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Abstract. Around 15 years ago several authors studied the parameter defined by

A2(X) = sup

{ ||x+ y||+ ||x− y||
2

: x,y ∈ SX

}
,

where SX denotes the unit sphere of the real Banach space X . In this paper we consider the
new family of parameters that generalize A2(X) :

A2,p(X) = sup

{‖x+ y‖+‖x− y‖
2

: x,y ∈ X , ||(‖x‖,‖y‖)||p � 2
1
p

}
, 1 � p � ∞.

In this way, A2,∞(X) is nothing else than A2(X) and we show how some interesting properties
of real Banach spaces can be characterized by using our new constants.

1. Introduction and definitions

Let X be a normed space over R ; we denote by SX (BX) , or simply by S (B) , its
unit sphere (resp. its unit ball). The following number was considered in [2], then later
in a few other papers (see [1, 9, 12, 14]):

A2(X) = sup

{ ||x+ y||+ ||x− y||
2

: x,y ∈ SX

}
. (1.1)

This number is connected with the largest perimeter of a triangle inscribed in a semi-
circle of X . Also, A2(X)−1 coincides with the value of the modulus of smoothness at
1 (see Section 2).

A simple use of convexity shows that

A2(X) = sup

{ ||x+ y||+ ||x− y||
2

: x,y ∈ BX

}
. (1.2)

Now we denote by R
2
p the plane, endowed with the �p -norm: if a,b ∈ R , then

‖(a,b)‖p =

{
(|a|p + |b|p) 1

p i f 1 � p < ∞
max{|a|, |b|} i f p = ∞.
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We can also think at A2(X) in the following way

A2(X) = sup

{‖x+ y‖+‖x− y‖
2

: x,y ∈ X , ||(||x||, ||y||) ||∞ � 1

}
. (1.3)

So it can be natural to consider in general, for 1 � p � ∞ (with obvious meaning
for p = ∞):

A2,p(X) = sup

{ ||x+ y||+ ||x− y||
2

: x,y ∈ X , ||(‖x‖,‖y‖) ||p � 2
1
p

}
. (1.4)

Thus, we shall write A2,∞(X) for A2(X) . We have

A2,2(X) = sup

{ ||x+ y||+ ||x− y||
2

: x,y ∈ X , ||x||2 + ||y||2 � 2

}
, (1.5)

A2,1(X) = sup

{ ||x+ y||+ ||x− y||
2

: x,y ∈ X , ||x||+ ||y||� 2

}
. (1.6)

REMARK 1.1. Note that
√

2 � A2,∞(X) � 2 (see [2, (2.9)]) and also A2,∞(X) =
A2,∞(X∗) (see [2, (2.7)]).

Concerning A2,1(X) , its value is 2 for any X (A2,1(X) � 2 by the triangle inequal-
ity and A2,1(X) � 2 since we can take x = Θ -the origin- and y of norm 2); so it is not
interesting.

For the sake of completeness, we recall that different generalizations of A2(X)
have been considered in [7, p. 274], in [15], in [4]. Also, it was shown in [8, p. 73] that
the pairs x,y with ||x+y||= ||x−y|| are not enough to estimate A2,∞(X) . Some others
facts concerning A2 were indicated in [13].

Recently, in [11], the extension of A2(X) to what we denote by A2,2(X) (indicated
there by A(X)) was considered and studied (see also [10]).

In this paper, we shall be interested in A2,p(X) for 1 < p < ∞ . It is clear that
A2,p(X) � 1 (take x = Θ , y ∈ S ); but in fact, in Section 3, we shall show strictly larger
general lower bounds, which coincide with the values of our constants for inner product
spaces.

2. Preliminary results

We prove a simple lemma.

LEMMA 2.1. For any X , any p ∈ [1,∞)

A2,p(X) = sup

{ ||x+ y||+ ||x− y||
2

: x,y ∈ X , ||x||p + ||y||p = 2

}
. (2.1)
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Proof. Clearly the left term in (2.1) is not smaller then the right one; we prove the
reverse inequality. Let x,y be such that ||x||p+ ||y||p � 2 and also ||x+y||+ ||x−y||� 2
(otherwise x,y are useless to calculate A2,p(X)). Now we consider the convex function
f (λ ) = ||λx + y||+ ||λx− y|| ; we have: f (0) = 2||y|| ; f (1) � 2||y|| , thus f (λ ) is
non decreasing for λ � 1. Take λ0 � 1 so that ||λ0x||p + ||y||p = 2; then f (λ0) �
||x+ y||+ ||x− y|| , which concludes the proof �

Note that the formula (2.1), for p→ ∞ , reduces to the following one (which is true
according to (1.2)):

A2,∞(X) = sup

{ ||x+ y||+ ||x− y||
2

: x,y ∈ X , max{||x||, ||y||} = 1

}
.

REMARK 2.2. In (2.1) x and y play a symmetric role, so they can be exchanged;
moreover ||x||p + ||y||p = 2 implies that one of the addend is at least 1 and the other
one is not larger than 1. Therefore we also have:

A2,p(X) = sup

{ ||x+ y||+ ||x− y||
2

: x,y ∈ X , ||x||p + ||y||p = 2, ||x|| � 1

}
, (2.2)

A2,p(X) = sup

{ ||x+ y||+ ||x− y||
2

: x,y ∈ X , ||x||p + ||y||p = 2, ||x|| � 1

}
. (2.3)

REMARK 2.3. Since the functions involved are continuous in x,y, in (2.2) we can

limit to consider points x with 1 � ||x|| < 2
1
p ; in (2.3) those with 0 < ||x|| � 1.

PROPOSITION 2.4. The values of A2,p(X) , 1 � p � ∞ , are non increasing in p.

Proof. Let 1 � q � p � ∞ . If p < ∞ , then according to the definitions (see (1.4)),

to compute A2,p(X) we consider all pairs x,y such that ||(‖x‖,‖y‖)||p � 2
1
p . Let Bp

(resp.: Bq ) denote the unit ball in R
2
p (resp. R

2
q ), with the �p (resp. the �q )-norm. Then

2
1
q Bq ⊃ 2

1
p Bp (for p �= q , they touch at the four points (±1,±1)) , and the set 2

1
q Bq is

the one used to compute A2,q(X) ; thus A2,p(X) � A2,q(X) . Moreover B∞ is contained

in all balls 2
1
p Bp (touching them at (±1,±1)), which concludes the proof. �

Let p = ∞ ; then (see (1.2)):

A2,∞(X) = sup

{ ||x+ τy||+ ||x− τy||
2

: x,y ∈ S, 0 < τ � 1

}
.

The next proposition extends this to all p < ∞ .

PROPOSITION 2.5. Let 1 � p � ∞ . Then

A2,p(X) = sup

{
||x+ τy||+ ||x− τy||

21− 1
p (1+ τ p)

1
p

: x,y ∈ S, 0 < τ � 1

}
. (2.4)



200 M. BARONTI AND P. L. PAPINI

Proof. For p = ∞ we know already this (in this case (1+τ p)
1
p means max{1,τ}

= 1), while for p = 1 it is almost immediate; so we assume 1 < p < ∞ . We use (2.2);

take u,v so that ||u|| = t � 1 and ||v|| = (2− t p)
1
p . According to Remark 2.3, we can

assume that t < 2
1
p so v �= Θ . Let x = u

||u|| and y = v
||v|| ; then

||u+ v||+ ||u− v||
2

=
||tx+(2− t p)

1
p y||+ ||tx− (2− t p)

1
p y||

2

=
||x+ (2−t p)

1
p

t y||+ ||x− (2−t p)
1
p

t y||
2
t

.

Now we set τ = (2−t p)1/p

t , which is non increasing in t ; τ is 1 for t = 1 and 0 for

t = 2
1
p . Since t = ( 2

1+τ p )1/p , from (2.2) we obtain (2.4). �

REMARK 2.6. Similarly, let 1 < p < ∞ . Then

A2,p(X) = sup

{
||τx+ y||+ ||τx− y||

21− 1
p (1+ τ p)

1
p

: x,y ∈ S, τ � 1

}
. (2.5)

Now we recall the definition of the modulus of smoothness (see for example [5,
pp. 69–70]):

ρX(τ) = sup

{ ||x+ τy||+ ||x− τy||
2

−1 : x,y ∈ S

}
(τ � 0). (2.6)

It is known that
ρX(τ) = sup

{τε
2

− δX∗(ε) : 0 � ε � 2
}

, (2.7)

δX denoting the modulus of convexity of X :

δX (ε) = inf

{
1− ||x+ y||

2
: x,y ∈ B, ||x− y||� ε

}
(0 � ε � 2). (2.8)

Also,
ρX(τ)

τ
is non decreasing for τ > 0, so

ρX(τ) � τρX (1) f or τ � 1. (2.9)

If H is an inner product space, then

ρH(τ) =
√

1+ τ2−1, (2.10)

while ρX(τ) � ρH(τ) for any X and any τ .
A space is called uniformly nonsquare, (UNS) for short, if δX(ε) > 0 for some

ε ∈ (0,2) . This means that for some ε > 0 we have, for all x,y ∈ S , either ||x− y|| �
2− ε or ||x+ y||� 2− ε .
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According to (2.4)

A2,p(X) = sup

{
2

1
p (1+ ρX(τ))

(1+ τ p)
1
p

: 0 < τ � 1

}
f or 1 � p < +∞, (2.11)

and clearly
A2,∞(X) = 1+ ρX(1). (2.12)

Note that (2.11) generalizes Proposition 3.1 in [11].
We have ρX(1) = ρX∗(1) (see Remark 1.1); moreover A2,∞(X) < 2 if and only if

X is (UNS) (see [2, p. 126]). Theorem 3.3 will generalize the latter fact.

Next result generalizes the first part of Theorem 3.4 in [11].

PROPOSITION 2.7. Let 1 � p < ∞ and 1/p+1/q = 1 . Then

A2,p(X) � 2
1
p (1+(ρX(1))q)

1
q = 2

1
p (1+(A2,∞(X)−1)q)

1
q . (2.13)

Proof. By (2.11) and (2.9) we have:

A2,p(X) � sup

{
2

1
p (1+ τρX(1))

(1+ τ p)
1
p

: 0 < τ � 1

}
. (2.14)

Now recall Hölder’s inequality. For any a,b ∈ R

1+ |ab|� ||(1,a)||p ||(1,b)||q.
Apply this inequality with a = τ , b = ρX(1) . Then we obtain 1 + τρX(1) � (1 +

τ p)
1
p (1+(ρX(1))q)

1
q , which gives (2.13). �

REMARK 2.8. For p = ∞ (2.13) gives (2.12); moreover, the inequality (2.13) is
sharp: for example, it becomes an equality if X is not (UNS) (see Theorem 3.3; see
also Proposition 4.2 below). By using the equality ρX (1) = ρX∗(1) we obtain

A2,p(X∗) � 2
1
p (1+(ρX∗(1))q)

1
q = 2

1
p (1+(ρX(1))q)

1
q .

3. Main results

THEOREM 3.1. Let p ∈ [1,∞] . Then

max{
√

2, 2
1
p } � A2,p(X) � A2,1(X) = 2. (3.1)

Proof. According to Proposition 2.4, and by taking into account Remark 1.1, we
only have to prove the first inequality; also,

√
2 � A2,∞(X) � A2,p(X) . Now consider a

pair with x = Θ and y such that ||y|| = 2
1
p ; then

||x+ y||+ ||x− y||
2

= 2
1
p � A2,p(X),

so the conclusion. �
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THEOREM 3.2. Let H be an inner product space. Then

A2,p(H) =

{
2

1
p i f 1 � p < 2,√
2 i f 2 � p � ∞.

Proof. If p = 1 or p = ∞ the result is known (see [2, p. 126] and Remark 1.1).
Let 2 � p < ∞ . Then

1+ ρH(t) =
√

1+ t2 = ||(1,t)||2 � ||(1, t)||p = (1+ t p)
1
p .

Moreover, max

{ √
1+ t2

(1+ t p)
1
p

: 0 � t � 1

}
is achieved for t = 1 (the minimum is ob-

tained for t = 0 and is 1). Therefore, according to (2.11)

A2,p(H) = sup

{
2

1
p
√

1+ t2

(1+ t p)
1
p

: 0 � t � 1

}
=
√

2.

If 1 < p < 2, then max

{ √
1+ t2

(1+ t p)
1
p

: 0 � t � 1

}
is achieved for t = 0 and so A2,p(H)=

2
1
p , which concludes the proof. �

THEOREM 3.3. Let 1 < p � ∞ . Then A2,p(X) = 2 if and only if X is not (UNS).

Proof. “If” part. It is known that if X is not (UNS), then A2,∞(X) = 2; thus in this
case A2,p(X) � A2,∞(X) = 2 for all p .

“Only if” part. Let A2,p(X) = 2 (1 < p < ∞). Given n∈ N let xn and yn be such
that ||xn + yn||+ ||xn− yn||

2
> 2− 1

n
; ||xn|| = tn; ||yn|| = (2− t p

n )
1
p .

Note that |a|p + |b|p = 2 ⇐⇒ ‖(|a|, |b|)‖p = 21/p =⇒ ‖(|a|, |b|)‖1 � 2.
So we have

2− 1
n

<
||xn + yn||+ ||xn− yn||

2
� tn +(2− t p

n )1/p � 2.

Let n → ∞ . We can suppose, by passing to a subsequence that we still denote by tn ,

that tn → α and hence (2− t p
n )

1
p → (2−α p)

1
p . Then α +(2−α p)

1
p = 2 ⇔ 2−α p =

(2−α)p ⇔ α = 1. Therefore both sequences ‖xn‖ and ‖yn‖ (they are subsequences,
based on the choice of the tn ’s) converge to 1.

By (2.3) we can assume that ||xn|| = tn � 1 (hence ||yn|| � 1). Then we have

2 �
∥∥∥xn± yn

‖yn‖
∥∥∥ � ‖xn± yn‖−

(
1− 1

‖yn‖
)
||yn||.
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So

4 �
∥∥∥xn +

yn

‖yn‖
∥∥∥+

∥∥∥xn− yn

‖yn‖
∥∥∥ � ‖xn + yn‖+‖xn− yn‖−2

(
1− 1

‖yn‖
)
||yn||.

But the right hand side tends to 4; hence ‖xn + yn‖→ 2 and ‖xn− yn‖→ 2 (n → ∞) .
This implies that X is not (UNS). �
The next corollary follows immediately from the above theorem.

COROLLARY 3.4. The following are equivalent:
a) X is not (UNS);
b) A2,∞(X) = 2 (according to (2.12), this is equivalent to ρX(1) = 1 );
c) A2,p(X) = 2 for all p ∈ (1,∞];
d) A2,p(X) = 2 for some p ∈ (1,∞] .

THEOREM 3.5. If A2,2(X) =
√

2 , then X is an inner product space. The same is
true if dim(X) � 3 and A2,p(X) =

√
2 for some p > 2.

Proof. Let A2,p(X) =
√

2 for some p � 2. Then (2.11) gives

1+ ρX(τ) �
√

2

2
1
p

(1+ τ p)
1
p (0 � τ � 1).

For p = 2 we obtain that ρX(τ) �
√

1+ τ2 − 1 for all τ � 1; it is known that this
implies that X is an inner product space (see for example [3] and the references therein).

If A2,p(X) =
√

2 for some p > 2, then A2,∞(X) =
√

2; this implies (see (2.12))
ρX(1) =

√
2−1, which does not imply that X is an inner product space (see Example

4.4). But ρX(1) =
√

2−1 implies δX∗(
√

2) � 1−
√

2
2 (see (2.7)); by using the fact that

δX � δH for any space X we have δX∗(
√

2) = 1−
√

2
2 : if dim(X) � 3, this implies that

X∗ , as well as X , is an inner product space (see [3]). �

REMARK 3.6. As we shall see later (Example 4.6) a similar result is not true for
p < 2.

By the Theorems 3.2 and 3.5 it is obtained that “X is an inner product space if and
only if A2,2(X) =

√
2”. This result is indicated in [11, Theorem 3.2] (see also [10, p.

320]).

4. Some examples

According to (2.11), the modulus of smoothness is a fundamental tool to evaluate
our constant. In some cases the modulus ρX(τ) has a simple structure; in particular this
happens when

ρX(1) =
ε0(X∗)

2
(4.1)
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where ε0(X) = sup{ε � 0 : δX(ε) = 0}. In fact (see for example [5, p. 70])

ε0(X∗)
2

= lim
τ→0

ρX(τ)
τ

. (4.2)

So we have the following

LEMMA 4.1. Let ρX(1) = ε0(X∗)
2 hold. Then ρX(τ) = τρX (1) for 0 � τ � 1 .

Proof. According to (2.9) and (4.2), we obtain (for 0 < τ � 1):

ε0(X∗)
2

= lim
τ→0

ρX(τ)
τ

� ρX(τ)
τ

� ρX(1) =
ε0(X∗)

2
. �

The next proposition says that (2.13) becomes an equality under the assumption
ρX(1) = ε0(X∗)

2 .

PROPOSITION 4.2. Assume that ρX(τ) = τρX(1) for 0 � τ � 1 . Then, for 1 <
p < ∞:

A2,p(X) = 2
1
p
(
1+(ρX(1))

p
p−1

) p−1
p . (4.3)

Proof. Let ρX(τ) = τρX (1) . Then (see (2.11))

A2,p(X) = sup

⎧⎨
⎩2

1
p
(
1+ τρX(1))

(1+ τ p)
1
p

: 0 � τ � 1

⎫⎬
⎭ .

Setting ϕ(τ) =
1+ τρX(1)

(1+ τ p)
1
p

it is easy to verify that it attains its maximum for τ =

(ρX(1))
1

p−1 , and substituting we have the thesis. �

Now we shall consider a few situations where ρX(τ) = τρX(1) holds (as usual,
we set q = p

p−1 ).

EXAMPLE 4.3. Let X = R
2 with the �∞ − �1 norm (the unit ball is a regular

hexagon):

||(a,b)|| =
{
|a|+ |b| if ab < 0

max{|a|, |b|} if ab � 0 .

The dual space X∗ is isometric to X ; moreover δX (ε) = max{0, ε−1
2 } (ε ∈ [0,2]) so

ε0(X) = 1 = ε0(X∗) . Also

ρX(t) = sup

{
tε
2
−max

{
0,

ε −1
2

}
: 0 � ε � 2

}
=

t
2

(0 � t � 1);
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so according to (4.3)

A2,p(X) = 2
1
p

(
1+

(
1
2

)q) 1
q

.

In particular

A2, 3
2
(X) = 3

√
9
2
∼= 1.65; A2,2(X) =

√
5
2
∼= 1.58; A2,3(X) =

3
√

9+4
√

2
4

∼= 1.542,

and (see [2, Example 3.2]) A2,∞(X) = 1.5 = limp→∞ A2,p(X) .

EXAMPLE 4.4. Consider now X = R
2 with the norm

‖(a,b)‖ = max{|a|+(
√

2−1)|b|; |b|+(
√

2−1)|a|}.

The unit sphere is a regular octagon and the dual space X∗ is isometric to X . In this
case (see [2, p. 135]) A2,∞(X) =

√
2 but of course X is not an inner product space; it

is not difficult to prove that

ρX(1) =
ε0(X∗)

2
=

ε0(X)
2

=
√

2−1;

so by Proposition 4.2 we obtain:

A2,p(X) = 2
1
p

(
1+(

√
2−1)q) 1

q .

In particular

A2, 3
2
(X) = 2

2
3 (1+(

√
2−1)3)

1
3 ∼= 1.62; A2,2(X) = 2

√
2−

√
2 ∼= 1.53.

EXAMPLE 4.5. Let X = R
2 with the �2− �∞ norm:

||(a,b)|| =
{
||(a,b)||∞ i f ab < 0

||(a,b)||2 i f ab � 0.

The dual space X∗ of X has the �2−�1 norm, and so ε0(X∗) =
√

2; also ρX(1) =
1√
2

(see [1]). According to (4.3)

A2,p(X) = 2
1
p

(
1+

( 1√
2

)q ) 1
q

(in particular A2,2(X) =
√

3).

The next example is of a different type (and the space is infinite-dimensional).
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EXAMPLE 4.6. Let X = Ls (an infinite-dimensional Ls(μ)-space). We recall that
(see [6]):

ρX(t) =

⎧⎪⎨
⎪⎩

(1+ ts)
1
s −1 1 � s � 2((1+ t)s +(1− ts)

2

) 1
s

−1 s > 2.

Let 1 � s � 2; then, by (2.11)

A2,p(Ls) = sup

{
2

1
p (1+ ts)

1
s

(1+ t p)
1
p

: t � 1

}
.

If p = s , then A2,p(Lp) = 2
1
p . This shows that for no p∈ (1,2) the condition A2,p(X) =

2
1
p = A2,p(H) forces the space X to be an inner product space.
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Via Dodecaneso, 35, 16146 Genova, Italy
e-mail: baronti@dima.unige.it

Pier Luigi Papini
Via Martucci, 19, 40136 Bologna, Italy

e-mail: pierluigi.papini@unibo.it

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


