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ON POINTWISE APPROXIMATION OF FUNCTIONS
BY SOME MATRIX MEANS OF FOURIER SERIES

W. LENSKI AND B. SZAL

(Communicated by I. Peric)

Abstract. The results corresponding to some theorems of S. Lal [Appl. Math. and Comput. 209
(2009), 346-350] and the results of the authors [Banach Center Publ., 95, (2011), 339-351] are
shown. The same and sometimes better degrees of pointwise approximation as in mentioned
papers by weaker assumptions on considered functions and examined summability methods are
obtained. From presented pointwise results the estimation on norm approximation are derived.
Some special cases as corollaries for iteration of the Norlund or the Riesz method with the Euler
one are also formulated.

1. Introduction

Let L? (1 < p < o) [respectively L™ ] be the class of all 2m—periodic real-valued
functions integrable in the Lebesgue sense with p—th power [essentially bounded] over
0 = [—r, x| with the norm

1/p
(% f 17 )" when 1<p<en

esssup | f(t)| when p=e
teQ

”fH = Hf()HLP =

and consider the trigonometric Fourier series

Sf(x) = @ 1+ (ay(f) cos va+ by(f) sinva)
v=1

with the partial sums Sif [8, Th.(3.DIV].
Let A := (a,x) and B:= (by) be infinite lower triangular matrices of real num-

bers such that
apr = 0and b, >0 when k=0,1,2,...,n,
apr = 0and b, =0 when k> n,

n n
Eamk =1 and mek =1,wheren=0,1,2,...
k=0 k=0
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288 W. LENSKI AND B. SZAL
and let, for m=0,1,2,...,n,

m n
Apm = Z apr and Ay, = Z Ay -
k=0 k=m

Let the AB— transformation of (S;f) be given by

T, a5 (x) Zzan,,kskf (n=0,1,2,...).
r=0k=
We define two classes of sequences.
Following by L. Leindler [2], a sequence ¢ := (¢,) of nonnegative numbers tending
to zero is called the Mean Rest Bounded Variation Sequence, or briefly c € MRBV S, if
it has the property

=3

N ler—cral <K Z cr,
r=m m + 1 r=m/2
for all positive integer m.
Analogously as in [4], a sequence ¢ := (¢,) of nonnegative numbers will be called
the Mean Head Bounded Variation Sequence, or briefly c € MHBV S, if it has the prop-
erty

n—m—1 1 n
— < K(¢) ——
,26 ‘Cr Cr+l‘ X (C) ml rzgimcra

for all positive integers m < n, where the sequence ¢ has only finite nonzero terms and
the last nonzero term is ¢, . Consequently, we assume that the sequence (K (0,)),_ is
bounded, that is, that there exists a constant K such that

0<K(a) <K

holds for all n, where K (a,) denote the constants appearing in the before inequalities
for the sequences o, = (a,,)"_,, n=0,1,2,....

Now we can give the conditions to be used later on. We assume that for all » and
0<m<n

n—1
2 |an,r_an7r+l| <K 2 An,r
k=m r>m/2
and
n—m—1 n
|anr —an 1] <K a
Zz) n,r n,r \ m—+ 1 , ;m n,r

hold if (an,,)_, belongs to MRBV'S and MHBV'S, for n = 1,2, ..., respectively.
As a measure of approximation of f by T, , gf we use the p01ntW1se moduli of
continuity of f in the space L? defined by the formulas

1
P
du} when 1 < p < oo,

) . Bu
Wff((s)ﬁ = {%fo Ox (u)smﬁ 5

ess sup | @y (u)sin® 5| when p=co
0<u<d
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1
sup {%fé (px(u)sinﬁ% pdu} when 1 < p <eo,

ch’f(B)ﬁ = { 0<t<6

ess sup | @y (u)sin? 5| when p=eo,
0<u<d

and the classical ones
t
wsf(8),, = sup ||sin® ¢ o.(t) ||zr,
0<1<6

where

Gu (1) = f (x4 1)+ f (x—1) = 2f (x).

289

The deviation T, 4 pf — f with the lower triangular infinite matrix A, defined by

an,r = 1 when r=0,1,2,...,n and a,, =0 when r > n, and with the lower triangular

infinite matrix B, defined by b, = p,—¢/ 2 pv when £k =0,1,2,....,r and b, =0

when k > r, was estimated by S. Lal [I, Theorem 2]. The deviation T, WAB f—

f in

general form was estimated at the point as well as in the norm of L? in [3]. The

pointwise estimates from this paper are following:

THEOREM. Let f € LP (1 < p < o), and let a modulus type function ® satisfy

=l.

1
loc ()" . gp L ! _ -
<—a)(t) sin 2dt —Ox<(n—|—1) I),when 1 < p<eo,

U

n+1

t t
ess  sup [0 (1) sinP —‘ = 0,(1), when p=-co
IE[VH»I n] w(t) 2
and
T )4 1
=) ) (7 . t P _1
/+1 [0 ()] sinP? Z a1 :Ox<(n—|—1) P),when 1 < p<eo,
0 () 2
t t
ess  sup [ (1) sinP —‘ = 0,(1), when p = oo,
te[07n+1] w(’) 2
with 0<f<1—+ If the entries of our matrices satisfy conditions
1
anp K< —
n+1
and u
’an,rbr,rfl _an7r+1br+l,r+lfl| < — 5 for 0<I<r<n—1,
(r+1)
then

_ e B T
| napf(x) | (Z ;gf)k+l) (k—l—l)

i k+1)P (ﬁ))
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and, inthecaseO<[3<l—11;,

| T a8 () = £(x)]

-0, <(n+ 1P (n—il)

for considered x.

k=0

(n+1)'7P iamk (k+ 1)‘“]) ,

In this paper we shall consider the deviation 7, , pf —f without any special as-
sumptions on modulus of continuity and another ass{nhptions on summability method
obtaining the same degrees of approximation as above. Finally, we also give some re-
sults on norm approximation and corollary generalizing the results of H. K. Nigam, A.
Sharma [6] and H. K. Nigam, K. Sharma [7].

We shall write I} < I if there exists a positive constant K, sometimes depending
on some parameters, such that I} < KI.

2. Statement of the results

Let formulate our main results.

THEOREM L. Let f € LP with 1 < p <eoandlet 0 <P <1— 1. If (ani);_o €
MRBV'S and

(1
THEOREM 2. Let f € L with 1 < p < e andlet 0 < <1—1. If (ani);_, €

p
MHBVS and the entries of matrix B satisfy the condition (1) for 0 < U < v, then

) ,
Next, we formulate the results on estimates of L” norm of the considered devia-

R O N C R )
tion.

2 Eb,ksm l)t LT

r=Uk=

for 0< u < v with T=[Z], where 0 <t < 7, then

_ B wlr(
T o) =10 = ("H k_an""lef< +1>ﬁ+wx <k+l>ﬁ

for almost all considered x.

for almost all considered x .
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THEOREM 3. Let feL?P with 1 <p<eo. If (amk)n € MRBV'S and the entries

k=0
of matrix B satisfy the condition (1) for 0 < u < v, then

| Toasf )= F O, —0<n+lﬁzankwﬁf<k+l) )

wher60<ﬁ<l—%.

THEOREM 4. Let feLf with 1 <p <eo. If (an,k)zzo € MHBV'S and the entries
of matrix B satisfy the condition (1) for 0 < u < v, then

sar 010y =0 (11 o (7))

wher60<ﬁ<l—%.

Finally, we give an application of our results as a corollary and remarks.

n n
Taking amr:pn—r/ 2 DPv (Oran,r:pr/ 2 pv),WheH r:0,1,2,...,n and ay =

0, when r > n with py >0, py < pyy1,and b = (( );,;(r, when k=0,1,2,....,r and
by, =0 when k > r with y> 0, Theorem 1 and Theorem 2 imply:

COROLLARY 1. If feLP with1<p<ooand0<ﬂ<1—l%,then

ilpvrio(liry) Z ( )mkf e
V=0
= 0, (ng;iﬁ ki)pk [Wf?f (%)ﬁ _1f<k+1)ﬁ ’

and

L3 e 3 () s - s

B n+1 ( ) 1 ( T )
= . +w, =
va ]‘zap k[ B " k+1 B

with py >0, py < py41 and Y > 0, for almost all considered x.

)
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REMARK 1. Inspecial case p, = p,— = 1 we have estimates

EMIEs PIWICICRE

r=0

=0, 1ﬁ S P L) 7l (L) .
<n+ Z‘O[wxf<n+1 ,3+w" k+1)g

REMARK 2. If we take B = 0 in the above considerations then we have to esti-
mate the quantities || and ||L||,, using the Holder inequality analogously as in esti-

mate of |I;|. Thus we obtain in the all above estimates (1n+ 1)"/? instead of (n+1)P .

3. Auxiliary results

We begin this section by some notations following A. Zygmund [8, Section 5 of
Chapter IIJ.
It is clear that

S 0) =~ [ 7 0Dele)

—TT

and n r
nABf :_—/ fx+t Zzanr rka
r=0k=0
where ()
1 k sin ;r !
Dk(l‘)zi"’-vg‘lCOSVl: ZSin%
Hence
nABf( / (Px zanr rka( )d
r=0k=0

Now, we formulate some estimates for the Dirichlet kernel.

LEMMA 1. (see [8]) If O0< |¢t| < /2, then
b4
IDe ()| < 577
2}t
and for any real t we have
IDi (1) < k+1.

LEMMA 2. Let (byi),_,

(ank)y_o € MRBVS | then

be such that the condition (1) holds for 0 < u < v. If

<L TAn s

Z 2 an,rbrxDi (t)

r=0k=0
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and if (a,, k)k € MHBVS, then

i i an,rbr,ka (t)

r=0k=0

< TKn,nf‘L'

with T =[x /t] and t € [n+1’ ],for n=0,1,2,....
Proof. The proof is analogous to the proof of [5, Lemma 11]. [

4. Proofs of the results

4.1. Proof of Theorem 1

‘We start with the obvious relations

1 [T noJ
Toa sl () =) = /0 0(0) 3 3 ansboaDi (0
r=0k=0
n r
2 Zanr rka
n+l r=0k=0

=L+5h

and
1T, )| < L]+ L.

By the Holder inequality (% + é = l) and Lemma 1, for f < 1— :;, we have

TAPS (n+1)/m 00 (1) dr < (n+1)/m \<px(t>|sin/3%sin*/3 %d:
0 0
1/p r
n p n
< {(n—|—1)/ - [\(px( 1)|sinP L} dt} {(n—i—l)/ ' sinPa idt}
2 0 2
- I p 1/q
4 - —P4 P
<<wxf<n+1>ﬁ{(n+l)/o ‘ dt} < (n+1) wf( +1)ﬁ

Using Lemma 2 we obtain

1/q

™o (1] § MO
I <</ dt = / —_— dt
n m+l I
m t
< 2 amk/ |¢X()‘dl
m=1 k=0 mil !

Il
M=
M=

amk/: |§0Xt( )‘dt+ Z an0+anm+l)/

m+1 m=1 m+1

3
I
-
-
I
—_
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k=1 =, m=1 m=1 )

- L inf L
> ank Y, +ano Z) {/ [%] dt}

k=1 m=k m=1

— (ian,kiﬂlnoz Zaan) /i |§0xt(t)\dt

" " g fsinf S arb | L
+m§1an7m+1 {/ﬂ [I(px(t)\sm 2}61;} [%sinﬁ n_/zl

m+1 P
inB L
(2 ankmzk+anomzl> {/+ [%] dt}
’ [ENGIE dt}

- 1
2{—/
n = . ﬁd 5
< D nk x |<Px | sin du dt

T
m+1
k=0 n

T
+(l’l+l ﬁ 2 anerlfo( +1)ﬁ

m=1

= 1

T
k+1

n 1 " " x
— o
<<sz)an7k{[tl+ﬁ/0 |y (u)]sin 2du] )

n+1

< T
+(n+1)P S anmiiwyf (m——H)ﬁ

<Y an,k{ [(k—i— 1)1+h /m @, (u)|sin? Edu]
k=0 0 2

(1+B)/j [ﬂ%ﬁw;fmﬁ} dt}

+(n+1) Za"’mlw’l‘f(mi—i-l)
= B
< Zamk{ (k+1Pw f<k+1>l;

k=0
=l
x LlT/}W)lc (t)p} dl}

+1+p) [T

n+1

C T
n+1 2 an7m+1W;lcf (m——i-l)
m=1 B
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< S [ [on(3))a)

k=0

+(n+l ﬁ ZanerlW f<m+1)/3

m=1
Since WY f(6) p is nondecreasing majorant of wy P (8) p we have with >0

n+1

1
< EankWXf<k+l>ﬁ/k+1 lﬁdl
T
e )

m=1

< (n+1)° Zankwxf <k+1>
B

Collecting these estimates we obtain the desired result. [J

4.2. Proof of Theorem 2

Let as usual
Toapf(x)—f(x)=L+Dh
and
|Tn,A,Bf(x) —f(x)| < |+ k.

The term |/;| we can estimate by the same way as in the proof of Theorem 1. Therefore
LI < (n+1)"wl
< o Pt ()

Analogously to the above, by the Holder inequality (i

‘12‘<</ |(th( ) i ppdt = 2/ |Zann (dt

n+1 k=n—1 m+1

n m+l s
2 zann k/ |§0xt(t)‘dt

m=1 k=0 +1

1[5
(n+ Zann kaf(k—I—l)ﬁ

k=0

= 1) and Lemma 2

Q=

Collecting these estimates we obtain the desired result. [J

4.3. Proofs of Theorems 3-4

The proofs are similar to these above and follows from the evident inequality

|27 815, < @55 By

because modulus of continuity wgf (8);, is nondecreasing function of 6. [J
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Proof of corollary 1

The proof is analogous to the proof of [5, Corollary 6]. U
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