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SMALL HANKEL OPERATORS ON

DIRICHLET–TYPE SPACES AND APPLICATIONS

ZENGJIAN LOU AND RUISHEN QIAN

(Communicated by S. Stević)

Abstract. In this paper, we characterize the boundedness and compactness of small Hankel op-
erators on Dirichlet-type spaces Dρ .

1. Introduction

Let D be the unit disk in the complex plane C . As usual, H(D) denotes the class
of functions analytic on D and H∞(D) the set of bounded analytic functions on D .

Let ρ : [0,∞) → [0,∞) be a right-continuous and nondecreasing function. The L2
ρ

space is the set of functions such that

‖ f‖2
L2

ρ
=
∫

D

| f (z)|2ρ(1−|z|2)dA(z) < ∞.

When ρ(t) = 1, L2
ρ is denoted by L2 . The weighted Bergman space A2

ρ is a subset of
L2

ρ consisting of f ∈H(D) . When ρ(t)= tα , α >−1, A2
ρ gives the classical Bergman

space.
The Dirichlet-type spaces Dρ consist of those functions f ′ ∈ A2

ρ with

‖ f‖2
Dρ = | f (0)|2 +‖ f ′‖2

L2
ρ
.

When ρ(t) = tα , 0 < α < 1, it gives the weighted Dirichlet spaces Dα . For more
information on Dρ , we refer to [1], [2], [3], [10] and [14].

Under some conditions of ρ (see Lemma 4), for functions f ∈ A2
ρ and α � 0,

we can define a small Hankel-type operator hα , f on the set of all polynomials on D

(denoted by P ), by
hα , f (g) = Pα( f g), g ∈ P,

where

Pα f (z) =
∫

D

f (w)
(1−wz)2+α (1−|w|2)αdA(w).
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For more information on small Hankel operators, see for example, [4], [8], [16] and
[20].

In this paper, we always assume that ρ is a right-continuous and nondecreasing
function. We say that ρ is so called upper (resp. lower) type γ ∈ (0,∞) (see [9]), if

ρ(xy) � Cxγ ρ(y), x � 1 (resp. x � 1) and 0 < y < ∞.

REMARK 1. If ρ is a right-continuous and nondecreasing function with upper
type γ for some γ > 0, it is easy to see that ρ(2y) � Cρ(y) , where C is a positive
constant independent of y .

Recently there has been a huge interest in studying the boundedness and com-
pactness of various operators (composition, integral, product-type etc.) on spaces of
analytic functions on various domains (see, for example, [4, 5, 8, 11, 17, 18] and re-
lated references therein). In [16], Rochberg and Wu studied the boundedness of hα , f

on weighted Dirichlet spaces Dα . Motivated by their work, we are going to study the
boundedness of hα , f on more general Dirichlet-type spaces Dρ .

Here and afterwards, for two functions f and g , by f � g we mean that g � f � g ,
where f � g means that there exists a positive constant C depending only on ρ and
parameters α,γ, ... , such that f � Cg .

2. Auxiliary results

To prove the main theorems, we need the following lemmas.

LEMMA 1. Suppose that ρ is of upper type γ with 0 < γ < ∞ . If s < 1 and
τ + s > 2+ γ . Then∫

D

ρ
(
1−|w|2)

(1−|w|2)s|1−wz|τ dA(w) �
ρ
(
1−|z|2)

(1−|z|2)s+τ−2

for all z ∈ D .

Proof. Since ρ is of upper type γ , applying Lemma 3.10 of [20] gives∫
D

ρ
(
1−|w|2)

(1−|w|2)s|1−wz|τ dA(w) �
∫

D

ρ (|1−wz|)
(1−|w|2)s|1−wz|τ dA(w)

�
ρ
(
1−|z|2)

(1−|z|2)s+τ−2 . �

Using Lemma 1, following the proof of Theorem 3.3 in [12], it is easy to get the
lemma below.

LEMMA 2. Suppose that ρ is of upper type γ with 0 < γ < 1 and τ > −1 ,
σ > −1 . Then f ∈ Dρ if and only if

I =:
∫

D

∫
D

| f (z)− f (w)|2
|1−wz|4+τ+σ (1−|z|2)τ(1−|w|2)σ ρ(1−|w|2)dA(z)A(w) < ∞.

Moreover, we have | f (0)|2 + I � ‖ f‖2
Dρ .
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LEMMA 3. Suppose that ρ is of upper type γ with 0 < γ < 1 and n ∈ N+ . Let

Fa(z) =
(1−|a|2)1+nzn+1√

ρ(1−|a|2)(1−az)n+1

and

Ga(z) =
(1−|a|2)√ρ(1−|a|2)(1−|z|2)α

ρ(1−|z|2)(1−az)2+α , α > 0, a ∈ D.

Then Fa ∈ Dρ and Ga ∈ L2
ρ .

Proof. By Lemma 1, we can deduce easily that

∫
D

|F ′
a(z)|2ρ(1−|z|2)dA(z) �(1−|a|2)2+2n

ρ(1−|a|2)
∫

D

ρ(1−|z|2)
|1−az|2n+4 dA(z) � 1.

That is, Fa ∈ Dρ .
Since ρ is of upper type γ , applying Lemma 3.10 of [20] yields∫

D

|Ga(z)|2ρ(1−|z|2)dA(z)

�(1−|a|2)2ρ(1−|a|2)
∫

D

(1−|z|2)2α

ρ(1−|z|2)|1−az|2α+4 dA(z)

�(1−|a|2)2
∫

D

ρ(|1−az|)(1−|z|2)2α

ρ(1−|z|2)|1−az|2α+4 dA(z)

�(1−|a|2)2
∫

D

(1−|z|2)2α−γ

|1−az|2α+4−γ dA(z) < ∞.

Thus, Ga ∈ Dρ . �
LEMMA 4. Suppose that ρ is of upper type γ with 0 < γ < 1 and α � 0 . Then

Pα is bounded on L2
ρ .

Proof. Let

M(z,w) =
ρ(1−|z|)1/2

ρ(1−|w|)1/2|1−wz|2
and

h(z) =
ρ(1−|z|)1/2

(1−|z|)t , γ < t < 1.

Define
TMg(z) =:

∫
D

M(z,w)g(w)dA(w), g ∈ L2.

Using Lemma 1 and [20, Lemma 4.2.2] implies∫
D

M(z,w)h(w)dA(w) � h(z)
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and ∫
D

M(z,w)h(z)dA(z) � h(w).

Hence, by Schur’ theorem ([20, Theorem 3.6]), we obtain∫
D

|TMg(w)|2dA(w) �
∫

D

|g(w)|2dA(w)

for all g ∈ L2 . For f ∈ L2
ρ , F(w) = | f (w)|ρ(1−|w|)1/2 ∈ L2 . We have

‖Pα f‖2
L2

ρ
=
∫

D

|Pα f (z)|2ρ(1−|z|2)dA(z)

=
∫

D

∣∣∣∣
∫

D

f (w)(1−|w|2)α

(1−wz)2+α dA(w)
∣∣∣∣
2

ρ(1−|z|2)dA(z)

�
∫

D

(∫
D

| f (w)|
|1−wz|2 dA(w)

)2

ρ(1−|z|2)dA(z)

=
∫

D

|TMF(z)|2dA(z)

�‖ f‖2
L2

ρ
.

That is, Pα is bounded on L2
ρ . �

LEMMA 5. Suppose that α � 0 and ρ is of upper type γ with 0 < γ < 1 . If
f ∈ A2

ρ and hα , f : Dρ → L2
ρ is bounded, then

sup
a∈D

(1−|a|2)| f (a)| < ∞.

Proof. For f ∈ A2
ρ , it is well known that

sup
a∈D

(1−|a|2)| f (a)| � | f (0)|+
n

∑
k=1

| f (k)(0)|+ sup
a∈D

(1−|a|2)n+2| f (n+1)(a)|.

Thus, it is sufficient to prove

sup
a∈D

(1−|a|2)n+2| f (n+1)(a)| < ∞.

Applying the reproducing formula yields

(1−|a|2)n+2 f (n+1)(a)

�(1−|a|2)n+2
∫

D

zn+1 f (z)(1−|z|2)α

(1− za)3+α+n dA(z)

�(1−|a|2)n+2
∫

D

zn+1 f (z)
(1− za)1+n

∫
D

(1−|w|2)α(1−|z|2)α

(1− zw)2+α(1−wa)2+α dA(w)dA(z)

=
∫

D

hα , f (Fa)(w)Ga(w)ρ(1−|w|2)dA(w).
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By Lemma 3, we know that Fa ∈ Dρ and Ga ∈ L2
ρ . Using Hölder’s inequality, we get

(1−|a|2)n+2| f (n+1)(a)| �‖hα , f (Fa)‖L2
ρ
‖Ga‖L2

ρ

�‖hα , f‖ < ∞.

The desired result is obtained. �

3. Boundedness and compactness of hα ,g

Let μ be a finite positive Borel measure on D . We say that μ is a Dρ -Carleson
measure if the inclusion map i : Dρ → L2(μ) is bounded, that is∫

D

| f (z)|2dμ(z) � C‖ f‖2
Dρ

for all f ∈ Dρ . The best constant C , denoted by ‖μ‖ρ , is said to be the norm of
μ . Suppose μ is Dρ -Carleson measure, we say that μ is a vanishing Dρ -Carleson
measure if the inclusion map i : Dρ → L2(dμ) is compact in the following sense:

lim
n→∞

∫
D

| fn(z)|2dμ(z) = 0,

whenever { fn} is a bounded sequence in Dρ that converges to 0 uniformly on compact
subsets of D .

For f ∈ H(D) , define positive measure μ f by

dμ f (z) = | f (z)|2ρ(1−|z|2)dA(z).

THEOREM 1. Let 0 < γ < 1 and α > 1+γ
2 . Suppose that ρ is of upper type γ

and f ∈ H(D) . Then hα , f : Dρ → L2
ρ is bounded if and only if μ f is a Dρ -Carleson

measure.

Proof. Sufficiency. Suppose g ∈ Dρ , then g f ∈ L2
ρ . Combining this with Lemma

4 and the definition of Dρ -Carleson measure yield

‖hα , f (g)‖L2
ρ

� ‖ f g‖L2
ρ

� Cf ‖g‖Dρ .

This leads that hα , f : Dρ → L2
ρ is bounded.

Necessity. Since 1 ∈ Dρ , f = hα , f (1) ∈ L2
ρ , furthermore f ∈ A2

ρ . Note that
f = Pα f . For g ∈ Dρ , we have

f (z)g(z)−hα , f (g)(z) =
∫

D

f (w)(g(z)−g(w))
(1−wz)2+α (1−|w|2)αdA(w).

Since ρ is upper type γ , for any ε ∈ (γ,1) , from Lemma 1, we get

∫
D

ρ(1−|w|2)
|1−wz|2+ε dA(w) � ρ(1−|z|2)

(1−|z|2)ε .
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Notice the fact that
Cf =: sup

w∈D

(1−|w|2)2| f (w)|2 < ∞

(see Lemma 5). Using Hölder’s inequality gives∣∣∣ f (z)g(z)−hα , f (g)(z)
∣∣∣2

�
∫

D

| f (w)|2(1−|w|2)2

|1−wz|2+ε ρ(1−|w|2)dA(w)

×
∫

D

|g(z)−g(w)|2
|1−wz|2+2α−ε

(1−|w|2)2α−2

ρ(1−|w|2) dA(w)

�Cf
ρ(1−|z|2)
(1−|z|2)ε

∫
D

|g(z)−g(w)|2
|1−wz|2+2α−ε

(1−|w|2)2α−2

ρ(1−|w|2) dA(w)

� Cf

(1−|z|2)ε

∫
D

|g(z)−g(w)|2
|1−wz|2+2α−ε

ρ(|1−wz|)(1−|w|2)2α−2

ρ(1−|w|2) dA(w)

� Cf

(1−|z|2)ε

∫
D

|g(z)−g(w)|2
|1−wz|2+2α−ε

( |1−wz|
1−|w|2

)γ
(1−|w|2)2α−2dA(w)

=
Cf

(1−|z|2)ε

∫
D

|g(z)−g(w)|2
|1−wz|2+2α−ε−γ (1−|w|2)2α−2−γdA(w).

From Lemma 2, we get

‖ f g−hα , f (g)‖2
L2

ρ

�Cf

∫
D

∫
D

|g(z)−g(w)|2
|1−wz|2+2α−ε−γ (1−|w|2)2α−2−γ(1−|z|2)−ερ(1−|w|2)dA(w)dA(z)

�Cf ‖g‖2
Dρ .

Therefore,
‖ f g‖2

L2
ρ

� ‖hα , f (g)‖2
L2

ρ
+Cf ‖g‖2

Dρ � Cf ‖g‖2
Dρ .

That is, μ f is a Dρ -Carleson measure. The proof is completed. �

THEOREM 2. Let 0 < γ < 1 and α > 1+γ
2 . Suppose that ρ is of upper type γ

and f ∈ H(D) . Then hα , f : Dρ → L2
ρ is compact if and only if μ f is a vanishing

Dρ -Carleson measure.

Proof. Let μ f be a vanishing Dρ -Carleson measure. Suppose that gn ∈ Dρ and
gn → 0 weakly as n → ∞ . Since Dρ is a Hilbert space, gn → 0 weakly if and only if
{gn} is a bounded sequence in Dρ and converges to 0 uniformly on compact subsets
of D . From the proof of Theorem 1, we have

‖hα , f (gn)‖L2
ρ

� ‖gn f‖L2
ρ
→ 0, as n → ∞.

That is, hα , f is compact.
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Conversely, if hα , f : Dρ → L2
ρ is compact, let {gn} as above. Following the proof

of Theorem 1 gives
‖ f gn−hα , f (gn)‖L2

ρ
� Cf ‖gn‖Dρ .

So,
‖ f gn‖L2

ρ
� Cf ‖gn‖Dρ +‖hα , f (gn)‖L2

ρ
→ 0, as n → ∞.

Hence μ f is a vanishing Dρ -Carleson measure. �

4. An application

In this section, as an application of the boundedness of small Hankel operators,
we establish a relationship between decompositions of f and μ f being a Dρ -Carleson
measure for functions f in weighted Bergman spaces A2

ρ . To prove the result, we need
some preliminaries.

Let a ∈ D and

S(a) =
{

z = reiθ ∈ D : |a| � |z|,
∣∣∣arg(az)

2π

∣∣∣� 1−|a|
2

}

be the Carleson box with vertex at a . When a = 0, S(0) = D .
The hyperbolic distance of z and w in D is denoted by

d(z,w) = log
1+ | w−z

1−wz |
1−| w−z

1−wz |
.

A sequence {ak} ⊆D is called a d -lattice (d > 0), if every point of D is within hyper-
bolic distance 5d of some ak and no two points of this sequence are within hyperbolic
distance d/5 of each other.

We also need a few lemmas, the following one is a special case of Theorem 4.1 in
[13].

LEMMA 6. Suppose that ρ satisfies

∫
S(a)

ρ(1−|z|2)dA(z)
∫

S(a)

(1−|z|2)2α

ρ(1−|z|2) dA(z) � (1−|a|2)4+2α , (4.1)

where α � −1/2 . Then there exists a sequence {ak}∞
k=1 which is d -lattice for some

d > 0 , such that any f ∈ A2
ρ has the form

f (z) =
∞

∑
k=1

ck
(1−|ak|2)2+α

(1−akz)2+α

(∫
E(ak,r)

ρ(1−|w|2)dA(w)
)−1/2

for some {ck}∞
k=1 ∈ l2 , where 0 < r < 1 and

E(ak,r) = {w ∈ D :

∣∣∣∣ ak −w
1−akw

∣∣∣∣< r}
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is the pseudo-hyperbolic disk. Moreover,

‖ f‖A2
ρ

�
(

∞

∑
k=1

|ck|2
)1/2

. (4.2)

The ak are not uniquely determined by f but the series sets up an isomorphism with a
quotient space of l2 . Convergence in series is pointwise and in norm.

LEMMA 7. Suppose that 0 < δ � γ < 1 , ρ is of upper type γ and lower type δ ,
then ρ satisfies the condition in (4.1) for α > 0 .

Proof. An easy computation gives∫
S(a)

ρ(1−|z|2)dA(z)
∫

S(a)

(1−|z|2)2α

ρ(1−|z|2) dA(z)

�(1−|a|)2
∫ 1

|a|
ρ(1− r2)rdr

∫ 1

|a|
1

ρ(1− r2)
(1− r2)2αrdr

=(1−|a|)2
∫ 1

|a|
ρ(1− r2)

ρ(1−|a|2) rdr
∫ 1

|a|
ρ(1−|a|2)
ρ(1− r2)

(1− r2)2αrdr.

Since
ρ(xy) � xγ ρ(y), x � 1, 0 < y < ∞

and
ρ(xy) � xδ ρ(y), x � 1, 0 < y < ∞.

It follows that ρ satisfies the condition in (4.1). �
LEMMA 8. Suppose that ρ is of upper type γ with 0 < γ < 1 . For g ∈ H(D) , if

μg is a Dρ -Carleson measure, then μT (g) is also a Dρ -Carleson measure. Here

T (g)(z) =
∫

D

|g(w)|
|1−wz|2+α (1−|w|2)αdA(w), α � 0.

Proof. Let 0 < γ < t < 1 and η ∈ D , then Fη(z) = 1
(1−ηz)t/2 ∈ Dρ . Since μg is a

Dρ -Carleson measure,∫
D

|g(z)|2
|1−ηz|t ρ(1−|z|2)dA(z) �

∫
D

ρ(1−|z|2)
|1−ηz|2+t dA(z) � ρ(1−|η |2)

(1−|η |2)t ,

where we used Lemma 1 in the last inequality. Hence, for f ∈ Dρ

|(| f (z)|T (g)(z)−T ( f g))(z)|2

�
(∫

D

|g(w)|| f (z)− f (w)|
|1−wz|2 dA(w)

)2

�
∫

D

|g(w)|2
|1−wz|t ρ(1−|w|2)dA(w)

∫
D

| f (z)− f (w)|2
|1−wz|4−tρ(1−|w|2)dA(w)

�ρ(1−|z|2)
(1−|z|)t

∫
D

| f (z)− f (w)|2
|1−wz|4−tρ(1−|w|2)dA(w).



HANKEL OPERATORS ON DIRICHLET-TYPE SPACES 217

Following the proof of Theorem 1, we obtain
∫

D

|(| f (z)|T (g)(z)−T ( f g))(z)|2ρ(1−|z|2)dA(z) � ‖ f‖2
Dρ .

By a similar argument in the proof of Lemma 4, we have
∫

D

|T ( f g)(z)|2ρ(1−|z|2)dA(z) �
∫

D

| f (z)g(z)|2ρ(1−|z|2)dA(z) � ‖ f‖2
Dρ .

Therefore, ∫
D

| f (z)T (g)(z)|2ρ(1−|z|2)dA(z)

�
∫

D

| f (z)T (g)(z)−T ( f g)(z)|2ρ(1−|z|2)dA(z)

+
∫

D

|T ( f g)(z)|2ρ(1−|z|2)dA(z) � ‖ f‖2
Dρ .

That is μT (g) is a Dρ -Carleson measure. �

The next lemma can be found in [15, Lemma 2.2].

LEMMA 9. Let {ak}∞
k=0 be a d -lattice in D (d > 0 ). For f ∈ H(D) , there exists

a disjoint decomposition {Dk}∞
k=0 of D , i.e., D = ∪kDk , such that |Dk| � (1−|ak|2)2

and
|(I−A)( f )(z)| � dT ( f )(z),

where I is identity operator, T as in Lemma 8 and

A( f )(z) =
∞

∑
k=0

f (ak)|Dk| (1−|ak|2)α

(1−akz)2+α , α � 0.

Now we prove the main result of this section.

THEOREM 3. Let 0 < δ � γ < 1 and α > 1+γ
2 . Suppose that ρ is of upper type

γ and lower type δ . For any sequence {ak}∞
k=1 which is d -lattice (d > 0 ) in D , we

have:
(1) . For sequences {ck}∞

k=0 , if ∑∞
k=0 |ck|2δak is a Dρ -Carleson measure and

f (z) =
∞

∑
k=0

ck
(1−|ak|2)1+α√

ρ(1−|ak|2)(1−akz)2+α
. (4.3)

then f ∈ A2
ρ and μ f is a Dρ -Carleson measure, where δak is a point value measure.

(2) . If f ∈ H(D) and μ f is a Dρ -Carleson measure, then f can be written as
(4.3) and ∥∥∥∥∥

∞

∑
k=0

|ck|2δak

∥∥∥∥∥
ρ

�
∥∥μ f

∥∥
ρ .
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Proof. (1). From the assumption on the sequence {ck}∞
k=0 , we know that {ck}∞

k=0
∈ l2 . Using Lemmas 6 and 7, we have f ∈ A2

ρ . To prove that μ f is a Dρ -Carleson
measure, by Theorem 1, it is sufficient to prove that hα , f : Dρ → L2

ρ is bounded. For
g ∈ Dρ , z ∈ D , let

G(w) =
g(w)

(1− zw)2+α , w ∈ D.

It is easy to caculate that G ∈ A2
ρ . Thus, G = Pα(G) and

hα , f (g)(z) =
∫

D

f (w)g(w)
(1−wz)2+α (1−|w|2)αdA(w)

=
∞

∑
k=0

ck
(1−|ak|2)1+α√

ρ(1−|ak|2)
Pα(G)(ak)

=
∞

∑
k=0

ck
(1−|ak|2)1+αg(ak)√

ρ(1−|ak|2)(1−akz)2+α
.

Using Lemma 6, (4.2) and assumption of the theorem, it follows that

‖hα , f (g)‖2
L2

ρ
�

∞

∑
k=0

|ckg(ak)|2 �
∥∥∥∥∥

∞

∑
k=0

|ck|2δak

∥∥∥∥∥
ρ

‖g‖2
Dρ .

(2). Let {ak}∞
k=0 be a d -lattice in D and f ∈ H(D) . From Lemma 9, there exists

a disjoint decomposition {Dk} of D , such that

|Dk| � (1−|ak|2)2.

For g ∈ Dρ , the assumption on f implies f g ∈ A2
ρ . From [13, page 328] and the fact

that
ρ(1−|ak|2) � ρ(1−|z|2), z ∈ Dk,

we know

{ f (ak)g(ak)(1−|ak|2)
√

ρ(1−|ak|2)}∞
k=0 ∈ l2.

Since | f g|2 is subharmonic, using the submean value property, we have

| f (ak)g(ak)|2 � 1
ρ(1−|ak|2)|Dk|

∫
Dk

| f (z)g(z)|2ρ(1−|z|2)dA(z).

Therefore,

∞

∑
k=0

ρ(1−|ak|2)|Dk|| f (ak)g(ak)|2 �
∞

∑
k=0

∫
Dk

| f (z)g(z)|2ρ(1−|z|2)dA(z)

�
∫

D

| f (z)g(z)|2ρ(1−|z|2)dA(z)

�‖μ f ‖ρ‖g‖2
Dρ .
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Thus, ∑∞
k=0

∣∣∣∣ f (ak)
√

ρ(1−|ak|2)
(1−|ak|2) |Dk|

∣∣∣∣
2

δak is a Dρ -Carleson measure and

∥∥∥∥∥∥
∞

∑
k=0

∣∣∣∣∣ f (ak)

√
ρ(1−|ak|2)
(1−|ak|2) |Dk|

∣∣∣∣∣
2

δak

∥∥∥∥∥∥
ρ

�
∥∥μ f

∥∥
ρ . (4.4)

Then, from (1) and (4.4) , we get that μA( f ) is a Dρ -Carleson measure. Using Lemma
9 again, we have

|(I−A)( f )(z)| � dT ( f )(z).

If d sufficiently small, using Lemma 8, we obtain

‖I−A‖� 1/2.

So A−1 exists and

‖A−1‖ �
∞

∑
n=0

‖(I−A)n‖ � 2.

Combining this with the definition of the operator A , we can rewrite the function f ,
that is

f (z) = (AA−1 f )(z)

�
∞

∑
k=0

(A−1 f )(ak)|Dk| (1−|ak|2)α

(1−akz)2+α

�
∞

∑
k=0

(A−1 f )(ak)|Dk|
√

ρ(1−|ak|2)
(1−|ak|2)

(1−|ak|2)1+α√
ρ(1−|ak|2)(1−akz)2+α

.

Let

ck = (A−1 f )(ak)

√
ρ(1−|ak|2)
(1−|ak|2) |Dk|.

Using (4.4) and the boundedness of A−1 give∥∥∥∥∥
∞

∑
k=0

|ck|2 δak

∥∥∥∥∥
ρ

�
∥∥∥μA−1 f

∥∥∥
ρ

� ‖A−1‖∥∥μ f
∥∥

ρ .

The proof is completed. �
REMARK 2. Our proofs of theorems above depend on the condition α > 1+γ

2 , we
failed to prove those results without the condition.
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