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COMMUTATORS OF RIESZ TRANSFORMS WITH LIPSCHITZ
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Abstract. Let A := −(∇− i�a) · (∇− i�a) +V be a magnetic Schrödinger operator on L2(Rn) ,
n � 2 , where �a := (a1, · · · , an) ∈ L2

loc(R
n,Rn) and 0 � V ∈ L1

loc(R
n) . In this paper, the author

shows that the commutators of the Riesz transforms LkA−1/2 , k ∈ {1, · · · , n} , with functions in
Lipschitz space Lipα (Rn) for α ∈ (0,1) , are bounded from Lp(Rn) to Lq(Rn) , where 1/p−
1/q = α/n and Lk is the closure of ∂

∂xk
− iak in L2(Rn) . Let ρ be an admissible function

modeled on the known auxiliary function determined by the Schrödinger operator −�+V . The
author also characterizes a localized Lipschitz space Lipα,ρ(Rn) in terms of the localized Riesz

transforms {R̃ j}n
j=1 and their adjoint operators.

1. Introduction

Let �a := (a1, · · · , an) , n � 2, with ak ∈ L2
loc (R

n) real-valued for each k ∈ {1, · · · ,
n} , 0 � V ∈ L1

loc (R
n) and Lk be the closure in L2(Rn) of ∂

∂xk
− iak with domain

C∞
c (Rn) , the set of C∞(Rn) functions with compact supports. We use the same notation

as in [4] and define the sesquilinear form Q by

Q( f ,g) :=
n

∑
k=1

∫
Rn

Lk f (x)Lkg(x)dx+
∫

Rn
V (x) f (x)g(x)dx

with domain

D(Q) :=
{

f ∈ L2(Rn) : Lk f ∈ L2(Rn), k ∈ {1, · · · , n},√V f ∈ L2(Rn)
}

.

It is known that Q is symmetric and closed. Set

D(A) :=
{

f ∈ D(Q) : there existsg ∈ L2(Rn) such that for all ϕ ∈ D(Q),

Q( f ,ϕ) =
∫

Rn
g(x)ϕ(x)dx

}
(1.1)
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and A f := g for all f ∈ D(A) and g ∈ L2(Rn) as in (1.1). The magnetic Schrödinger
operator A is a self-adjoint operator since Q is symmetric; see [11]. Formally, we
write

A f =
n

∑
k=1

L∗
kLk f +V f (1.2)

or A = −(∇− i�a) · (∇− i�a)+V , where L∗
k is the adjoint operator of Lk .

The purposes of this paper are two fold. The first one is to study the bounded-
ness of commutators generated by the Riesz transforms LkA− 1

2 , k ∈ {1, · · · , n} , with
functions in the Lipschitz spaces Lipα (Rn) , α ∈ (0,1) . It was proved by Duong et

al. in [3] that LkA− 1
2 for each k is bounded on Lp(Rn) for p ∈ (1,2] . Later, when

b ∈ BMO(Rn) , the space of functions with bounded mean oscillation, Duong and Yan

[4] further showed that the commutators [b,LkA− 1
2 ] , k ∈ {1, · · · , n} , are bounded on

Lp(Rn) for p ∈ (1,2) . Recently, when �a := 0 and V belongs to the so-called re-
verse Hölder class Bq(Rn) for some q > n/2 (see Remark 1 below), Liu and Sheng
[9] showed that the commutator [b,∇(−�+V)−1/2] with b ∈ Λθ

α(Rn) , a subspace of
Lipα (Rn) , is bounded from Lp(Rn) to Lq(Rn) for p, q with 1/p−1/q= α/n . Recall
that the Lipschitz space Lipα (Rn), α ∈ (0,1), consists of the functions f such that

‖ f‖Lipα (Rn) := sup
x,y∈Rn,x�=y

| f (x)− f (y)|
|x− y|α < ∞.

In this paper, we obtain the boundedness of the commutators [b,LkA−1/2] for general
A and b ∈ Lipα (Rn) as follows.

THEOREM 1. Let α ∈ (0,1) , p, q ∈ (1,2] with 1/p− 1/q = α/n. Assume that
b ∈ Lipα (Rn) . Then the commutators [b,LkA−1/2] , k ∈ {1, · · · ,n} , are bounded from
Lp(Rn) to Lq(Rn) .

When T is a standard Calderón-Zygmund singular integral operator, that is, T
is bounded on L2(Rn) and the associated kernel of T satisfies the Hölder continu-
ity condition, it is known that T is bounded on Lp(Rn) for p ∈ (1,∞) . Moreover,
Coifman, Rochberg and Weiss [2] proved that b ∈ BMO(Rn) is sufficient to guaran-
tee the commutator [b,T ] to be bounded on Lp(Rn) with all p ∈ (1,∞) , and they
also established a partial converse that if [b,Rk] are bounded on Lp(Rn) for some
p ∈ (1,∞) , then b ∈ BMO(Rn) , where Rk for k ∈ {1, · · · , n} are the Riesz trans-
forms. The full converse of this result was obtained by Janson [8], in which Janson also
showed that b ∈ Lipα (Rn) if and only if [b,T ] is bounded from Lp(Rn) to Lq(Rn)
with 1/p− 1/q = α/n , where T is a Calderón-Zygmund singular integral operator
with kernel being homogeneous of degree −n and satisfying some smoothness condi-
tion.

Naturally, one may ask if the space Lipα (Rn) can be characterized by the com-
mutators of the Riesz transforms LkA−1/2 . That is, if the converse of Theorem 1 holds.
It is known that the Riesz transforms LkA− 1

2 defined above do not fall in the scope of
standard Calderón-Zygmund operators because their associated kernels may not satisfy



COMMUTATORS OF RIESZ TRANSFORMS RELATED TO SCHRÖDINGER OPERATORS 175

the Hölder continuity, or even the weaker Hörmander condition. When �a := 0 and
V := 1 ∈ ∩q>1Bq(Rn) , Guo et al. [7] gave a function f which is not in BMO(Rn) ,
while its commutators [ f ,∇(−�+ 1)−1/2] is bounded on L2(Rn) . This example im-
plies that BMO(Rn) can not be characterized by commutators of Riesz transforms
∇(−�+V )−1/2 . Let ρ be an admissible function introduced in [16] (see Defini-
tion 1 below), which is modeled on the known auxiliary function determined by V
(see (1.3) below). Instead, in [13], a localized BMO-type space BMOρ(Rn) , a sub-
space of BMO(Rn) introduced in [16], was characterized by the commutators of local-
ized Riesz transforms {R̃ j}n

j=1 and their adjoint operators {R̃∗
j}n

j=1 introduced in [14].
Since when ρ is the known auxiliary function determined by V in (1.3), the space
BMOρ(Rn) is just the localized space BMO−Δ+V (Rn) introduced in [5]. Recall that
BMO−Δ+V (Rn) � BMO(Rn) and thus can not be characterized by ∇(−�+V )−1/2

by the example given in [7]. In this sense, the localized Riesz transforms {R̃ j}n
j=1

and {R̃∗
j}n

j=1 are more suitable than LkA−1/2 or ∇(−�+V )−1/2 to study the char-
acterization of localized function spaces. Motivated by [13], instead of characteriz-
ing Lipα (Rn) by LkA− 1

2 , the second aim of this paper is to characterize the localized
Lipschitz space Lipα ,ρ (Rn) , a subspace of Lipα(Rn) introduced in [15], in terms of

{R̃ j}n
j=1 and their adjoint operators {R̃∗

j}n
j=1 .

To state our second result, we begin with the notion of admissible functions intro-
duced by Yang and Zhou in [16].

DEFINITION 1. A positive function ρ on Rn is said to be admissible if there exist
positive constants C̃ and k0 such that for all x , y ∈ Rn ,

ρ(y) � C̃[ρ(x)]1/(1+k0)[ρ(x)+ |x− y|]k0/(1+k0).

REMARK 1. Obviously, constant functions are admissible. Moreover, another
class of admissible functions is given by the well-known reverse Hölder class Bq(Rn) .
Recall that a nonnegative potential V is said to be in Bq(Rn) with q ∈ (1, ∞] if there
exists a positive constant C such that for all open balls B of Rn ,(

1
|B|

∫
B
[V (y)]q dy

)1/q

� C
|B|

∫
B
V (y)dy

with the usual modification made when q = ∞ . For any V ∈ Bq(Rn) with certain
q ∈ (1, ∞] and all x ∈ Rn , set

ρ(x) := [m(x,V )]−1 := sup

{
r > 0 :

r2

|B(x, r)|
∫

B(x,r)
V (y)dy � 1

}
; (1.3)

see, for example, [12]. It was proved in [12] that ρ in (1.3) is an admissible function
if n � 3 and V ∈ Bn/2(Rn) . Moreover, Yang and Zhou [16] pointed out that ρ is
admissible if n � 1, q > max{1, n/2} and V ∈ Bq(Rn) .

We next recall the notion of the space Lipα ,ρ (Rn) in [15] associated to a given
admissible function ρ . Throughout this paper, D denotes the set of all open balls
B(x, r) such that r � ρ(x) .
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DEFINITION 2. Let ρ be an admissible function and α ∈ (0, 1) . A function f
on Rn is said to be in the localized Lipschitz space Lipα ,ρ (Rn) if there exists a non-
negative constant C such that for all x, y ∈ Rn and balls B containing x and y with
B /∈ D ,

| f (x)− f (y)| � C|B|α/n,

and that for all balls B ∈D , ‖ f‖L∞(B) �C|B|α/n. The minimal nonnegative constant C
as above is called the norm of f in Lipα ,ρ (Rn) and denoted by ‖ f‖Lipα,ρ (Rn) .

Let ρ be an admissible function as in Definition 1. For all j ∈ {1, · · · ,n} , f ∈
∪∞

p=1L
p(Rn) and x ∈ Rn , let

R̃ j( f )(x) := p.v.cn

∫
Rn

x j − y j

|x− y|n+1 η
( |x− y|

ρ(x)

)
f (y)dy,

where and in what follows, cn := Γ((n + 1)/2)/[π (n+1)/2] , η ∈ C1(R) supported in
(−1, 1) and η(t) = 1 if |t| � 1/2. The adjoint operator of R̃ j , j ∈ {1, · · · ,n} , has the
form

R̃∗
j( f )(x) := −p.v.cn

∫
Rn

x j − y j

|x− y|n+1 η
( |x− y|

ρ(y)

)
f (y)dy.

THEOREM 2. Let b ∈ L1
loc (R

n) , ρ be an admissible function, α ∈ (0,1) and
j ∈ {1, · · · , n} . Then the following assertions are equivalent:

(i) b ∈ Lipα ,ρ (Rn) .
(ii) b satisfies that for all open balls B ∈ D ,

1

|B|1+α/n

∫
B
|b(y)|dy � C, (1.4)

and [b, R̃∗
j ] is bounded from Lp(Rn) to Lq(Rn) for all p, q ∈ (1,∞) such that 1/p−

1/q = α/n.
(iii) b satisfies (1.4) and [b, R̃∗

j ] is bounded from Lp(Rn) to Lq(Rn) for some
p, q ∈ (1,∞) such that 1/p−1/q = α/n.

(iv) b satisfies (1.4) and [b, R̃ j] is bounded from Lp(Rn) to Lq(Rn) for all p, q ∈
(1,∞) such that 1/p−1/q = α/n.

(v) b satisfies (1.4) and [b, R̃ j] is bounded from Lp(Rn) to Lq(Rn) for some p, q∈
(1,∞) such that 1/p−1/q = α/n.

We mention that the condition (1.4) is necessary. In fact, from the proof of
the implication (i) ⇒ (ii) in Theorem 2 below, it follows that if b ∈ Lipα(Rn) , the
commutator [b, R̃∗

j ] is bounded from Lp(Rn) to Lq(Rn) for all p, q ∈ (1,∞) such
that 1/p− 1/q = α/n . Now let b(x) := |x|α ,x ∈ Rn . Then it is easy to see that
b ∈ Lipα(Rn) . However, (1.4) does not hold for b .

The organization of the paper is as follows. Section 2 is devoted to the proof of
Theorem 1. In Section 3, we present the proof of Theorem 2.

Finally, we now make some conventions. Throughout this paper, we always use
C to denote a positive constant that is independent of the main parameters involved but
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whose value may differ from line to line. Constants with subscripts, such as C1 , do
not change in different occurrences. If f � Cg , we then write f � g or g � f ; and if
f � g � f , we then write f ∼ g. For any x ∈ Rn and λ , r > 0, B := B(x,r) denotes
the ball centered at x with radius r and λB := B(x,λ r) .

2. Proof of Theorem 1

In this section, we present the proof of Theorem 1. We begin with an analogy of
the classical Fefferman-Stein inequality for the following sharp maximal function M �

A
established in [10]; see also [4]. For any f ∈ Lp(Rn) , p ∈ [1,∞] , the sharp maximal
function M �

A associated with the semigroup {e−tA}t>0 is given by

M �
A( f )(x) := sup

x∈B

1
|B|

∫
B

∣∣ f (y)− e−tBA f (y)
∣∣ dy,

where rB is the radius of the ball B and tB := r2
B .

LEMMA 1. Let p ∈ (1,∞) . There exists a positive constant Cp such that for all
f ∈ Lp(Rn) ,

‖ f‖Lp(Rn) � Cp

∥∥∥M �
A( f )

∥∥∥
Lp(Rn)

.

The following lemma on the kernel of (I − e−tA)(LkA− 1
2 )∗ was established by

Duong and Yan in [4].

LEMMA 2. For each k ∈ {1, · · · , n} , the kernel K∗
t,k(y,z) of the operator

(LkA
−1/2(I− e−tA))∗ = (I− e−tA)(LkA

− 1
2 )∗

satisfies the following estimate

∞

∑
m=0

2m
(
2mt1/2

)n/2
(∫

2mt1/2�|y−z|<2m+1t1/2

∣∣K∗
t,k(y,z)

∣∣2 dz

)1/2

� C,

where C is a constant independent of t and y.

Proof of Theorem 1. For each k ∈ {1, · · · ,n} , let (LkA−1/2)∗ be the adjoint opera-
tor of LkA−1/2 . By duality, for given p, q ∈ (1,2] with 1/p−1/q = α/n , it suffices to
prove [b,(LkA−1/2)∗] is bounded from Lq′(Rn) to Lp′(Rn) , where for any r ∈ [1,∞] ,
1/r + 1/r′ = 1. To this end, we first show that there exists a positive constant C such
that for all f ∈C∞

c (Rn) and x ∈ Rn ,

M �
A

([
b,

(
LkA

−1/2
)∗]

f
)

(x)

� C‖b‖Lipα (Rn)

[
M2,α

((
LkA

−1/2
)∗

f
)

(x)+M2,α( f )(x)
]
, (2.1)
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where for r ∈ [2,n/α) and any suitable function f ,

Mr,α( f )(x) := sup
x∈B

1

|B|−α/n

(
1
|B|

∫
B
| f (y)|r dy

)1/r

. (2.2)

Indeed, assume that (2.1) holds. For b ∈ Lipα (Rn) and each N ∈ N , define bN :=
min{N, |b|}sgn(b) . Then bN ∈ L∞(Rn) and ‖bN‖Lipα (Rn) � ‖b‖Lipα (Rn) . Furthermore,

by the fact that (LkA−1/2)∗ is bounded on Ls(Rn) for s ∈ [2,∞) , we see that for all
f ∈C∞

c (Rn) , [bN ,(LkA−1/2)∗]( f ) ∈ Ls(Rn) and

‖[bN ,(LkA
−1/2)∗]( f )‖Ls(Rn) � N‖ f‖Ls(Rn).

Recall that M2,α is bounded from Ls(Rn) to Lt(Rn) with s∈ (2,n/α) and 1/s−1/t =
α/n ; see Chanillo [1]. By this fact together with 1/q′ − 1/p′ = α/n , Lemma 1 and
(2.1), we have that for all f ∈C∞

c (Rn) ,∥∥∥[
bN ,(LkA

−1/2)∗
]
( f )

∥∥∥
Lp′ (Rn)

�
∥∥∥M �

A

([
bN ,

(
LkA

−1/2
)∗]

( f )
)∥∥∥

Lp′ (Rn)

� ‖bN‖Lipα (Rn)

∥∥∥M2,α

((
LkA

−1/2
)∗

f
)

+M2,α( f )
∥∥∥

Lp′ (Rn)

� ‖b‖Lipα (Rn)‖ f‖Lq′ (Rn).

A standard argument together with the Fatou lemma then implies that for all f ∈
Lq′(Rn) , [b,(LkA−1/2)∗]( f ) ∈ Lp′(Rn) and∥∥∥[

b,(LkA
−1/2)∗

]
( f )

∥∥∥
Lp′ (Rn)

� ‖b‖Lipα (Rn)‖ f‖Lq′ (Rn).

This implies Theorem 1.

To show (2.1), let T := (LkA− 1
2 )∗ . For any f ∈ Lq′(Rn) and x ∈ Rn , let B :=

B(xB,rB)  x , f1 := f χ2B and f2 := f − f1 . One writes

[b,T ] f = (b−bB)T f −T ((b−bB) f1)−T((b−bB) f2)

and

e−tBA([b,T ] f ) = e−tBA((b−bB)T f )− e−tBAT ((b−bB) f1)− e−tBAT ((b−bB) f2),

where for any function f and ball B , fB := 1
|B|

∫
B f (x)dx. Then we see that

1
|B|

∫
B

∣∣(I− e−tBA)
[b,T ] f (y)

∣∣ dy

� 1
|B|

∫
B
|(b−bB)T f (y)| dy+

1
|B|

∫
B
|T ((b−bB) f1)(y)| dy
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+
1
|B|

∫
B

∣∣e−tBA((b−bB)T f )(y)
∣∣ dy

+
1
|B|

∫
B

∣∣e−tBAT ((b−bB) f1)(y)
∣∣ dy

+
1
|B|

∫
B

∣∣(I− e−tBA)
T ((b−bB) f2)(y)

∣∣ dy =: I+ II+ III+ IV+V.

By the Hölder inequality, we see that

I � 1

|B|1− α
n
‖b‖Lipα (Rn)

∫
B
|T f (y)|dy � ‖b‖Lipα (Rn)M2,α(T f )(x).

For II , from the Hölder inequality and the L2(Rn)-boundedness of T (see [3, Theorem
1.1]), it follows that

II �
(

1
|B|

∫
B
|T ((b−bB) f1)(y)|2 dy

)1/2

�
(

1
|B|

∫
2B
|b(y)−bB|| f (y)|2 dy

)1/2

� ‖b‖Lipα (Rn)
1

|B|− α
n

(
1
|B|

∫
2B
| f (y)|2 dy

)1/2

� ‖b‖Lipα (Rn)M2,α( f )(x).

To estimate III, recall that the kernel pt(y,z) of e−tA satisfies that for all t > 0 and
almost all y, z ∈ Rn ,

|pt(y,z)| � (4πt)−
n
2 exp

(
−|y− z|2

4t

)
; (2.3)

see [4]. Let g := (b−bB)T f . By (2.3), for any y ∈ B ,∣∣e−tBAg(y)
∣∣ �

∫
Rn

|ptB(y,z)g(z)| dz

�
∫

Rn
t
− n

2
B exp

(
−|y− z|2

4tB

)
|g(z)|dz

∼
∫
|y−z|<2t1/2

B

t
− n

2
B exp

(
−|y− z|2

4tB

)
|g(z)|dz+

∞

∑
k=0

∫
2kt1/2

B �|y−z|<2k+1t1/2
B

· · ·

� 1
|B|

∫
B
|g(z)|dz+

∞

∑
k=0

tNB
(2kt1/2

B )2N

1

t
n
2
B

∫
|y−z|<2k+1t

1/2
B

|g(z)|dz

� ‖b‖Lipα (Rn)

[
M2,α(T f )(x)+

∞

∑
k=0

1

2k(2N−n) M2,α(T f )(x)

]
� ‖b‖Lipα (Rn)M2,α(T f )(x),

where N > n/2. This implies that III � ‖b‖Lipα (Rn)M2,α(T f )(x).



180 D. YANG

For IV, let M ( f ) be the Hardy-Littlewood maximal function, defined by setting
for all locally integrable functions f and x ∈ Rn ,

M ( f )(x) := sup
Bx

1
|B|

∫
B
| f (y)|dy.

By (2.3) and the L2(Rn)-boundedness of M and T , we conclude that

IV � 1
|B|

∫
B
M [T ((b−bB) f1)](y)dy

�
[

1
|B|

∫
B
{M [T ((b−bB) f1)](y)}2 dy

]1/2

�
[

1
|B|

∫
B
|T ((b−bB) f1)(y)|2 dy

]1/2

�
[

1
|B|

∫
2B
|(b(y)−bB) f (y)|2 dy

]1/2

� ‖b‖Lipα (Rn)M2,α( f )(x).

Finally, from the fact that |y− z|� rB for any y∈ B and z /∈ 2B , Lemma 2 and the
Hölder inequality, we deduce that

V � 1
|B|

∫
B

∫
Rn\(2B)

∣∣K∗
tB,k(y,z)

∣∣ |b(z)−bB|| f (z)|dzdy

� 1
|B|

∫
B

∞

∑
m=0

(∫
2mrB�|y−z|<2m+1rB

∣∣K∗
tB,k(y,z)

∣∣ |b(z)−bB|| f (z)|dz

)
dy

� 1
|B|

∫
B

∞

∑
m=0

∣∣2m+1B
∣∣ α

n ‖b‖Lipα (Rn)

(∫
2mrB�|y−z|<2m+1rB

∣∣K∗
tB,k(y,z)

∣∣2 dz

)1/2

×
(∫

2m+2B
| f (z)|2 dz

)1/2

dy

� sup
m�0

2−m‖b‖Lipα (Rn)M2,α( f )(x) � ‖b‖Lipα (Rn)M2,α( f )(x).

Combining the estimates from I through V, we see that (2.1) holds, which completes
the proof of Theorem 1.

3. Proof of Theorem 2

Let ρ be a given admissible function. In this section, we establish characteriza-
tions of Lipα ,ρ (Rn) via commutators of localized Riesz transforms and their adjoint
operators in [14]. We begin with the following lemma established in [14].

LEMMA 3. Let ρ be an admissible function, and for all j ∈ {1, · · · ,n} , let R̃ j and
R̃∗

j be defined as above. Then R̃ j and R̃∗
j are bounded on Lp(Rn) for p ∈ (1,∞) and

bounded from L1(Rn) to L1,∞(Rn) .
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The following characterization of Lipα ,ρ (Rn) was obtained in [15], which is a
localized version of Lemma 4 in [8].

LEMMA 4. Let ρ be an admissible function, D as in Section 1 and α ∈ (0,1) .
Define the localized Morrey-Campanato space E α

ρ (Rn) by

E α
ρ (Rn) :=

{
f ∈ L1

loc(R
n) : ‖ f‖E α

ρ (Rn) := sup
B/∈D

1

|B|1+α/n

∫
B
| f (y)− fB|dy

+ sup
B∈D

1

|B|1+α/n

∫
B
| f (y)|dy < ∞

}
.

Then E α
ρ (Rn) = Lipα ,ρ (Rn) with equivalent norms.

Proof of Theorem 2. To show that (i) implies (ii), by Lipα ,ρ (Rn) ⊂ Lipα (Rn) , it

suffices to prove that if b ∈ Lipα (Rn) , then [b, R̃∗
j ] is bounded from Lp(Rn) to Lq(Rn)

for all p ∈ (1,n/α) and q ∈ (p,∞) such that 1/p−1/q = α/n . Moreover, by a stan-
dard argument as in Theorem 1, we only need to show that there exists a positive con-
stant C such that for all f ∈C∞

c (Rn) and x ∈ Rn ,

M �
([

b, R̃∗
j

]
f
)

(x) � C‖b‖Lipα (Rn)

{
Mr,α

[
R̃∗

j( f )
]
(x)+Mr,α( f )(x)

}
, (3.1)

where Mr,α is as in (2.3) with r ∈ (1,n/α) and M �( f ) is the classical maximal func-
tion defined by

M �( f )(x) := sup
Bx

1
|B|

∫
B
| f (y)− fB|dy.

To show (3.1), let x∈Rn , B := B(x0,r0) be any ball containing x , f1 := f χ2B and
f2 := f χRn\(2B) . We first prove that for all j ∈ {1, · · · , n} and B as above,

1
|B|

∫
B

∣∣∣[b, R̃∗
j

]
( f )(y)+ R̃∗

j [(b−bB) f2] (x0)
∣∣∣ dy

� ‖b‖Lipα (Rn)

{
Mr,α

[
R̃∗

j( f )
]
(x)+Mr,α( f )(x)

}
. (3.2)

From the linearity of R̃∗
j , we deduce that for all y ∈ Rn ,[

b, R̃∗
j

]
( f )(y) = (b(y)−bB)R̃∗

j( f )(y)− R̃∗
j [(b−bB) f1] (y)− R̃∗

j [(b−bB) f2] (y)

=: I1(y)+ I2(y)+ I3(y).

Similar to the estimates of I and II in Theorem 1, by the Hölder inequality and Lemma
3, we have that

2

∑
j=1

1
|B|

∫
B

∣∣I j(y)
∣∣ dy � ‖b‖Lipα (Rn)

{
Mr,α

[
R̃∗

j( f )
]
(x)+Mr,α( f )(x)

}
.
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By Definition 1, for any given positive constant a , there exists a positive constant
C̃a ∈ [1,∞) such that for all y ∈ Rn and x ∈ B(y, aρ(y)) ,

1

C̃a
ρ(y) � ρ(x) � C̃aρ(y). (3.3)

We denote the kernel of R̃∗
j still by R̃∗

j . Let y ∈ B . From (3.3), we deduce that

supp(R̃∗
j(y, ·)) ⊂ B(y,C̃1ρ(y)).

Because x0 , y∈ B , another application of (3.3) yields that there exists positive constant
C1 such that

supp(R̃∗
j(y, ·)) ⊂ B(x0,C1ρ(x0))

if B /∈ D , and
supp(R̃∗

j(y, ·)) ⊂ B(x0,C1r0)

if B ∈ D , which further implies that

supp(R̃∗
j(y, ·)) ⊂ [C1(ρ(x0)/r0 +1)B].

From this and the Hölder inequality, it follows that

|I3(y)− I3(x0)|
�

∫
[C1(ρ(x0)/r0+1)B]\(2B)

∣∣∣R̃∗
j(y,z)− R̃∗

j(x0,z)
∣∣∣ |b(z)−bB|| f (z)|dz

�
∫

[C1(ρ(x0)/r0+1)B]\(2B)

{∣∣∣∣( y j − z j

|y− z|n+1 −
x0 j − z j

|x0− z|n+1

)
η

( |y− z|
ρ(z)

)∣∣∣∣
+

∣∣∣∣ x0 j − z j

|x0− z|n+1

[
η

( |y− z|
ρ(z)

)
−η

( |x0− z|
ρ(z)

)]∣∣∣∣} |b(z)−bB|| f (z)|dz

�
∫

[C1(ρ(x0)/r0+1)B]\(2B)

|y− x0||b(z)−bB|| f (z)|
|x0 − z|n+1 dz

� ‖b‖Lipα (Rn)

∞

∑
k=1

r0

(2kr0)n+1

∣∣∣2k+2B
∣∣∣α/n ∫

2k+1B
| f (z)|dz

� ‖b‖Lipα (Rn)Mr,α( f )(x).

This together with estimates of I1 and I2 yields (3.2), which implies (3.1), and hence,
completes the proof of the implication (i) =⇒ (ii) .

Since the implications from (ii) to (iii) and from (iv) to (v) are obvious, and the im-
plications from (ii) to (iv) and from (iii) to (v) follow from a standard duality argument,
Theorem 2 is reduced to showing that (v) implies (i). We borrow some idea from [8].
Let {Rj}n

j=1 be the kernels of the classical Riesz transforms. Observe that for all j ∈
{1, · · · , n} , 1/Rj ∈C∞(Rn \ {0}) . Therefore, there exist z0 ∈ Rn \ {0} and δ ∈ (0,∞)
such that 1/Rj(z) is expressed as an absolutely convergent Fourier series in B(z0,δ )
(see, for example, [6, Theorem 3.2.16]). That is, there exist {νk}k∈N ⊂Rn and numbers
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{ak}k∈N with ∑∞
k=1 |ak|< ∞ such that for all z ∈ B(z0,δ ) , 1/Rj(z) = ∑∞

k=1 akeiνk·z. Let
z1 := δ−1z0 . If |z− z1| < 1, then we have that |δ z− z0| < δ and

1
Rj(z)

=
δ−n

R j(δ z)
= δ−n

∞

∑
k=1

ake
iνk·(δ z). (3.4)

Let B := B(x̃,r) /∈ D being any ball and C2 := [4(1+ |z1|)C̃1] , where C̃1 is as in
(3.3) with a = 1. Then we have that r < ρ(x̃) . To show (i), we first consider the case
that r < ρ(x̃)/C2 . Let ỹ := x̃−2rz1 and B̃ := B(ỹ,r) . Then we obtain that for all x ∈ B
and y ∈ B̃ , ∣∣∣∣x− y

2r
− z1

∣∣∣∣ � |x− x̃|
2r

+
|y− ỹ|

2r
< 1 (3.5)

and |x̃−x|< r < ρ(x̃), which together with (3.3) implies that |x−y|< 2r(1+ |z1|) and
ρ(x̃) � C̃1ρ(x) . Therefore, we see that

|x− y|< 2r(1+ |z1|) <
ρ(x̃)

2C̃1
� ρ(x)

2
. (3.6)

Note that R̃ j(x,y) = Rj(x−y) for all x , y ∈ Rn with |x−y| < ρ(x)
2 and j ∈ {1, · · · , n} .

From this, (3.4), (3.5), the Hölder inequality and the boundedness of [b, R̃ j] from
Lp(Rn) to Lq(Rn) , we then deduce that∫

B

∣∣b(x)−bB̃

∣∣ dx

=
∫

Rn

[
b(x)−bB̃

]
sgn

(
b−bB̃

)
χB(x)dx

=
1

|B̃|
∫

Rn

∫
Rn

[b(x)−b(y)]sgn(b(x)−bB̃)χB(x)χB̃(y)
(2r)nR̃ j(x,y)

Rj( x−y
2r )

dydx

�
∫

Rn

∫
Rn

[b(x)−b(y)]sgn(b(x)−bB̃)χB(x)χB̃(y)R̃ j(x,y)
∞

∑
k=1

ake
i

δ νk
2r ·(x−y) dydx

�
∞

∑
k=1

|ak|
∫

Rn

∣∣∣∣[b, R̃ j

](
χB̃e−i

δ νk
2r

)
(x)

∣∣∣∣χB(x)dx

�
∞

∑
k=1

|ak|
∥∥∥∥[

b, R̃ j

](
χB̃e−i

δ νk
2r

)∥∥∥∥
Lq(Rn)

‖χB‖Lq′ (Rn) � |B|1+ α
n ,

which implies that ∫
B
|b(x)−bB|dx � |B|1+ α

n . (3.7)

Now consider the case that r ∈ [ρ(x̃)/C2,ρ(x̃)). In this case, C2B ∈ D . From this
fact together with C2 > 1 and (1.4), we deduce that

1
|B|

∫
B
|b(y)−bB|dy � 1

|B|
∫

B
|b(y)|dy � 1

|C2B|
∫
C2B

|b(y)|dy � |B|1+ α
n .
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This and the estimate for the case that r < ρ(x̃)/C2 imply that (3.7) holds for all balls
B /∈D , which together with (1.4) and Lemma 4 further yields (i), and hence, completes
the proof of Theorem 2.
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