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A NOTE ON VECTOR-VALUED MAXIMAL MULTILINEAR
OPERATORS AND THEIR COMMUTATORS

ZENGYAN ST AND QINGYING XUE

(Communicated by L. Pick)

Abstract. Let T* be the maximal multilinear Calderén-Zygmund operator with kernels of Dini’s
type and T (f) be the vector-valued version of 7. In this paper, we consider the weighted norm
inequalities for Tq*(f) . As applications, the weighted strong type and weighted end-point weak

type estimates for the commutators of 7 (f) were established respectively.

1. Introduction

Multilinear Calderén-Zygmund operators were introduced and first studied by
Coifman and Meyer [3], [4], [5], and later on by Grafakos and Torres [10], [13] for
the theory of multilinear Calder6n-Zygmund operators with standard kernels. Recently,
there are a number of studies concerning multilinear singular integrals which possess
rough associated kernels so that they do not belong to the standard Calderén-Zygmund
classes, see, for example [1, 8, 14, 18, 22]. In 2009, Maldonado and Naibo [ 18] estab-
lished the weighted norm inequalities, with the Muckenhoupt weights, for the bilinear
Calder6n-Zygmund operators of type @(z), and applied them to the study of para-
products and bilinear pseudodifferential operators with mild regularity. In 2014, Lu,
Zhang [16] studied the multilinear Calderén-Zygmund operators of type @(¢) and their
commutators, and gave some applications to the para-products and the bilinear pseudo-
differential operators with mild regularity. In this paper, we study the weighted bound-
edness of vector-valued maximal multilinear Calderén-Zygmund operators of type (r)
and the weighted norm inequalities for the commutators of vector-valued maximal mul-
tilinear operators are established.

Following [16], we say that T is a multilinear Calderén-Zygmund operator with
kernel of type @(z), denoted by m-linear -CZO, if T can be extended to a bounded
multilinear operator from L9 (R") x --- x L9 (R") to L9 (R") for some 1< ¢q,q1," -,
qm < o with % +oet # = Ll], or from L9 (R") x --- x L9 (R") to L'(R") for some
1<q1,--+,qm <o with % 4+ # =1, and if there exists a function K defined off
the diagonal x = y; = --- =y, in (R")"*! satisfying

TF(X) = T(fi, o fin) (x) = /(Rn)m K1Y 1 01 oo fin )y 1oy, (1.1)
Mathematics subject classification (2010): 42B20, 42B25.
Keywords and phrases: Maximal multilinear operators, multilinear Calderén-Zygmund operators,
commutators, vector-valued inequalities.
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for all x ¢ (}_, suppf;, and f; € CZ(R"), j=1,---,m and if there exists a constant
A > 0 such that

A
pe =yl =yl )

‘K(xa}’h"'Jm” < (

for all (x,y1,--+,ym) € (R")""! with x # y; for some j € {1,2,---,m}, and

|K(X7YI7"'»ym) _K(x/7y17"'7ym)|

A ( |x — x| ) (1.2)
< ©
(be=yal -4 pe=yml)™ =\ =y + -+ [x =y
whenever |x — x| < 3 maxi << |[x—yj|, and

’K(x7y17"'ayj7"'?ym)_K('x’yl7"'ay/j7"'aym)|

_ A 0 lyj =¥ (1.3)
S =yl A =yl =y 4 =yl

whenever [y; — )| < I max < j<m |x —yj|.
The maximal multilinear singular integral operator is defined by

T*(F)(x) = sup|T5(fi, - fu) ()],

6>0

where Ty are the smooth truncations of T given by

T5(f)(x) = /m myi 2> 52 K()C,yl,"' 7ym)f1(y1) fm(ym)dy’

i=

Here and in the following, dy = dy; ---dyn, .

The vector-valued multilinear Calderén-Zygmund operator 7; and vector-valued
maximal multilinear operator 7" associated with the operator T are defined and studied
by Grafakos and Martell in [11].

-,

Ty(f)(x)

T ) )l = 1T (i in ) )
oo 1/q
<2|T(flk,---7fmk><x>q) 7
k=1

T, () @) =T (fry s fn) @)lg = 1T (fros -+ fon ) () o
oo 1/q
<2T*(flka"'7fmk)(x)q> )
k=1

where f; = {fix}7_, for i=1,---,m. Grafakos and Martell [11] obtain the following
results.
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THEOREM A. ([11]) Let T be a multilinear Calderon-Zygmund operators, and
let 1/m<p<eo, 1/p=1/pi+---+1/pm with 1 <pi,--,pm <o, 1/m < q< oo
and 1/q=1/q1+ -+ 1/qm with 1 < q1,-++,qm < o=. Then there exists a constant
C > 0 such that

17, (J?)HU’(R") < Cl_[l 1 fila; 1127 ()
J=

Cruz-Uribe, Martell and Pérez [6] obtain a weak version of Theorem A as follows:

THEOREM B. ([6]) Let T be a multilinear Calderon-Zygmund operators, and
let I/m<p<eo, I/p=1/p1+-+1/pm with 1 <p1, - ,pm<oe, 1/m<q<oo
and 1/q=1/q1+ -+ 1/qm with 1 < qi,---,qm < o=. Then there exists a constant
C > 0 such that

17} (P)lzp=(en) < C‘l_[1 11117 (gn)-
j=

Given a collection of locally integrable functions b= (b1, ,b;), where 1 <1<
m. The commutators associated with T and T* are defined by

/ m
x):/( n)mH[bj(x)—bj(Yj)]Kxy1, "5 Ym H filvi)dy;.
=1

m

[
K(x,y1,--, )d
/2 e y,\2>52H } YY1 s Ym H yj Vil

j=1 j=1

=,

T () (x) = sup

6>0

The commutators associated with vector-valued Ty and T, can be defined by

R . 1/q
T ) = T (D@l = 5= S ) @) llas = (2| ) ,

1/q
T (D) = 1Tl = TS ) |1q—<2| ) ,

where f= (fi,-+, fn), with fj = {fi}e_,-

There are a number of studies concerning multilinear singular integrals with stan-
dard kernels. The theory of weighted maximal multilinear Calderén-Zygmund type
operators was established in [13], [2]. Xue [26] studied the weighted strong type and
end-point estimates for T;[B with multiple weights. Recently, the weighted strong type
and end-point estimates for TIT[Bq with multiple weights were obtained by Si and Xue

[23] as follows:

THEOREM C. ([23]) Let T be a multilinear Calderon-Zygmund operators, and
let 1/m < p < oo, %z p%+'”+1%m’ with 1 < pp, -, pm <o, 1/m < q<e and q—ll—i-
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ﬁ —
~+qu :5 with 1 < qy,++,qm <. If ® € Ay, v =TI/, ®", and b € (BMO)".
Then there exists a constant C > 0 such that

I m
1T, (f Pllerivg) < CTT 10,810 TTUFilg; Nz
j=1

j=1
THEOREM D. ([23]) Let T be a multilinear Calderén-Zygmund operators, and
let 1/m < q < e and q—ﬂ—l—---—f—# = é with 1 < q1,-+,qm <. If @ € Ay ... 1) and
be (BMO)!. Then there exists a constant C > 0 depending on b such that

v {re it (A >} ) < (H i M)w,(y,-)dyj)um,

m
—
where ®(t) =t(1+1log"t) and @™ =®o-..0®.

Throughout this paper, we always assume that @(z) : [0,e0) — [0,0) is a nonde-
creasing function with 0 < @(1) < eo. For any a > 0, we say that @ € Dini(a), if

L4 (¢
|| Dini (a) =/0 t( )

In this paper, we will establish some weighted norm inequalities for vector-valued
maximal multilinear Calderén-Zygmund operators of type ®(¢) and its commutators.
Our main results are as follows:

THEOREM 1. Let T be an m-linear ®-CZO with @ € Dini(1), and let 1/m <
p <o, I%Z%ﬁ----—i-i with 1 <pp,-,pm < oo, 1/m<q<ooandé——+ q{”
with 1 < qi,-++,gm < . Suppose that (o!',---, 0h") € (Ap,,--,Ap,), then there

exists a constant C > 0 such that

175 (D)o (@bt CHIHf;\q,HLp,

THEOREM 2. Let T be an m-linear ®-CZO with o € Dinl( ), and let 1 <
D1y Pm <o, 1< qi,,qm <o and 0 < p,q < o such that == ——|— —|——
1_ 1, ... 1
riln +- 4 - Then, we have
(D) If 1<piye.,pm <o and @ €Ay, N---NAp,, then there exists a constant C >0

such that

T, (D) < CTTlal 22 (@)
j=1
(ii) If at least one p; =1 and @ € Ay, then there exists a constant C > 0 such that

HTq* (f)”LPﬁ"(w) < C‘l_I1 ‘|‘fj|q;|‘LI’./(w)
j=
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THEOREM 3. Let T be an m-linear @-CZO, and let 1/m < p < oo
L owith 1 < pr,- o pm <o, 1/m< q< o and %—k---—i—q%n =

Pm
qi,qm <. If ® € Ay, b€ (BMO)' and  satisfies

L P (1) i1
uogu@):/o e (1—|—10g; dt < oo,

where p = min{1,q}, then there exists a constant C > 0 such that

|0 pini

[ m
T, (f llir(vy) <CHI||ijBM0H1\\|fj|q,||L"j(Wj)-
Jj= j=

(1.4)

THEOREM 4. Let T be an m-linear ©-CZO, and 1/m < q < o and qu +o

qm

L= é with 1 < g1, ,qm <. If ® € Ay ..y), b e (BMO) and o satisfies the

condition (1.4), then there exists a constant C > 0 depending on b such that

vo{reminy (H>m}) < c(f[1 [ o (Ht2) az,»(yndyj)l/m,

m

—
where ®(t) =t(14log"t) and @™ =®o-..0®.

REMARK 1. Theorem 1-Theorem 4 are also hold for T'.

2. Proofs of Theorem 1 and Theorem 2

Let us begin with the definition of Hardy-Littlewood maximal operator, that is

5= g g o

The sharp maximal function is defined by

() = ~ sup _
M) = supint o [ 170 —eldy = sup o [ 170) = folay:

05x 0>x

For 6 >0, Msf =M(|f|®)5 and M§f=Mj(|f|5)%~

The new maximal function .# can be defined by

j/ _SUPH /‘fj Yj ‘dyj
O>x j= ‘Q|
and the new vector valued maximal function can be defined by

(‘f|q _SupH‘Q|/ ‘f] y] “I/ y]'

QBXJ 1
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DEFINITION 1. [15] Let 1 < py,-+,pm < oo with 1/p=1/p1+---+1/pp.
Given @ = (w,---,®y), set Vg = H;’;lw{’/m. We say that @ satisfies the Az con-

dition if 1
i » L 117§) ] -
“p<QLérI ) (QL/ =

1
1-pi\ 7 . . _
when p; =1, (é Jo @, p’)’ is understood as (infy ;) L.
We now give a new weighted estimate of 7*.

THEOREM 5. Let 11—7 = %—l—---—f— ﬁ and @ € Ay. Let T be an m-linear ®-CZO
with @ € Dini(1).
(D) If 1 <pi,--,pm < oo, then

HT*fHU’(V@) < CITIillri(ay)-

i=1
(Z)Ifl P, 7pm<°°a then
o m
T* fllp=(vy) < CTTIAN P ()
i=1
To prove Theorem 5 we need some lemmas.
LEMMA 1. Let T be an m-linear ®-CZO with ® € Dini(l). Then, for any

n >0, there is a constant C < o depending on 1N such that for all f in any product of
L9 (R™) spaces, with 1 < q; < oo, the following inequality hold for all x € R"

T (7)) <€ (My(T(F) @) +.4(D)())

Proof. For a fixed point x and a ball Q centered at x with radius J. Set Sg = {¥:
SUPj<j<m [X — il < 8} and Us = {y € S5 : T |x — yi|? > 82}. Itis clear that

m

K(x,3) [T /i) dyi

i=1

m

K, ) [ fi0idyi|.

()] < sup (55)¢ o

6>0

+ sup
6>0

By using the size condition, we get

m

K(x, ) [1/i0i)dyi

Us i=1

A
SC/ —Hﬁ yi)dyi
Us (X

D)
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We are ready to estimate the second term. For any z € Q(x, g), we have

T5(f)(2) = K(Z,Y)lm_[ﬁ(yi)dyi =T(f)(2) - T(/") ),
i=1

(Ss)°

where fo = (fixo, - fuXo)-
Note that the integral [ o |K(z,¥) — K(x,¥)[TTiL, fi(yi)dy: can be written as a

sum of integrals over sets R » € (R")" for some .# := {i},---,i;} C{1,---,m}, such
that for y = (y1,...,ym) € Ry wehave i € . if and only if [x —y;| < &. On S§ the set

¢ is not empty, by using a similar argument as in [ 16] we obtain that @ (%) <
ic.7¢ i

®(27%). Consequently, we have
(7))~ T5(7)(2)|

<c . Ken-Ku[TAvd

(S5)°
A |z—x|

C / i d i / CO( )

YEXR’/ zgﬂ|f0 iy ’ 2 it (Zie e lz—yil )™ Yicse |z—yil
< TT 157 i)l dyi

i€cgc¢
cos [CTRoad 3 [ G T el

VER » ) i ic.7¢

<C Z 2(0(2_ 2kQ‘m / ’fio(yi)dyi| H/ yz |dyt
VER s k=1 i€s iesc

< C|“’\Dini(1)//(f)(x)7

where 2, = (2¢0) \ (271Q), k=1,2,... and in the second inequality, we used the
smooth condition (1.2).
Thus, we obtain

nyHﬁy,dyl<C///( @+ [T(H@)|+ |1 @)|.

(Ss)°

The rest of the proof is the same as in [13], we are done. []
LEMMA 2. ([7]) If ® € A, and p > 1, then M maps from L (o) to LP ().
LEMMA 3. ([2]) If ® €A, and p > 1, then M maps from LP* () to L"*(m).

LEMMA 4. ([16]) Let T be an m-linear ©-CZO with ® € Dini(1). Let p =



256 Z.SIAND Q. XUE

(1)If1<pj<eforall j=1,---.m, then
. m
T (Pllrvg) < CTTN i o
j=1
(2)If1<pj<eo forall j=1,---,m, and at least one of the p; = 1, then

1T (P)llir=vg) < CTTI25 0
j=1

LEMMA 5. ([15]) Let p=(p1,- -+, pm) with 1%:%4_'”4_1?%1 and 1 < py1, -, pm-

(1)If1<pj<ecoforall j=1,---,m, then A is bounded from L' (@) x --- X
LPm(@y) to LP(vg) if and only if @ = (@1, -+, @) € Ap.

(2)If1<pj<ecoforall j=1,---,m, then A is bounded from L' (@) x --- X
LPm (@) to LP=(vg) if and only if & = (@i, -+, @n) € Ap.

Proof of Theorem 5. Theorem 5 follows by using Lemma |-Lemma 5.

T (F) lertvg) < € (11Ma (TGNl er(vg) + 14 (Dl ler(v )

(Ve
1 -
—c(mqrgmy| +|//z<f>|m<w)

( Mk )
<c(Ur@Imf,  +1a @l )

< (TPl ) + 14 (P lerivgy )

<TI0

j=1

In the first inequality we used Lemma 1. The second inequality is due to Lemma 2
and the fact vg € A, for all @ € Aj. The last inequality is follows by Lemma 4 and
Lemma 5. If we use Lemma 3 instead of using Lemma 2, by using the same arguments,
we can get the weak type estimates. [l

Note that if each ®; € Ap,;, then ]} A, C Aj and this inclusion is strict (see
[15] for details). This fact together with Theorem 5 and Lemma 4 yields the following
weighted estimates.

LEMMA 6. Let T be an m-linear ®-CZO with @ € Dini(1). Consider an m-

tuple (o' , L OR" )E (Ap,,++Apy,), where 1 < py,-+,py <o and L < p < oo sat-
isfy % = —|— + . Then there exists a constant C such that

T (Al (@f--of) CH ill s o
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and

1T () o ooy CHI\f;HLp, i)

LEMMA 7. ([11]) Let 1 < qq, - ,qm <o and 2 < g < oo be fixed indices such
that Ll] = %+~~~—|—qim. If for all functions f; € qu( ) and (o', 0l") € (Ag,, -,
Ag,,), the following estimate holds

17 () s - cHHf,HLq,

Then for 1 < p1,---,pm < o and l < p < oo with 117 = —+ +—, and 1 <
Sttt Sm <00, L <5 <oowith 1= —|— —|—— and all ( f7- L OR)E(Ap, Apn)s
the following inequality holds

l

H <2|7(f1k»“-7fmk)s>
x

. pPi
Lr(af - of) LPi(w;7)

Proofs of Theorem | and Theorem 2. As a consequence of Lemma 6 and Lemma
7, we obtain Theorem I(see the proof of Corollary 3 in [11]). For any weight ® € A..
and p € [%,oo) from Theorem 6.2 [16] we know that for all bounded functions
f = (f1,~+,fm) with compact support, we have ||Tf|[1p(w) < C|[-Z(f)||r(w) <
CHHT:lM(fj)HLI’(w)~ Similarly, we obtain that [|7 f][1r(w) < C\|H;”=1M(fj)\|u’(w)
Then, Theorem 2 follows by a repetition of the same steps as in Corollary 3.3 in [6]. In
fact, we apply Theorem 2.1 in [6] to the families

j=1

J=1

Holder’s inequality and the normal inequalities for the maximal operator yield the de-
sired results. [J

3. Proofs of Theorem 3 and Theorem 4

Proofs of Theorem 3 and 4 follows from similar steps in [23], we omit the proof.
We just give two key lemmas.

For 1 <[ < m, we define .#!

L(logL)(|f\q) as follows:

1
M o) (1Flg) (6 —SUPHH\f;\q,HLlogL o1l o /Q Filas

Jj=l+1

'% L(logL) (‘f|q - SQupH mf]|11/”L (logL),Q
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and

A(F) ) =sup T = o /Q Filas

03x j=|

where the supremum is taken over all the cubes containing x.

LEMMA 8. Let 0 <8 < 1/m, 1/m< q<eo and 1/q=1/q+ -+ 1/qm with
1<q1,-,qm < oo If © satisfies the condition (1.4), then there exists a constant C >0
such that

MA(T(F))(x) < Ctt (1 flg) ()

for any smooth vector function {fk}:’: , and any x € R".

Proof. Fix x € R" and let Q be a cube containing x with side length [(Q). For
any smooth vector function sequence {fi}7 . set f° = fi — f;{o, where ﬁo = fiXxso =
(fiexso, -+ fmkXso)- Since 0 < 8 < 1/2 < 1, we have

(121 127 dy)l

5 L 5 1
1 - o 5
C —/‘%*ﬂ) y dy) ( / sup% f —c dy)
<|Q 0 q( )(v) 0] |Un ( X(80)¢ )(y) n|q
=U1+0>,
a\ 1/aq
where ¢ = SUPy~q [Cn|| = <2k>1 SUP; -0 |Cnk ) .
q

For U;, we applying Kolmogorov’s inequality and Theorem 2 to get

(11 o

To estimate Uy, we choose cn = X5 5 g c‘?,‘ where c =Un(f, o o) (x).
We may split U, < za.a;ﬁé U,g, where
1

6 B
U26£ <|Q / sup qdy>

We now consider the case & = (co,-+,). For x,y € Q and y; € 2°73Q\ 2120,
s o . c s
we have |y —y;| > 2/l(Q) and |y —x| < val(Q), and [K(y.5) — K (x.5)| < g

y) " <))

Un (i I ) = Uy (F s o) (%)
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Thus, we obtain that

% (P> Foi) ) = Uy (fis -+ ) ()|

<C K(y,y) — K(x,y Faj)ldy
(Rn\gg)m\ ( IH\ 7 ()]

i A X
SCE w( b= )Hf/kYI |dy

1/ @m0 ( " \z—y,-l) 1le=y;
<C vy .
~ ; Ji[ 2 S+3 ‘Q| 2?+3Q‘f,k(y‘,)‘dy‘,
=CY 0(27")Gy,

where g, jx = 2“*+)"\Q|f2”39 |fix(vj)ldy; and Gy =TT} gsjx- Then, we get

oo 1/q
Un (Fiks s o) ) — U (fis ,;’;’k)(x)q<C<Zw”(2‘S)%Gfk> .

s=1

By Minkowski’s inequality and Holder’s inequality, we obtain that
% (Fiko 5 o) ) = U (i 5 k) () g < €l pi

Since 0 < 0 < 1/2, we have

(| flg) ().

Llo, L’

1

(|Q/sup%<flk,--,f°°><> Uny(fipn- ) () )

C@/ngp|%rl(ffza7 mk)(y)_%rl(ffza"', mk)(x)|qdy

< C\a)|DiningLl(p)///(|f\q)(x).
We now estimate the typical term Iz with & = (04, -+, y,), 0 =0 or o for
i=1,---,m. We may assume that oy =--- =0y = and 04| =--- = o, = 0. For

x,y € Q andany y; € 25730\ 25720 with j#[+1,---,m, onehas |z—y;| > 2°/nl(Q),

then [K(z,¥) — K(x,¥)| < % We observe the following fact

‘%n(ffza"Wflol::f(OlJr])k'"f(om)k)(y)_%Tl(ffz:'"7ﬁ01:7f(()l+1)k"'f(()m)k)(x)|
o (st
CH/‘f/kYI‘YI/ <_‘ j>

1
TT1fx)ldyy---dy

e (3 o y,\)'"“
e m

<CY o) I] / 0 | f1ic(v1) \dyl 26 m/é+3 H|fjkyj \dy;
s=1 J=I+1 o™ Jia

m
1
o) s ik (j)ldy;.
1.12112(5+3)"|Q‘ 25430 T J

N
. a
M

,
Il
—_
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The rest of the proof is the same as in [23], hence we proved Lemma 8. [J

LEMMA 9. Let 0 < 6 < € < 1/m. If o satisfies the condition (1.4), then there
exists a constant C > 0 depending only on 6 and € such that

1
W51y ) < CTT1Ibllswo (/fzzuogmufq)(x) M (T ) (x))
| 1
3.1

-1
+C Y > [TlbillsmoMe(Triy, o) (x)

Jj=1 Gefg]l i€o
for any smooth vector function {ﬁ};’zl and for any x € R", where ¢’ ={1,---,1}\ 0.

Proof. The proof of this part is similar to that of Lemma 2.3 in [23], we just give
the part of the proof that is different. We apply Kolmogorov’s estimate and Theorem 2

to get
S 1/6
(éfg U (01(1) = M) (b () = W) ) (@) dz)

Sl ((br(-1) = M) -+ (ba (1) —/lz)f@)HLl/mm(Q%)

i 1 m 1
<cIly /Q 30 =25l 5@yez TT 17 /Q 1F1(2) g dz

j=I+1

~

< CTT b, llssw0- 4 ogiy (1 F1o) ).

J=1

If all the aj = o, we have

sup
n>0

< Ci/ (K (2,5) =K (x, )| [(b1(y1)=2A1) - (0i(v0) =D)AL ) g+ | fon ), @
k=17 ()"

(U ((b1(-1)=M) - (B ()= 2) f*)) (@) — (% (b1 (1) = A1) -+ (B () =) F)) (x)

q

1 m

1
11:[12k+3 Q| Jak+3g bj(yj)_lj|fj|’1fdyj,'1112(k+37)nQ|/2k+3Qff‘fjdy.f

/A
M

k:
<3 0 W TTIb ol o sty so T s [ 15l
k=1 j=1 : 7 i1 28 Q] Jaksg
1
< Clolim,, o) TTID3l3w0- 2 g, (1Flo) 0.
J=1

In the last inequality we used the fact that @ satisfies the condition (1.4).
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Ifog=---=0=cand 04| =--- = o = 0. Minkowski’s inequality gives
SU% Un((b1(1) = M) () = M) S o ) (@)
n>

— Un((D1(1) = Aa) - (Br()) = M) ST o ot fa) ()
q

Al(by(y1) = A1) (bi(yi) = 2D D)gy - i) g dyr -+ dyy
<£2k>' (lz=yil+-+[z=ym|)™

/ ‘fj Vi |q,dy1

<C

j=I+1

< CZ H/2H3Q i) = A4l1F5(0)lg v, H /2k+3Q 115 (i)lg;dyi

2k\Q| =11
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)
Mk mb llamolllf114; 1 gtog ) 2. H | filg,dy,j

EMs

k+3 |Q| 24430

< C\w|Dininng(

) H |11 |BM0///LI(1ogL)(|f|f1)(x)'
=1

In other cases, the estimates is similar. Then we proved Lemma 9. [
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