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ON POINTWISE APPROXIMATION OF FUNCTIONS

BY SOME MATRIX MEANS OF FOURIER SERIES

W. ŁENSKI AND B. SZAL

(Communicated by I. Perić)

Abstract. The results corresponding to some theorems of S. Lal [Appl. Math. and Comput. 209
(2009), 346–350] and the results of the authors [Banach Center Publ., 95, (2011), 339–351] are
shown. The same and sometimes better degrees of pointwise approximation as in mentioned
papers by weaker assumptions on considered functions and examined summability methods are
obtained. From presented pointwise results the estimation on norm approximation are derived.
Some special cases as corollaries for iteration of the Nörlund or the Riesz method with the Euler
one are also formulated.

1. Introduction

Let Lp (1 � p < ∞) [respectively L∞ ] be the class of all 2π –periodic real–valued
functions integrable in the Lebesgue sense with p–th power [essentially bounded] over
Q = [−π ,π ] with the norm

‖ f‖ := ‖ f (·)‖
Lp =

⎧⎪⎨
⎪⎩
(

1
2π
∫

Q
| f (t) |p dt

)1/p
when 1 � p < ∞,

esssup
t∈Q

| f (t) | when p = ∞

and consider the trigonometric Fourier series

S f (x) :=
a0( f )

2
+

∞

∑
ν=1

(aν( f )cosνx+bν( f )sinνx)

with the partial sums Sk f [8, Th.(3.1)IV].
Let A :=

(
an,k
)

and B :=
(
bn,k
)

be infinite lower triangular matrices of real num-
bers such that

an,k � 0 and bn,k � 0 when k = 0,1,2, ...,n,

an,k = 0 and bn,k = 0 when k > n,

n

∑
k=0

an,k = 1 and
n

∑
k=0

bn,k = 1, where n = 0,1,2, ...,
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and let, for m = 0,1,2, ...,n,

An,m =
m

∑
k=0

an,k and An,m =
n

∑
k=m

an,k.

Let the AB− transformation of (Sk f ) be given by

Tn,A,B f (x) :=
n

∑
r=0

r

∑
k=0

an,rbr,kSk f (x) ( n = 0,1,2, ...) .

We define two classes of sequences.
Following by L. Leindler [2], a sequence c := (cr) of nonnegativenumbers tending

to zero is called the Mean Rest Bounded Variation Sequence, or briefly c ∈ MRBVS , if
it has the property

∞

∑
r=m

|cr − cr+1| � K (c)
1

m+1

m

∑
r�m/2

cr,

for all positive integer m .
Analogously as in [4], a sequence c := (cr) of nonnegative numbers will be called

the Mean Head Bounded Variation Sequence, or briefly c∈MHBVS , if it has the prop-
erty

n−m−1

∑
r=0

|cr − cr+1| � K (c)
1

m+1

n

∑
r=n−m

cr,

for all positive integers m < n , where the sequence c has only finite nonzero terms and
the last nonzero term is cn . Consequently, we assume that the sequence (K (αn))∞

n=0 is
bounded, that is, that there exists a constant K such that

0 � K (αn) � K

holds for all n , where K (αn) denote the constants appearing in the before inequalities
for the sequences αn = (an,r)n

r=0 , n = 0,1,2, ... .
Now we can give the conditions to be used later on. We assume that for all n and

0 � m < n
n−1

∑
k=m

|an,r −an,r+1| � K
1

m+1

m

∑
r�m/2

an,r

and
n−m−1

∑
r=0

|an,r −an,r+1| � K
1

m+1

n

∑
r=n−m

an,r

hold if (an,r)n
r=0 belongs to MRBVS and MHBVS , for n = 1,2, ..., respectively.

As a measure of approximation of f by Tn,A,B f we use the pointwise moduli of
continuity of f in the space Lp defined by the formulas

wp
x f (δ )β =

⎧⎪⎨
⎪⎩
{

1
δ
∫ δ
0

∣∣∣ϕx (u)sinβ u
2

∣∣∣p du
} 1

p
when 1 � p < ∞,

ess sup
0<u�δ

| ϕx (u)sinβ u
2 | when p = ∞,



ON POINTWISE APPROXIMATION OF FUNCTIONS BY MATRIX MEANS OF FOURIER SERIES 289

wp
x f (δ )β =

⎧⎪⎪⎨
⎪⎪⎩

sup
0<t�δ

{
1
t

∫ t
0

∣∣∣ϕx (u)sinβ u
2

∣∣∣p du
} 1

p
when 1 � p < ∞,

ess sup
0<u�δ

| ϕx (u)sinβ u
2 | when p = ∞,

and the classical ones

ωβ f (δ )Lp = sup
0<t�δ

‖sinβ t
2

ϕ· (t)‖Lp ,

where
ϕx (t) := f (x+ t)+ f (x− t)−2 f (x).

The deviation Tn,A,B f − f with the lower triangular infinite matrix A , defined by

an,r = 1
n+1 when r = 0,1,2, ...,n and an,r = 0 when r > n , and with the lower triangular

infinite matrix B , defined by br,k = pr−k/
r
∑

ν=0
pν when k = 0,1,2, ...,r and br,k = 0

when k > r , was estimated by S. Lal [1, Theorem 2]. The deviation Tn,A,B f − f in
general form was estimated at the point as well as in the norm of Lp in [3]. The
pointwise estimates from this paper are following:

THEOREM. Let f ∈ Lp (1 < p � ∞) , and let a modulus type function ω satisfy{∫ π
n

π
n+1

( |ϕx (t)|
ω (t)

)p

sinβ p t
2
dt

} 1
p

= Ox

(
(n+1)−

2
p

)
,when 1 < p < ∞,

ess sup
t∈[ π

n+1 , π
n ]

∣∣∣∣ |ϕx (t)|
ω (t)

sinβ t
2

∣∣∣∣ = Ox (1) , when p = ∞

and {∫ π
n+1

0

( |ϕx (t)|
ω (t)

)p

sinβ p t
2
dt

} 1
p

= Ox

(
(n+1)−

1
p

)
, when 1 < p < ∞,

ess sup
t∈[0, π

n+1 ]

∣∣∣∣ |ϕx (t)|
ω (t)

sinβ t
2

∣∣∣∣ = Ox (1) , when p = ∞,

with 0 � β < 1− 1
p . If the entries of our matrices satisfy conditions

an,n � 1
n+1

and ∣∣an,rbr,r−l −an,r+1br+1,r+1−l

∣∣� an,r

(r+1)2 for 0 � l � r � n−1,

then

∣∣Tn,A,B f (x)− f (x)
∣∣ = Ox

(
n

∑
r=0

an,r
1

r+1

r

∑
k=0

(k+1)β ω
(

π
k+1

)

+
1

n+1

n

∑
k=0

(k+1)β ω
(

π
k+1

))



290 W. ŁENSKI AND B. SZAL

and, in the case 0 < β < 1− 1
p ,

∣∣Tn,A,B f (x)− f (x)
∣∣

= Ox

(
(n+1)β ω

(
π

n+1

)[
(n+1)1−β

n

∑
k=0

an,k (k+1)β−1

])
,

for considered x .

In this paper we shall consider the deviation Tn,A,B f − f without any special as-
sumptions on modulus of continuity and another assumptions on summability method
obtaining the same degrees of approximation as above. Finally, we also give some re-
sults on norm approximation and corollary generalizing the results of H. K. Nigam, A.
Sharma [6] and H. K. Nigam, K. Sharma [7].

We shall write I1 � I2 if there exists a positive constant K , sometimes depending
on some parameters, such that I1 � KI2 .

2. Statement of the results

Let formulate our main results.

THEOREM 1. Let f ∈ Lp with 1 < p � ∞ and let 0 < β < 1− 1
p . If

(
an,k
)n
k=0 ∈

MRBVS and ∣∣∣∣∣
ν

∑
r=μ

r

∑
k=0

br,k sin
(2k+1)t

2

∣∣∣∣∣� τ (1)

for 0 � μ � ν with τ =
[ π

t

]
, where 0 < t � π , then

∣∣Tn,A,B f (x)− f (x)
∣∣= Ox

(
(n+1)β

n

∑
k=0

an,k

[
wp

x f

(
π

n+1

)
β

+w1
x f

(
π

k+1

)
β

])
,

for almost all considered x.

THEOREM 2. Let f ∈ Lp with 1 < p � ∞ and let 0 < β < 1− 1
p . If

(
an,k
)n
k=0 ∈

MHBVS and the entries of matrix B satisfy the condition (1) for 0 � μ � ν, then

∣∣Tn,A,B f (x)− f (x)
∣∣= Ox

(
(n+1)β

n

∑
k=0

an,n−k

[
wp

x f

(
π

n+1

)
β

+w1
x f

(
π

k+1

)
β

])
,

for almost all considered x .

Next, we formulate the results on estimates of Lp norm of the considered devia-
tion.
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THEOREM 3. Let f ∈ Lp with 1 < p � ∞ . If
(
an,k
)n
k=0 ∈MRBVS and the entries

of matrix B satisfy the condition (1) for 0 � μ � ν, then

∥∥Tn,A,B f (·)− f (·)∥∥
Lp = O

(
(n+1)β

n

∑
k=0

an,kωβ f

(
π

k+1

)
Lp

)

where 0 < β < 1− 1
p .

THEOREM 4. Let f ∈ Lp with 1 < p � ∞ . If
(
an,k
)n
k=0 ∈MHBVS and the entries

of matrix B satisfy the condition (1) for 0 � μ � ν, then

∥∥Tn,A,B f (·)− f (·)∥∥
Lp = O

(
(n+1)β

n

∑
k=0

an,n−kωβ f

(
π

k+1

)
Lp

)

where 0 < β < 1− 1
p .

Finally, we give an application of our results as a corollary and remarks.

Taking an,r = pn−r/
n
∑

ν=0
pν (or an,r = pr/

n
∑

ν=0
pν ), when r = 0,1,2, ...,n and an,r =

0, when r > n with pν > 0, pν � pν+1 , and br,k = (r
k)γk

(1+γ)r , when k = 0,1,2, ...,r and
bn,r = 0 when k > r with γ > 0, Theorem 1 and Theorem 2 imply:

COROLLARY 1. If f ∈ Lp with 1 < p � ∞ and 0 < β < 1− 1
p , then

∣∣∣∣∣∣∣∣
1

n
∑

ν=0
pν

n

∑
r=0

pr

(1+ γ)r
r

∑
k=0

(
r
k

)
γkSk f (x)− f (x)

∣∣∣∣∣∣∣∣
= Ox

⎛
⎜⎜⎝ (n+1)β

n
∑

ν=0
pν

n

∑
k=0

pk

[
wp

x f

(
π

n+1

)
β

+w1
x f

(
π

k+1

)
β

]⎞⎟⎟⎠ ,

and ∣∣∣∣∣∣∣∣
1

n
∑

ν=0
pν

n

∑
r=0

pn−r

(1+ γ)r
r

∑
k=0

(
r
k

)
γkSk f (x)− f (x)

∣∣∣∣∣∣∣∣
= Ox

⎛
⎜⎜⎝(n+1)β

n
∑

ν=0
pν

n

∑
k=0

pn−k

[
wp

x f

(
π

n+1

)
β

+w1
x f

(
π

k+1

)
β

]⎞⎟⎟⎠ ,

with pν > 0, pν � pν+1 and γ > 0, for almost all considered x.
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REMARK 1. In special case pr = pn−r = 1 we have estimates∣∣∣∣∣ 1
n+1

n

∑
r=0

1
(1+ γ)r

r

∑
k=0

(
r
k

)
γkSk f (x)− f (x)

∣∣∣∣∣
= Ox

(
(n+1)β−1

n

∑
k=0

[
wp

x f

(
π

n+1

)
β

+w1
x f

(
π

k+1

)
β

])
.

REMARK 2. If we take β = 0 in the above considerations then we have to esti-
mate the quantities |I2| and ‖I2‖Lp using the Hölder inequality analogously as in esti-

mate of |I1| . Thus we obtain in the all above estimates (n+1)1/p instead of (n+1)β .

3. Auxiliary results

We begin this section by some notations following A. Zygmund [8, Section 5 of
Chapter II].

It is clear that

Sk f (x) = − 1
π

∫ π

−π
f (x+ t)Dk (t)dt

and

Tn,A,B f (x) = − 1
π

∫ π

−π
f (x+ t)

n

∑
r=0

r

∑
k=0

an,rbr,kDk (t)dt,

where

Dk (t) =
1
2

+
k

∑
ν=1

cosνt =
sin (2k+1)t

2

2sin t
2

.

Hence

Tn,A,B f (x)− f (x) =
1
π

∫ π

0
ϕx (t)

n

∑
r=0

r

∑
k=0

an,rbr,kDk (t)dt.

Now, we formulate some estimates for the Dirichlet kernel.

LEMMA 1. (see [8]) If 0 < |t| � π/2, then

|Dk (t)| � π
2 |t|

and for any real t we have
|Dk (t)| � k+1.

LEMMA 2. Let
(
br,k
)r
k=0 be such that the condition (1) holds for 0 � μ � ν. If(

an,k
)n
k=0 ∈ MRBVS , then

∣∣∣∣∣
n

∑
r=0

r

∑
k=0

an,rbr,kDk (t)

∣∣∣∣∣� τAn,τ
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and if
(
an,k
)n
k=0 ∈ MHBVS, then

∣∣∣∣∣
n

∑
r=0

r

∑
k=0

an,rbr,kDk (t)

∣∣∣∣∣� τAn,n−τ

with τ = [π/t] and t ∈ [ π
n+1 ,π

]
, for n = 0,1,2, ....

Proof. The proof is analogous to the proof of [5, Lemma 11]. �

4. Proofs of the results

4.1. Proof of Theorem 1

We start with the obvious relations

Tn,A,B f (x)− f (x) =
1
π

∫ π
n+1

0
ϕx (t)

n

∑
r=0

r

∑
k=0

an,rbr,kDk (t)dt

+
1
π

∫ π

π
n+1

ϕx (t)
n

∑
r=0

r

∑
k=0

an,rbr,kDk (t)

= I1 + I2

and ∣∣Tn,A f (x)− f (x)
∣∣� |I1|+ |I2| .

By the Hölder inequality
(

1
p + 1

q = 1
)

and Lemma 1, for β < 1− 1
p , we have

|I1| � (n+1)
∫ π

n+1

0
|ϕx (t)|dt � (n+1)

∫ π
n+1

0
|ϕx (t)|sinβ t

2
sin−β t

2
dt

�
{

(n+1)
∫ π

n+1

0

[
|ϕx (t)|sinβ t

2

]p
dt

}1/p{
(n+1)

∫ π
n+1

0
sin−βq t

2
dt

}1/q

� wp
x f

(
π

n+1

)
β

{
(n+1)

∫ π
n+1

0
t−βqdt

}1/q

� (n+1)β wp
x f

(
π

n+1

)
β
.

Using Lemma 2 we obtain

|I2| �
∫ π

π
n+1

|ϕx (t)|
t

τ

∑
k=0

an,kdt =
n

∑
m=1

∫ π
m

π
m+1

|ϕx (t)|
t

τ

∑
k=0

an,kdt

�
n

∑
m=1

m+1

∑
k=0

an,k

∫ π
m

π
m+1

|ϕx (t)|
t

dt

=
n

∑
m=1

m

∑
k=1

an,k

∫ π
m

π
m+1

|ϕx (t)|
t

dt +
n

∑
m=1

(an,0 +an,m+1)
∫ π

m

π
m+1

|ϕx (t)|
t

dt



294 W. ŁENSKI AND B. SZAL

=

(
n

∑
k=1

an,k

n

∑
m=k

+an,0

n

∑
m=1

+
n

∑
m=1

an,m+1

)∫ π
m

π
m+1

|ϕx (t)|
t

dt

�
(

n

∑
k=1

an,k

n

∑
m=k

+an,0

n

∑
m=1

){∫ π
m

π
m+1

[
|ϕx (t)|sinβ t

2

t1+β

]
dt

}

+
n

∑
m=1

an,m+1

{∫ π
m

π
m+1

[
|ϕx (t)|sinβ t

2

]
dt

}[
1

π
m+1 sinβ π/2

m+1

]

�
(

n

∑
k=1

an,k

n

∑
m=k

+an,0

n

∑
m=1

){∫ π
m

π
m+1

[
|ϕx (t)|sinβ t

2

t1+β

]
dt

}

+
n

∑
m=1

an,m+1 (m+1)β

{
m+1

π

∫ π
m

π
m+1

[
|ϕx (t)|sinβ t

2

]
dt

}

�
n

∑
k=0

an,k

{∫ π
k+1

π
n+1

t−1−β d
dt

[∫ t

0
|ϕx (u)|sinβ u

2
du

]
dt

}

+(n+1)β
n

∑
m=1

an,m+1w
1
x f

(
π

m+1

)
β

�
n

∑
k=0

an,k

{[
1

t1+β

∫ t

0
|ϕx (u)|sinβ u

2
du

] π
k+1

π
n+1

+ (1+ β )
∫ π

k+1

π
n+1

[
1

t2+β

∫ t

0
|ϕx (u)|sinβ u

2
du

]
dt

}

+(n+1)β
n

∑
m=1

an,m+1w
1
x f

(
π

m+1

)
β

�
n

∑
k=0

an,k

{[
(k+1)1+β

∫ π
k+1

0
|ϕx (u)|sinβ u

2
du

]

+(1+ β )
∫ π

k+1

π
n+1

[
1

t1+β w1
x f (t)β

]
dt

}

+(n+1)β
n

∑
m=1

an,m+1w
1
x f

(
π

m+1

)
β

�
n

∑
k=0

an,k

{[
(k+1)β w1

x f

(
π

k+1

)
β

]

+ (1+ β )
∫ π

k+1

π
n+1

[
1

t1+β w1
x f (t)β

]
dt

}

+(n+1)β
n

∑
m=1

an,m+1w
1
x f

(
π

m+1

)
β
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�
n

∑
k=0

an,k

{∫ n+1

k+1

[
1

t1−β w1
x f
(π

t

)
β

]
dt

}

+(n+1)β
n

∑
m=1

an,m+1w
1
x f

(
π

m+1

)
β

Since wp
x f (δ )β is nondecreasing majorant of wp

x f (δ )β we have with β > 0

�
n

∑
k=0

an,kw
1
x f

(
π

k+1

)
β

∫ n+1

k+1

1

t1−β dt

+(n+1)β
n

∑
m=1

an,m+1w
1
x f

(
π

m+1

)
β

� (n+1)β
n

∑
k=0

an,kw
1
x f

(
π

k+1

)
β
.

Collecting these estimates we obtain the desired result. �

4.2. Proof of Theorem 2

Let as usual
Tn,A,B f (x)− f (x) = I1 + I2

and ∣∣Tn,A,B f (x)− f (x)
∣∣� |I1|+ |I2| .

The term |I1| we can estimate by the same way as in the proof of Theorem 1. Therefore

|I1| � (n+1)β wp
x f

(
π

n+1

)
β
.

Analogously to the above, by the Hölder inequality
(

1
p + 1

q = 1
)

and Lemma 2

|I2| �
∫ π

π
n+1

|ϕx (t)|
t

n

∑
k=n−τ

an,kdt =
n

∑
m=1

∫ π
m

π
m+1

|ϕx (t)|
t

τ

∑
k=0

an,n−kdt

�
n

∑
m=1

m+1

∑
k=0

an,n−k

∫ π
m

π
m+1

|ϕx (t)|
t

dt

� (n+1)β
n

∑
k=0

an,n−kw
1
x f

(
π

k+1

)
β
.

Collecting these estimates we obtain the desired result. �

4.3. Proofs of Theorems 3-4

The proofs are similar to these above and follows from the evident inequality∥∥∥wp
· f (δ )β

∥∥∥
Lp

� ωβ f (δ )Lp ,

because modulus of continuity ωβ f (δ )Lp is nondecreasing function of δ . �
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4.4. Proof of corollary 1

The proof is analogous to the proof of [5, Corollary 6]. �
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