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A CLASS OF CONTINUED FRACTION INEQUALITIES
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(Communicated by C. P. Niculescu)

Abstract. Given a finite sequence of positive real numbers, we construct terminating continued
fractions whose partial denominators are formed by the arrangement of the numbers according
to simple rules. This does not impose any restriction on the generality of our results and all
simple continued fractions can be recast and formed according to these rules. After showing that
the resulting finite continued fractions are multivariate convex or concave functions of the given
sequence, we derive a class of inequalities using results from the theory of majorization. The
main result of this paper is expressed in the form of inequalities connecting certain types of finite
continued fractions and Fibonacci numbers.

1. Introduction

The literature on continued fractions is ripe with inequalities relating their con-
vergents to their numerical value or partial denominators [1, 2, 3, 4]. The inequalities
presented in this article, however, are of a different nature. We are not concerned with
the accuracy of the convergents of a particular Diophantine approximation or the devia-
tion from the limit as is the case in the analytic studies of continued fractions [5, 6]. Our
results are in the form of inequalities for the maximum and minimum values attained by
continued fractions when the partial denominators are selected from the permutations
of the elements of a finite sequence.

Our treatment of the subject starts with establishing a lemma on the convexity
or concavity of finite continued fractions when treated as multivariate functions. Of
interest here are finite continued fractions symbolically expressed as

Cn = [b1;b2, . . . ,bn] = b1 +
1

b2 +
1

b3 +
1

. . . +
1

bn

, (1)

where the partial denominators bi are all positive and real numbers. Associated with
the Cn is the vector (p1, p2, . . . , pn) , from which the values of the bi are determined
according to simple rules where either pi or its reciprocal p−1

i is assigned to the bi .
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We generate two types of finite continued fractions using two simple rules distin-
guished by the notations C†

n and C‡
n . Specifically, we write

C†
n |(p1,...,pn) = [p−1

1 ; p2, p
−1
3 , . . . , p1−2(n mod 2)

n ], (2)

whereas, for C‡
n we define

C‡
n |(p1,...,pn) = [p1; p

−1
2 , p3, . . . , p

−1+2(n mod 2)
n ]. (3)

In the following Section, techniques from the theory of convex functions are used to
show that C†

n is a multivariate convex function and C‡
n is a multivariate concave func-

tion with respect to the pi when these symbols are treated as variables. The theory
of majorization is then employed to derive bounds on the extremal values of C†

n and
C‡

n over all permutations of the components of the vector (p1, . . . , pn) . This leads to
a variety of inequalities governing finite continued fractions and, eventually, yields the
main result in connection with the Fibonacci numbers. Henceforth, we use the terms
vector and sequence interchangeably.

2. Convexity of continued fractions

In the following, we state and prove a useful lemma concerning the convexity of
finite continued fractions (1) when constructed according to our rules.

LEMMA 1. Given the sequence (p1, . . . , pn) of positive real variables, the termi-
nating continued fraction C†

n is a convex function, while C‡
n is a concave function in

the variables pi , i = 1,2, . . . ,n, where C†
n and C‡

n are formed according to (2) and (3)
respectively.

Proof. The proof is by induction on n . The cases where n = 1 or n = 2 are trivial.
To gain a deeper insight, we start with the case where n = 3 and consider

C†
3 |(pa,pb,pc) = [p−1

a ; pb, p
−1
c ]. (4)

It is to be shown that C†
3 is convex with respect to the three positive variables. This can

be established by forming the expression

f (α) =
[

1
α p′a + β p′′a

,α p′b + β p′′b,
1

α p′c + β p′′c

]
, (5)

where
0 � α � 1 and α + β = 1.

A useful result from [7, p. 190] then ascertains that in order to show the validity of the
lemma we only need to establish that f (α) is convex with respect to α ∈ [0,1] . Since
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f (α) is a smooth function in α , we can verify the convexity of f by checking the sign
of its second partial derivative with respect to α , i.e.,

∂ 2 f
∂α2 =

2(p′a− p′′a)2

(α p′a + β p′′a)2 +
2(p′b + p′c− p′′b − p′′c)2

(α(p′b + p′c)+ β (p′′b + p′′c))2 � 0. (6)

It follows that f (α) is a convex function in α and consequently C†
3 a convex function

in pa , pb and pc as well. In a similar manner we can show that

g(α) =
[

α p′a + β p′′a,
1

α p′b + β p′′b
,α p′c + β p′′c

]
(7)

is concave in pa , pb and pc , by verifying that

∂ 2g
∂α2 � 0. (8)

This establishes that C‡
3 is a concave function in the three variables pa, pb and pc . Next

set n � 4 and assume that C‡
n−1 together with all shorter continued fractions constructed

according to the same rule are concave in the pi on (0,∞) . Also suppose that C†
n−1 and

all shorter continued fractions of the same type are convex in the pi on (0,∞) . Note
that the reciprocal of a positive and concave function is convex with respect to the same
variables. Thus 1

C‡
n−1

is convex in n−1 variables.

We now show the validity of the inductive step by first proving the convexity of
C†

n in the pi , i = 1, . . . ,n . The recursive expression for C†
n in terms of the pi can be

written as

C†
n |(p1,...,pn) =

1
p1

+
1

C‡
n−1|(p2,...,pn)

. (9)

Note that 1
p1

is convex with respect to p1 . Also, from the foregoing comments, the

reciprocal of the shorter continued fraction C‡
n−1 is convex in p2, . . . , pn . Consequently,

C†
n , being the sum of two convex functions, is convex with respect to p1, . . . , pn as

required.
It remains to show that C‡

n is a concave function in the pi . Write

C‡
n |(p1,...,pn) = p1 +

1
1
p2

+ 1
C‡

n−2|(p3,...,pn)

. (10)

Consider the expression

α p′1 + β p′′1 +
1

1
α p′2+β p′′2

+ 1

C‡
n−2

∣∣
pi=α p′i+β p′′i

. (11)

By assumption, C‡
n−2 is concave in the n− 2 variable p3, . . . , pn . Hence

∂ 2C‡
n−2

∂α2 �
0. The second partial derivative of the expression in (11) with respect to α can be
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expressed symbolically and evaluated to be nonpositive, i.e.,

(α p′2 + β p′′2)
2
(
C‡

n−2+α p′2+β p′′2
)

∂ 2C‡
n−2

∂α2 −2

(
(p′2−p′′2)C

‡
n−2−(α p′2+β p′′2)

∂C‡
n−2

∂α

)2

(
C‡

n−2+α p′2+β p′′2
)3

� 0.

(12)

This completes the proof. �

3. Majorization inequalities

The reader is referred to [8] for a comprehensive account of the theory of ma-
jorization . If the sequence (r1, . . . ,rn) is majorized by the sequence (p1, . . . , pn) , we
write

(r1, . . . ,rn) ≺ (p1, . . . , pn), (13)

and this implies that

k−1

∑
i=1

r(i) �
k−1

∑
i=1

p(i), k = 1, . . . ,n−1,
n

∑
i=1

ri =
n

∑
i=1

pi (14)

where the components of the vectors (r1, . . . ,rn) and (p1, . . . , pn) , when sorted in in-
creasing order, are denoted in the forms

r(1) � r(2) � · · · � r(n) and p(1) � p(2) � · · · � p(n) (15)

after re-indexing. It is a well-known result that such vectors, ordered according to the
partial ordering of majorization, are related by a doubly stochastic matrix A , namely,

(r1, . . . ,rn) = A · (p1, . . . , pn).

Matrix A can be expressed as a convex combination of n×n permutation matrices by
writing [7]

A = λ1Q1 + . . .+ λmQm, (16)

where λ1 + . . .+ λm = 1 and λi � 0, i = 1, . . . ,m . With the ri expressed in terms of
pi , the convex function C†

n satisfies the inequality

C†
n |(r1,...,rn) �

m

∑
i=1

λiC
†
n |Qi·(p1,...,pn). (17)

It is then an immediate result that

C†
n |(r1,...,rn) � max

σ
C†

n |(pσ(1),...,pσ(n)), (18)

where σ belongs to the symmetric group of permutations over n elements.
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Likewise, we can show that

C‡
n |(r1,...,rn) � min

σ
C‡

n |(pσ(1),...,pσ(n)). (19)

The right sides of (18) and (19) are the maxima and minima of continued fractions C†
n

and C‡
n , respectively, attained over all possible permutations of the pi . By using an

inductive argument, it can be proved that

max
σ

C†
n |(pσ(1),pσ(2),...,pσ(n)) = C†

n |(p(1),p(2),...,p(n)), (20)

and similarly,
min

σ
C‡

n |(pσ(1),pσ(2),...,pσ(n)) = C‡
n |(p(1),p(2),...,p(n)). (21)

Interestingly, these extremal values are both obtained by using the same ordered forms
of the vector under consideration.

4. Connection to Fibonacci numbers

Assume that the pi satisfy the constraint

p1 + · · ·+ pn = n. (22)

It is well-known that for all such sequences we always have

(1,1, . . . ,1) ≺ (p1, p2, . . . , pn). (23)

For the vector (1,1, . . . ,1) , we have

C†
n |(1,1,...,1) = C‡

n |(1,1,...,1) = [1;1, . . . ,1] (24)

and hence it is possible to combine (18) and (19) and write

C‡
n |(p(1), p(2),...,p(n)) � [1;1, . . . ,1] � C†

n |(p(1), p(2),...,p(n)). (25)

This result can be stated in the form of the following theorem.

THEOREM 1. For all positive real sequences pi , i = 1, . . . ,n, where ∑i pi = n,
the inequality

p(1)+
1

p−1
(2)+

1

p(3)+
1

. . . +
1

p−1+2(n mod 2)
(n)

� Fn+1

Fn
� p−1

(1)+
1

p(2)+
1

p−1
(3)+

1

. . . +
1

p1−2(n mod 2)
(n)

(26)
is always valid.
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Generalization of (26) to the cases where ∑i pi is an arbitrary positive number is not
hard and yields the following theorem.

THEOREM 2. For all positive real sequences pi , i = 1, . . . ,n, the inequalities

nFn+1

Fn ∑i pi
� p−1

(1) +
1

p(2) +
1

p−1
(3) +

1

. . . +
1

p1−2(n mod 2)
(n)

(27)

and

p(1) +
1

p−1
(2) +

1

p(3) +
1

. . . +
1

p−1+2(n mod 2)
(n)

� Fn+1 ∑i pi

nFn
(28)

are always valid.

5. Concluding remarks

Even though continued fractions are not symmetric functions of their partial de-
nominators, and thus are not Schur-convex or Schur-concave, we utilized majorization
theory to derive our inequalities by taking an approach based on the maximum and
minimum values attained by the function. Another point to consider is that we can
further employ other known results from majorization theory to obtain many other rel-
evant inequalities. As a final remark, we re-express (25) in view of the facts that the
majorization relation (23) is generally valid for all sequences summing to n , and the
vector (1,1, . . . ,1) is the minimal element in the partial ordering of majorization for
such vectors. Thus we can write

min
p1,...,pn>0

p1+···+pn=n

max
σ

p−1
σ(1) +

1

pσ(2) +
1

p−1
σ(3) +

1

. . . +
1

p1−2(n mod 2)
σ(n)

=
Fn+1

Fn
. (29)
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The max-min form of the left side of (25) then becomes

max
p1,...,pn>0

p1+···+pn=n

min
σ

pσ(1) +
1

p−1
σ(2) +

1

pσ(3) +
1

. . . +
1

p−1+2(n mod 2)
σ(n)

=
Fn+1

Fn
. (30)

These relations shed new light on continued fractions in connection with min-max or
max-min problems.
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