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STRONG CONVERGENCE THEOREM

FOR WALSH–MARCINKIEWICZ MEANS

KÁROLY NAGY AND GEORGE TEPHNADZE

(Communicated by I. Perić)

Abstract. It is known that the maximal operator of Walsh-Marcinkiewicz means is bounded from
the dyadic martingale Hardy space Hp to the space Lp for p > 2/3 and the condition p > 2/3
is essential. In the case p = 2/3 the boundedness of the maximal operator does not hold. This
means that the investigation of the maximal operator at the endpoint case p = 2/3 plays an
important role.

The main aim of this paper is to prove a strong convergence theorem for the Walsh-
Marcinkiewicz means on the Hardy space H2/3 .

1. Introduction

In 1987, Simon [17] proved that, if f ∈ H1(G) , then

lim
N→∞

1
logN

N

∑
n=1

‖Sn( f )‖1

n
= ‖ f‖1.

The trigonometric analogue was verified earlier by Smith [19]. In 1993, the analo-
gous result with respect to Vilenkin systems was proved by Gát [4], with respect to
Vilenkin-like systems by Blahota [1], later. In 2000, Simon [18] proved that there ex-
ists a constant Cp such that the inequality

∞

∑
k=1

‖Sk( f )‖p
p

k2−p � Cp‖ f‖p
Hp

(1)

holds for any function f ∈Hp(G) , where 0 < p < 1. In [21] it was proved that sequence{
1/k2−p : k � 1

}
in (1) is sharp in a special sense.

We mention that the endpoint for the boundedness of the maximal operator of
Walsh-Fejér means is p = 1/2 (see [23, 16, 6, 14]). For 0 < p � 1/2 the second author
[20] proved that there exists an absolute constant cp, depending only on p , such that
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1

log[1/2+p]n

n

∑
k=1

‖σk( f )‖p
Hp

k2−2p � cp‖ f‖p
Hp

( f ∈ Hp(G)) (2)

holds for the Fejér means (we are interested only in the endpoint case p = 1/2). Re-
cently, it is proved for Vilenkin system [2].

For the two-dimensional trigonometric Fourier partial sums S j, j ( f ) Marcinkie-
wicz [10] proved that the means

Mn ( f ) :=
1
n

n

∑
j=1

S j, j( f )

of a function f ∈L logL([0,2π ]2) converges a.e to f as n→∞ . Zhizhiashvili improved
this result for f ∈ L1([0,2π ]2) [26]. Dyachenko [3] showed this result for dimension
greater than 2.

For the two-dimensional Walsh-Fourier series Weisz [25] proved that the maximal
operator M ∗ ( f ) is bounded from the dyadic martingale Hardy space Hp

(
G2

)
to the

space Lp
(
G2

)
for p > 2/3. In the case p = 2/3 Goginava [6] proved that M ∗ is not

bounded from the Hardy space H2/3
(
G2

)
to the space L2/3

(
G2

)
. By interpolation it

follows that M ∗ is not bounded from the Hardy space Hp
(
G2

)
to the space weak−

Lp
(
G2

)
for 0 < p < 2/3. That is, the endpoint of the boundedness of the maximal

operator M ∗ is p = 2/3. This means that it is interesting to discuss what does happen
here. Goginava [7] also proved that M ∗ is bounded from the Hardy space H2/3

(
G2

)
to the space weak−L2/3

(
G2

)
.

The first author [11] proved that the modified maximal operator

M̃ ∗ := sup
n∈N

|Mn|/ log3/2 (n+1) (3)

is bounded from the Hardy space H2/3
(
G2

)
to the space L2/3

(
G2

)
. He also proved

that the sequence
{

log3/2 (n+1)
}∞

n=1
is important for the maximal operator M̃ ∗ (for

details see [11]). That is, the order of deviant behaviour of the n -th Marcinkiewicz
means was given exactly.

A necessary and sufficient condition for the convergence of Walsh-Marcinkiewicz
means in terms of the modulus of continuity on the Hardy space H2/3

(
G2

)
can be

found in [12].
For the case 0 < p < 2/3 The authors [13] proved that there exists an absolute

constant cp, depending only on p , such that

∞

∑
k=1

‖Mk( f )‖p
Hp(G2)

k3−3p � cp ‖ f‖p
Hp(G2) ( f ∈ Hp(G2)) (4)

holds.
In the present paper we turn our attention back to the endpoint case p = 2/3.

We establish a strong convergence theorem for the Walsh-Marcinkiewicz means in the
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Hardy space H2/3 . We show that there exists a constant c , such that

1
logn

n

∑
m=1

‖Mm( f )‖2/3
H2/3

m
� c‖ f‖2/3

H2/3
, (5)

for all f ∈ H2/3
(
G2

)
. That is we get the two-dimensional version of the above men-

tioned inequality (2) of the second author in the endpoint case p = 2/3. We mention
that the method presented in [13] to reach inequality (4) is not enough effective in the
endpoint case. So we have to improve a new method to prove inequality (5).

2. Definitions and Notations

Now, we give a brief introduction to the theory of dyadic analysis [15, 22]. Let N+
denote the set of positive integers, N:=N+ ∪{0}. Denote Z2 the discrete cyclic group
of order 2, that is Z2 = {0,1}, where the group operation is the modulo 2 addition
and every subset is open. The Haar measure on Z2 is given such that the measure of a
singleton is 1/2. Let G be the complete direct product of the countable infinite copies
of the compact groups Z2. The elements of G are of the form x = (x0,x1, ...,xk, ...)
with coordinates xk ∈ {0,1}(k ∈ N) . The group operation on G is the coordinate-wise
addition, the measure (denoted by μ ) is the product measure and the topology is the
product topology. The compact Abelian group G is called the Walsh group. A base for
the neighbourhoods of G can be given in the following way:

I0(x) := G,

In(x) := In (x0, ...,xn−1)
:= {y ∈ G : y = (x0, ...,xn−1,yn,yn+1, ...)} ,

(x ∈ G,n ∈ N) . These sets are called dyadic intervals. Let 0 = (0 : i ∈ N) ∈ G denote
the null element of G, and In := In (0) (n ∈ N) . Set

en := (0, ...,0,1,0, ...) ∈ G,

the n -th coordinate of which is 1 and the rest are zeros (n ∈ N) .
For k ∈ N and x ∈ G denote

rk(x) := (−1)xk

the k th Rademacher function. The Walsh-Paley functions are constructed as products
of Rademacher functions. For the definition let us take the binary form of n ∈ N ,

n =
∞
∑
i=0

ni2i , where ni ∈ {0,1} (i ∈ N) . That is, n is expressed in the number system

of base 2. Denote |n| := max{ j ∈ N : n j �= 0} , that is, 2|n| � n < 2|n|+1.
The n th Walsh-Paley function wn is defined as

wn(x) :=
∞

∏
k=0

(rk (x))nk = (−1)

|n|
∑

k=0
nkxk

, (x ∈ G, n ∈ N) .
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The Dirichlet kernels for the Walsh-Paley system are defined as usually by

Dn :=
n−1

∑
k=0

wk , D0 := 0.

One can easily check that (see e.g. [15])

D2n(x) =

{
2n, if x ∈ In
0, if x /∈ In.

(6)

The norms (or quasi-norms) of the spaces Lp(G) and weak−Lp (G) , (0 < p < ∞)
are respectively defined by

‖ f‖p :=
(∫

G
| f |p dμ

)1/p

< ∞, ‖ f‖weak−Lp
:= sup

λ>0
λ μ ( f > λ )1/p < +∞.

The partial sums of the Walsh-Fourier series are defined

Sm( f ;x) :=
m−1

∑
i=0

f̂ (i)wi (x) .

The n th Fejér means and Fejér kernel of the Walsh-Fourier series of the function
f are given by

σn( f ;x) =
1
n

n−1

∑
j=0

S j( f ;x), Kn(x) :=
1
n

n−1

∑
k=0

Dk (x) .

The σ -algebra generated by the dyadic 2-dimensional In
(
x1

)× In
(
x2

)
square

of measure 2−n × 2−n is denoted by �n,n (n ∈ N) . Denote by f = ( fn,n n ∈ N) one-
parametermartingale with respect to �n,n (n ∈ N) . The definitions of the spaces Lp

(
G2

)
,

weak-Lp
(
G2

)
and Hp

(
G2

)
are given analogous way as in the one dimensional case.

The Kronecker product (wn,m : n,m ∈ N) of two Walsh system is said to be two-
dimensional Walsh system. Thus,

wn,m
(
x1,x2) = wn

(
x1)wm

(
x2) .

If f ∈ L1
(
G2

)
then the numbers f̂ (n,m) =

∫
G2

f wn,mdμ , (wn,m : n,m ∈ N) is said

to be the (n,m) th Walsh-Fourier coefficient of f . We can extend this definition to the
martingales in the usual way. Let us denote Sn,m the (n,m) th rectangular partial sum
of Walsh-Fourier series of a martingale f . Namely,

Sn,m( f ;x1,x2) :=
n−1

∑
i=0

m−1

∑
j=0

f̂ (i, j)wi, j
(
x1,x2) .
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A bounded measurable function a is called a p -atom, if there exists a dyadic
2-dimensional cube I2 such that∫

I2
adμ = 0, ‖a‖∞ � μ(I2)−1/p, supp a ⊂ I2.

The dyadic Hardy martingale spaces Hp
(
G2

)
for 0 < p � 1 have an atomic

characterization. Namely the following theorem is true (see [24]):

THEOREM W. (Weisz [24]) A martingale f = ( fn,n, n ∈ N) is in Hp
(
G2

)
(0 <

p � 1) if and only if there exists a sequence (ak, k ∈ N) of p-atoms and a sequence
(μk, k ∈ N) of real numbers such that for every n ∈ N

∞

∑
k=0

μkS2n,2n(ak) = fn,n, a.e. (7)

and
∞

∑
k=0

|μk|p < ∞.

Moreover, ‖ f‖Hp
� inf(∑∞

k=0 |μk|p)1/p , where the infimum is taken over all decompo-
sition of f of the form (7).

The n th Marcinkiewicz-Fejér means of a martingale f is defined by

Mn( f ;x1,x2) :=
1
n

n

∑
k=0

Sk,k( f ;x1,x2).

The 2-dimensional Dirichlet kernels and Marcinkiewicz-Fejér kernels are defined
by

Dk,l(x1,x2) = Dk(x1)Dl(x2), Kn(x1,x2) :=
1
n

n

∑
k=0

Dk,k(x1,x2).

It is known that [5] there exists a constant c, such that

sup
n

∫
G2

|Kn(x1,x2)|dμ(x1,x2) � c for all n ∈ N. (8)

Let us define the maximal operator M ∗ by

M ∗ ( f ) = sup
n�1

|Mn ( f )| .

For the martingale

f =
∞

∑
n=0

( fn − fn−1)

the conjugate transforms are defined as

f̃ (t) =
∞

∑
n=0

rn (t)( fn − fn−1) ,
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where t ∈ G is fixed. Note that f̃ (0) = f . It is well-known (see [22]) that∥∥∥ f̃ (t)
∥∥∥

Hp(G2)
= ‖ f‖Hp(G2) , ‖ f‖p

Hp(G2) ∼
∫

G

∥∥∥ f̃ (t)
∥∥∥p

p
dt, (9)

˜(Mm( f ))(t) = Mm((̃ f )(t)).

To prove our main theorem we need the following lemmas of Goginava [7, Lemma
7, Lemma 9]:

LEMMA 1. (Goginava [7]) Let (x1,x2) ∈ (Il1\Il1+1)× (Im2\Im2+1) and 0 � l1 �
m2 < N . Then∫

IN×IN
|Kn(x1 + t1,x2 + t2)|dμ(t1,t2)

� c
n22N

{
2l1−m2

m2+1

∑
r1=l1+1

2r1D
2m2+1(x

1 + el1 + er1)
N

∑
s=m2+1

D2s(x2 + em2 + x1
m2+1,s−1)

+2l1+m2
m2

∑
s=l1

s

∑
r1=l1+1

D2s(x1 + el1 + er1)

}
, for n � 2N ,

with the notation xi, j := ∑ j
s=i xses (xi,i−1 = 0 ).

LEMMA 2. (Goginava [7]) Let (x1,x2)∈ IN ×(Im2\Im2+1) and 0 � m2 < N. Then

∫
IN×IN

|Kn(x1 + t1,x2 + t2)|dμ(t1,t2) � c
2m2

n2N

N−1

∑
s=m2

D2s(x2 + em2), for n > 2N .

3. Strong convergence theorems

THEOREM 1. There exists an absolute constant c, such that

1
logn

n

∑
m=1

‖Mm( f )‖2/3
H2/3

m
� c‖ f‖2/3

H2/3
,

for all f ∈ H2/3
(
G2

)
.

Proof. In the next step we follow the method of the authors in [13], but we have
to make the necessary changes, because the method presented in [13] is not enough
effective in the endpoint case.

Suppose that

1
logn

n

∑
m=1

‖Mm( f )‖2/3
2/3

m
� c‖ f‖2/3

H2/3
. (10)
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Combining (9) and (10) we have that

1
logn

n

∑
m=1

‖Mm( f )‖2/3
H2/3

m
∼ 1

logn

n

∑
m=1

∫
G

∥∥∥∥ ˜(Mm( f ))(t)
∥∥∥∥2/3

2/3

m
dt (11)

=
∫

G

1
logn

n

∑
m=1

∥∥∥∥ ˜(Mm( f ))(t)
∥∥∥∥2/3

2/3

m
dt =

∫
G

1
logn

n

∑
m=1

∥∥∥Mm((̃ f )(t))
∥∥∥2/3

2/3

m
dt

�
∫

G

∥∥∥(
(̃ f )(t)

)∥∥∥2/3

H2/3

dt ∼
∫

G
‖ f‖2/3

H2/3
dt ∼ ‖ f‖2/3

H2/3
.

Since Mn is bounded (see inequality 8) from the space L∞ to the space L∞ , by
Lemma 2 it is enough to prove that

1
logn

n

∑
m=1

‖Mm(a)‖2/3
2/3

m
< c < ∞

for every arbitrary 2/3-atom a.
Let a be an arbitrary 2/3-atom with support I2 and μ(I2) = 2−2N . Without loss

of generality, we may assume that I2 := IN × IN . It is easy to see that Mn(a) = 0 if
n � 2N . Therefore, we set n > 2N .

According to inequality (11) if we invoke the theorem of Levi, we can write

1
logn

n

∑
m=1

‖Mm(a)‖2/3
2/3

m
� 1

logn

n

∑
m=2N

‖Mm(a)‖2/3
2/3

m

� 1
logn

n

∑
m=2N

∫
IN×IN

|Mm(a)|2/3

m
dμ +

1
logn

n

∑
m=2N

∫
IN×IN

|Mm(a)|2/3

m
dμ

+
1

logn

n

∑
m=2N

∫
IN×IN

|Mm(a)|2/3

m
dμ +

1
logn

n

∑
m=2N

∫
IN×IN

|Mm(a)|2/3

m
dμ

=: I1 + I2 + I3 + I4.

Inequality (8) implies

I1 � 1
logn

∞

∑
m=2N

∫
IN×IN

|Mm(a)|2/3

m
dμ

� 1
logn

∞

∑
m=2N

1
m
‖a‖2/3

∞ /22N � 1
logn

n

∑
m=2N

1
m

< c < ∞

Now, we estimate the expression I2 . We introduce the notation Jt := It\It+1 (t ∈ N).
We decompose IN and Jm2 as the following disjoint union:

IN =
N−1⋃
m2=0

Jm2 , Jm2 =
N⋃

q2=m2+1

Im2,q2

N , (12)
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where

Im2,q2

N :=

{
Iq2+1(0, ...,0,xm2 = 1,0, ...,0,xq2 = 1), for m2 < q2 < N,

IN(0, ...,0,xm2 = 1,0, ...,0), for q2 = N.

Let us set (x1,x2) ∈ IN × Im2,q2

N . Lemma 2 immediately gives

|Mn(a;x1,x2)| � ‖a‖∞

∫
IN×IN

|Kn(x1 + t1,x2 + t2)|dμ(t1,t2)

� c23N 2m2

n2N

q2

∑
s=m2

D2s(x2 + em2)

� c22N+m2

n

q2

∑
s=m2

2s � c22N+m2+q2

n
.

Hence,

I2 � c24N/3

logn

n

∑
m=2N

N−1

∑
m2=0

N

∑
q2=m2+1

∫
IN×Im

2,q2
N

|Mm(a)|2/3

m
dμ

� c24N/3

logn

n

∑
m=2N

N−1

∑
m2=0

N

∑
q2=m2+1

∫
IN×Im

2,q2
N

22(m2+q2)/3

m5/3
dμ

� c24N/3

logn

n

∑
m=2N

N−1

∑
m2=0

N

∑
q2=m2+1

22(m2+q2)/3

m5/3
2−N−q2

� c2N/3

logn

∞

∑
m=2N

1

m5/3

N−1

∑
m2=0

22m2/3
N

∑
q2=m2+1

2−q2/3

� c2N/3

logn

∞

∑
m=2N

2N/3

m5/3
� c22N/3

logn

∞

∑
m=2N

1

m5m/3
� c

N
.

Analogously we can prove that I3 � c < ∞ .

At last, we estimate I4 . By the decomposition (12) we write

I4 � 1
logn

n

∑
m=2N

N−1

∑
l1=0

l1−1

∑
m2=0

∫
Jl1×Jm2

|Mm(a)|2/3

m
dμ

+
1

logn

n

∑
m=2N

N−1

∑
l1=0

N−1

∑
m2=l1

∫
Jl1×Jm2

|Mm(a)|2/3

m
dμ =: I4,1 + I4,2.

We discuss I4,2 (the estimate of I4,1 goes analogously). For a fixed (x1,x2) ∈ Jl1 × Jm2
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we apply Lemma 1.

|Mn(a;x1,x2)| � ‖a‖∞

∫
IN×IN

|Kn(x1 + t1,x2 + t2)|dμ(t1,t2)

� 2N+l1−m2

n

m2+1

∑
r1=l1+1

2r1D
2m2+1(x

1 + el1 + er1)

×
N

∑
s=m2+1

D2s(x2 + em2 + x1
m2+1,s−1)

+
2N+l1+m2

n

m2

∑
s=l1

s

∑
r1=l1+1

D2s(x1 + el1 + er1).

It is easy to see that∫
Jl1×Jm2

D2/3

2m2+1
(x1 + el1 + er1)D

2/3
2s (x2 + em2 + x1

m2+1,s−1)dμ(x1,x2)

� c2−(m2+s)/3

and ∫
Jl1×Jm2

D2/3
2s (x1 + el1 + er1)dμ(x1,x2) � c2−m2−s/3.

Thus, we immediately get∫
Jl1×Jm2

|Mm(a)|2/3 dμ

� c22(N+l1−m2)/3

m2/3

m2+1

∑
r1=l1+1

N

∑
s=m2+1

22r1/3

×
∫

Jl1×Jm2

D2/3

2m2+1
(x1 + el1 + er1)D

2/3
2s (x2 + em2 + x1

m2+1,s−1)dμ
(
x1,x2)

+
c22(N+l1+m2)/3

m2/3

m2

∑
s=l1

s

∑
r1=l1+1

∫
Jl1×Jm2

D2/3
2s (x1 + el1 + er1)dμ(x1,x2)

� c22(N+l1−m2)/3

m2/3

m2+1

∑
r1=l1+1

22r1/3
N

∑
s=m2+1

2−(m2+s)/3+
c22(N+l1+m2)/3

m2/3

m2

∑
s=l1

s

∑
r1=l1+1

2−m2−s/3

� c22(N+l1−m2)/3

m2/3
2−2m2/3

m2+1

∑
r1=l1+1

22r1/3 +
c22(N+l1+m2)/3

m2/3

m2

∑
s=l1

(s− l1−1)2−m2−s/3

� c22(N+l1−m2)/3

m2/3
+

c2(2N+l1−m2)/3

m2/3
.
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and

I4,2 � c
logn

n

∑
m=2N

1
m

N−1

∑
l1=0

N−1

∑
m2=l1

22(N+l1−m2)/3 +2(2N−m2+l1)/3

m2/3

� c22N/3

logn

n

∑
m=2N

1

m5/3

N−1

∑
l1=0

1 � c. �

COROLLARY 1. Let f ∈ H2/3
(
G2

)
. Then

lim
n→∞

1
logn

n

∑
m=1

‖Mm( f )− f‖2/3
H2/3

m
= 0

and

lim
n→∞

1
logn

n

∑
m=1

‖Mm( f )‖2/3
H2/3

m
= ‖ f‖2/3

H2/3
.

Our theorem and inequality (4) immediately give the two-dimensional version of
inequality (2).

COROLLARY 2. Let 0 < p � 2/3 . Then there exists an absolute constant cp,
depending only on p, such that

1

log[1/3+p]n

n

∑
m=1

‖Mm( f )‖p
Hp

m3−3p � cp ‖ f‖p
Hp

( f ∈ Hp).

PROBLEM 1. The Walsh system has got three well known rearrangements (for
details see e.g. [15]), the original definition belongs to Walsh, the common used order-
ing given by Paley and the Kaczmarz rearrangement used in telecommunication. The
authors think that it is not possible to reach main theorem and corollaries of this paper
for Walsh-Kaczmarz system by using lemmas and methods, which have been applied
before. So, it is interesting to investigate the validity of these statements for Kaczmarz
ordering.
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[24] F. WEISZ, Hardy spaces and Cesàro means of two-dimensional Fourier series, Bolyai Soc. Math.

Studies, 5, (1996), 353–367.
[25] F. WEISZ, Convergence of double Walsh-Fourier series and Hardy spaces, Approx. Theory Appl., 17

(2001), 32–44.
[26] L. V. ZHIZHIASHVILI, Generalization of a theorem of Marcinkiewicz, Izv. Akad. Nauk USSR Ser

Math., 32, (1968) 1112–1122.

(Received February 17, 2015) Károly Nagy
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