, Hölder’s inequality and Lemma
4. If k > 0, let k0 ∈ N such that k0 + α∞ − n+ n

p∞
> 0, then by the fact that 2kα(·) ≈

2kα∞ , k > 0, Hölder inequality and Lemma 4 we have∣∣∣∣∫ a( jv)
k (x)ϕ(x)dx

∣∣∣∣ � c
∫

R̃k

|a( jv)
k (x)||x|−k0dx

� c 2−k(k0+α∞)
∥∥∥2kα(·)a( jv)

k χR̃k

∥∥∥
p(·)

∥∥∥χR̃k

∥∥∥
p′(·)

� c 2−k(k0+α∞−n+ n
p∞ ),

where c > 0 is independent of k . If we set

bk =

{
λk2

k(m+1−α(0)+n(1− 1
p− ))

if k � 0

λk2
k(n−k0−α∞− n

p∞ ) if k > 0,

then

∞

∑
k=−∞

|bk| � c

(
−1

∑
k=−∞

|λk|q(0)

)1/q(0)

+

(
∞

∑
k=0

|λk|q∞

)1/q∞

� c‖GN f‖
K̇

α(·)
p(·),q(·)

< ∞.

Therefore,

〈 f ,ϕ〉 =
∞

∑
k=−∞

λk

∫
ak(x)ϕ(x)dx.

This means that (4.3) holds in the sense of distribution.
Step 2. We prove the sufficiency part of the theorem. In view of Proposition 1, it

suffices to estimate

‖{2kα(0) (GN f )χk}‖�
q(0)
< (Lp(·)) and ‖{2kα∞ (GN f )χk}‖�

q∞
> (Lp(·)).
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For any k < 0,

2kα(0)‖(GN f )χk‖p(·) �
∞

∑
l=−∞

|λl|2kα(0)‖(GNal)χk‖p(·)

=
k−2

∑
l=−∞

· · ·+
−1

∑
l=k−1

· · ·+
∞

∑
l=0

· · ·. (4.4)

By the Lp(·) boundedness of the grand maximal operator GN , the third term is bounded
by

c 2kα(0)
∞

∑
l=0

|λl|‖al‖p(·) �
∞

∑
l=0

|λl|2kα(0)−lα−‖2lα(·)al‖p(·)

� 2kα(0)
∞

∑
l=0

|λl|2−lα−

� 2kα(0)

(
∞

∑
l=0

|λl|q∞

)1/q∞

.

The �
q(0)
< of this expression is bounded by (∑∞

l=0 |λl|q∞)1/q∞ . Now the second term is
bounded

c
−1

∑
l=k−1

|λl|2(k−l)α(0)‖2lα(·)al‖p(·) �
−1

∑
l=k−1

|λl|2(k−l)α(0).

Here we use that fact that 2lα(0) ≈ 2lα(y) , y ∈ Bl and l � 0, since

−l|α(x)−α(0)| � −cl

log(e+ 1
|x| )

� c, x ∈ Bl, l � 0.

Again, the �
q(0)
< of this expression is bounded by

(
∑−1

k=−∞ |λk|q(0)
)1/q(0)

(by Lemma

2). Using the similar arguments used in [19] and, again, the fact that 2lα(0) ≈ 2lα(y)

(y ∈ Bl and l � 0), we obtain

2kα(0)GNal(x) � c 2l(m+1)+kα(0)|x|−(n+m+1)‖al‖1, x ∈ Rk

� c 2(k−l)α+
2l(m+1)−k(n+m+1)‖2lα(·)al‖1, k � l +2.

Applying Hölder’s inequality and the fact that al is a central (α(·), p(·))-atom, we
obtain ∥∥∥2kα(0) (GNal)χk

∥∥∥
p(·)

� c 2(k−l)α+
2l(m+1)−k(n+m+1)‖χBl‖p′(·)‖χBk‖p(·)

� c 2(k−l)α+
2l(m+1)−k(n+m+1)‖χBl‖p′(·)‖χBk‖p(·)

� c 2
(l−k)(m+1+n−α+− n

p− )
,
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where in the last estimate we have used Lemma 1. Hence the first sum in (4.4) is
bounded by

c
k−2

∑
l=−∞

|λl|2(l−k)(m+1+n−α+− n
p− )

.

Therefore, the �
q(0)
< of this expression is bounded by

(
∑−1

k=−∞ |λk|q(0)
)1/q(0)

.

Again, for any k � 0, we have

2kα∞‖(GN f )χk‖p(·) �
∞

∑
l=−∞

|λl|2kα∞‖(GNal)χk‖p(·)

=
−1

∑
l=−∞

· · ·+
k−2

∑
l=0

· · ·+
∞

∑
l=k−1

· · ·.

As before, we have

2kα∞GNal(x) � 2
(l−k)(m+1+n−α+− n

p− )
, k � 0 > l.

Hence the first sum is bounded by

c 2
−k(m+1+n−α+− n

p− )
−1

∑
l=−∞

|λl|2l(m+1+n−α+− n
p− )

� 2
−k(m+1+n−α+− n

p− )
( −1

∑
k=−∞

|λk|q(0)

)1/q(0)

.

Since again, m+1+n−α+− n
p− > 0, the �

q∞
> -norm of this expression is bounded by

c

( −1

∑
k=−∞

|λk|q(0)

)1/q(0)

.

The remaining terms they are essentially similar to the estimate of the first term and the
second term in (4.4) . Hence the theorem is proved. �

REMARK 2. In the necessity part of the theorem, the atoms in the decompositions
(4.1) and (4.2) can be taken to be supported in dyadic annuli. Also the assumption
p ∈ P ln(Rn) can be replaced by p ∈ P ln

0 (Rn)∩P ln
∞ (Rn) , respectively p ∈ P ln

∞ (Rn) ,
in the HK̇α(·)

p(·),q(·) (R
n) spaces , respectively HKα(·)

p(·),q(·) (R
n) spaces.

5. Appendix

Here we present the more technical proofs of the Theorems 1 and 2. We omit the
proof of Theorem 1 since is essentially similar to the proof of Theorem 4.2 in [2], then
we need only to prove the Theorem 2. Our proofs use partially some decomposition



162 D. DRIHEM AND F. SEGHIRI

techniques already used in [16] and [2]. In view of Proposition 1 we use the property
(3.3) . We split the operator into

|T f (x)| � ∣∣T(
f χBk−2

)
(x)

∣∣+ ∣∣T ( f χR̃k
)(x)

∣∣+ ∣∣T(
f χRn\Bk+2

)
(x)

∣∣,
where R̃k :=

{
x ∈ Rn : 2k−2 � |x| < 2k+2

}
with k ∈ Z and x ∈ Rk .

Estimation of T
(
f χBk−2

)
. We have

2kα(0)∣∣T(
f χBk−2

)
(x)

∣∣� 2kα(0)
∫

Bk−2

|x−y|−n| f (y)|dy = 2kα(0)
k−2

∑
j=−∞

∫
Rj

|x−y|−n| f (y)|dy

for any x ∈ Rk , k < 0. To estimate the last integral we note that |x− y|� |x|− |y| > 2k

4
and 2kα(x) ≈ 2kα(0) if x ∈ Rk . Hence by Lemma 3 we arrive at the inequality

2kα(0)∣∣T(
f χBk−2

)
(x)

∣∣ �
k−2

∑
j=−∞

2(k− j)α+−kn
∫

Rj

2 jα(y)| f (y)|dy

for any k < 0. After applying Hölder’s inequality to the last integral, we get

∥∥2kα(0)T
(
f χBk−2

)
χk

∥∥
p(·) �

k−2

∑
j=−∞

2(k− j)α+−kn
∥∥2 jα(·) f χ j

∥∥
p(·)‖χ j‖p′(·) ‖χk‖p(·).

Since p∈P ln
0 (Rn)∩P ln

∞ (Rn) implies p′ ∈P ln
0 (Rn)∩P ln

∞ (Rn) , then Lemma 4 gives

‖χ j‖p′(·) ≈ |Rj|
1

p′(x j ) , x j ∈ Rj, and ‖χk‖p(·) ≈ |Rk|
1

p(xk) , xk ∈ Rk.

Hence the sum above can be rewritten as

k−2

∑
j=−∞

2(k− j)(α+−n) |Rj|−
1

p(x j ) |Rk|
1

p(xk)
∥∥2 jα(·) f χ j

∥∥
p(·).

Now we can distinguish three cases as follows (here we present the all cases):
0 � j � k−2: by Lemma 4 we get

|Rj|−
1

p(x j ) |Rk|
1

p(xk) ≈ |Rj|−
1

p∞ |Rk|
1

p∞ ≈ 2(k− j) n
p∞ � 2

(k− j) n
p− .

j < 0 � k−2: in this case we obtain

|Rj|
− 1

p(x j ) |Rk|
1

p(xk) � |Rj|−
1

p− |Rk|
1

p− � 2
(k− j) n

p− .

j � k−2 < 0: here we have

|Rj|
− 1

p(x j ) |Rk|
1

p(xk) ≈ (|Rk||Rj|−1) 1
p(x j) |Rk|

1
p(xk)− 1

p(x j ) � 2
(k− j) n

p− .
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Indeed, since |xk| < 2k , |x j| < 2 j < 2k we make use of local log-Hölder continuity of
p at the origin and get, for k � 0,

∣∣∣ 1
p(xk)

− 1
p(x j)

∣∣∣ log
1

|Rk| �
log

(
1
2k

)
log

(
e+ 1

2k

) � c

with c > 0 independent of k, j,xk,x j .
Therefore, in all cases we have essentially the same bound and hence, combining

the estimates above, we arrive at the inequality

∥∥2kα(0) T
(
f χBk−2

)
χk

∥∥
p(·) �

k−2

∑
j=−∞

2
(k− j)(α+−n+ n

p− )∥∥2 jα(·) f χ j
∥∥

p(·). (5.1)

Since α+ −n+ n
p− < 0, we apply Lemma 2 and get

( −1

∑
k=−∞

∥∥2kα(0)T
(
f χBk−2

)
χk

∥∥q(0)
p(·)

)1/q(0)

�
( −1

∑
k=−∞

∥∥2kα(0) f χRk

∥∥q(0)
p(·)

)1/q(0)

� ‖ f‖
K̇α(·)

p(·),q(·)
.

To estimate 2kα∞T
(
f χBk−2

)
in �q∞

> -norm, we have the same estimate (5.1), with 2kα∞

in place of 2kα(0) . We write

k−2

∑
j=−∞

2
(k− j)(α+−n+ n

p− )∥∥2 jα(·) f χ j
∥∥

p(·) =
0

∑
j=−∞

...+
k−2

∑
j=1

... (5.2)

for any k � 0 (we put ∑k−2
j=1 ... = 0 if k = 0,1,2). Since α+−n+ n

p− < 0, the first term
is bounded by

2
k(α+−n+ n

p− )
0

∑
j=−∞

2
− j(α+−n+ n

p− )
sup
j�0

∥∥2 jα(0) f χ j
∥∥

p(·) � c 2
k(α+−n+ n

p− )‖ f‖
K̇α(·)

p(·),q(·)
.

The �q∞
> -norm of this expression is bounded by c‖ f‖

K̇α(·)
p(·),q(·)

. Again by Lemma 2, we

can estimate the second term in (5.2).
Estimation of T

(
f χR̃k

)
. Using the boundedness of T

‖{T(
2kα(0) f χR̃k

)}‖
�
q(0)
< (Lp(·)) +‖{T(

2kα∞ f χR̃k

)}‖�
q∞
> (Lp(·))

� ‖{2kα(0) f χR̃k
}‖

�
q(0)
< (Lp(·)) +‖{2kα∞ f χR̃k

}‖�
q∞
> (Lp(·)) � ‖ f‖

K̇
α(·)
p(·),q

.

Estimation of T
(
f χRn\Bk+2

)
. Using a combination of the arguments used in the

proof of Theorem 1 in [2], we arrive at the inequality

∥∥2kα(0)T
(
f χRn\Bk+2

)
χk

∥∥
p(·) �

∞

∑
j=k

2
(k− j)(α−+ n

p+ ) ∥∥2 jα(·) f χ j
∥∥

p(·) (5.3)
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for any k < 0. This sum can be rewritten us

−1

∑
j=k

...+
∞

∑
j=0

....

Observing that α− + n
p+ > 0, an application of Lemma 2 yields that the �

q(0)
< -norm of

the first sum is bounded by

c

( −1

∑
k=−∞

∥∥2kα(0) f χk

∥∥q(0)
p(·)

)1/q(0)

� ‖ f‖
K̇α(·)

p(·),q(·)
.

Taking into account that 2 jα(y) ≈ 2 jα∞ for any y∈Rj, j � 0, the second sum is bounded
by

c 2
k(α−+ n

p+ )
∞

∑
j=0

2
− j(α−+ n

p+ )
sup
j�0

∥∥2 jα∞ f χ j
∥∥

p(·) � 2
k(α−+ n

p+ )‖ f‖
K̇

α(·)
p(·),q(·)

.

The �
q(0)
< -norm of this expression is bounded by c‖ f‖

K̇
α(·)
p(·),q(·)

. To estimate the term

2kα∞T
(
f χRn\Bk+2

)
in �q∞

> -norm, we have the same estimate (5.3), with 2kα∞ in place

of 2kα(0) , an application of Lemma 2 yields the desired inequality and hence the proof
of Theorem 2 is complete.
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