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Abstract. In the paper, the author derives several “diagonal” recurrence relations, constructs
some inequalities, finds monotonicity, and poses a conjecture related to the Stirling numbers of
the second kind.

1. Introduction

In mathematics, the Stirling numbers arise in a variety of combinatorics problems.
They are introduced in the eighteen century by James Stirling. There are two kinds of
the Stirling numbers: the Stirling numbers of the first and second kinds. Some proper-
ties and recurrence relations of the Stirling numbers of these two kinds are collected in,
for example, [1, Chapter V].

The Stirling number of the second kind S(n,k) is the number of ways of partition-
ing a set of n elements into k nonempty subsets. It may be computed by

S(n,k) =
1
k!

k

∑
i=0

(−1)i
(

k
i

)
(k− i)n

and may be generated by

(ex−1)k

k!
=

∞

∑
n=k

S(n,k)
xn

n!
, k ∈ {0}∪N. (1.1)

The Stirling numbers of the second kind S(n,k) satisfy the following “triangular”, “ver-
tical”, and “horizontal” recurrence relations:

S(n,k) = S(n−1,k−1)+ kS(n−1,k), n,k � 1;
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S(n,k) = ∑
k−1���n−1

(
n−1

�

)
S(�,k−1),

S(n,k) = ∑
k���n

S(�−1,k−1)kn−�;

S(n,k) = ∑
0���n−k

(−1)�〈k+1〉�S(n+1,k+ �+1),

k!S(n,k) = kn−
k−1

∑
�=1

(k)�S(n, �),

where
〈x〉� = x(x+1) · · ·(x+ �−1), 〈x〉0 = 1

and
(x)� = x(x−1) · · ·(x− �+1), (x)0 = 1.

See [1, pp. 208–209, Theorems A, B, and C].
In this paper, we will derive several “diagonal” recurrence relations, construct

some inequalities, and find monotonicity related to S(n,k) . By the way, we will also
pose a conjecture on monotonicity and logarithmic concavity of sequences related to
the Stirling numbers of the second kind S(n,k) .

2. Several “diagonal” recurrence relations of S(n,k)

In [1, p. 209], two “vertical” and two “horizontal” recurrence relations for S(n,k)
were listed. Relative to the words “triangular”, “vertical”, and “horizontal”, we may
call the following formulas (2.1) and (2.2) the “diagonal” recurrence relations for the
Stirling numbers of the second kind S(n,k) .

THEOREM 2.1. For n > k � 0 , we have

S(n,k) =
(

n
k

)n−k

∑
�=1

(−1)�
(k
�

)
(n−k+�

n−k

) �

∑
i=0

(−1)i
(

n− k+ �

�− i

)
S(n− k+ i, i) (2.1)

= (−1)n
k−1

∑
i=2k−n

(−1)i
(

n
i

)(
i−1

2k−n−1

)
S(n− i,k− i), (2.2)

where the conventions that(
0
0

)
= 1,

(−1
−1

)
= 1, and

(
p
q

)
= 0 (2.3)

for p � 0 > q are adopted.

Proof. The equation (1.1) may be rearranged as(
ex−1

x

)k

=
∞

∑
n=0

S(n+ k,k)(n+k
k

) xn

n!
, k ∈ {0}∪N.
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Consequently, as coefficients of the power series expansion of the function
(

ex−1
x

)k
,

S(n+ k,k)(n+k
k

) = lim
x→0

dn

dxn

[(
ex−1

x

)k]
,

that is, for n � k � 0,

S(n,k) =
(

n
k

)
lim
x→0

dn−k

dxn−k

[(∫ e

1
ux−1 du

)k]
. (2.4)

In combinatorics, the Bell polynomials of the second kind, or say, the partial Bell
polynomials, denoted by Bn,k(x1,x2, . . . ,xn−k+1) , may be defined by

Bn,k(x1,x2, . . . ,xn−k+1) = ∑
1�i�n

�i∈{0}∪N

∑n
i=1 i�i=n

∑n
i=1 �i=k

n!

∏n−k+1
i=1 �i!

n−k+1

∏
i=1

(
xi

i!

)�i

for n � k � 0, and the well-known Faà di Bruno formula may be described in terms of
the Bell polynomials of the second kind Bn,k(x1,x2, . . . ,xn−k+1) by

dn

dxn f ◦ g(x) =
n

∑
k=0

f (k)(g(x))Bn,k
(
g′(x),g′′(x), . . . ,g(n−k+1)(x)

)
.

See [1, p. 134, Theorem A] and [1, p. 139, Theorem C]. In [2, Theorem 1] and [10,
Example 4.2], it was derived that

Bn,k

(
1
2
,
1
3
, . . . ,

1
n− k+2

)
=

n!
(n+ k)!

k

∑
i=0

(−1)k−i
(

n+ k
k− i

)
S(n+ i, i).

Consequently, we may obtain the following conclusions:

1. When 1 � m � k ,

dm

dxm

[(∫ e

1
ux−1 du

)k]

=
m

∑
�=1

k!
(k− �)!

(∫ e

1
ux−1 du

)k−�

×Bm,�

(∫ e

1
ux−1 lnudu,

∫ e

1
ux−1(lnu)2 du, . . . ,

∫ e

1
ux−1(lnu)m−�+1 du

)

→
m

∑
�=1

k!
(k− �)!

Bm,�

(
1
2
,
1
3
, . . . ,

1
m− �+2

)
, x→ 0

=
m

∑
�=1

(k
�

)
(m+�

m

) �

∑
i=0

(−1)i
(

m+ �

i

)
S(m+ �− i, �− i)

=
m

∑
�=1

(−1)�
(k
�

)
(m+�

m

) �

∑
i=0

(−1)i
(

m+ �

m+ i

)
S(m+ i, i);

(2.5)
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2. Similarly, when m > k , we have

dm

dxm

[(∫ e

1
ux−1 du

)k]
→

k

∑
�=1

(−1)�
(k
�

)
(m+�

m

) �

∑
i=0

(−1)i
(

m+ �

m+ i

)
S(m+ i, i) (2.6)

as x→ 0.

Since the convention that
(k
m

)
= 0 for m > k , the equation (2.5) holds for all m � 1 and

includes (2.6). Substituting (2.5) into (2.4) produces

S(n,k) =
(

n
k

)n−k

∑
�=1

(−1)�
(k
�

)
(n−k+�

n−k

) �

∑
i=0

(−1)i
(

n− k+ �

n− k+ i

)
S(n− k+ i, i)

for n− k � 1. The formula (2.1) follows.
Interchanging two sums in (2.1) and then computing the inner sum result in

S(n,k) =
(

n
k

)n−k

∑
i=1

(−1)i

[
n−k

∑
�=i

(−1)�
(k
�

)
(n−k+�

n−k

)(
n− k+ �

�− i

)]
S(n− k+ i, i)

=
n−k

∑
i=1

(−1)i
(

n
k− i

)[
n−k

∑
�=i

(−1)�
(

k− i
k− �

)]
S(n− k+ i, i)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n−k

∑
i=1

(−1)i
(

n
k− i

)[
n−k

∑
�=i

(−1)�
(

k− i
k− �

)]
S(n− k+ i, i), k < n � 2k

k

∑
i=1

(−1)i
(

n
k− i

)[
k

∑
�=i

(−1)�
(

k− i
k− �

)]
S(n− k+ i, i), n > 2k

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k−1

∑
i=2k−n

(
n
i

)[
i−(2k−n)

∑
�=0

(−1)�
(

i
�

)]
S(n− i,k− i), k < n � 2k

k−1

∑
i=0

(
n
i

)[
i

∑
�=0

(−1)�
(

i
�

)]
S(n− i,k− i), n > 2k

=
k−1

∑
i=2k−n

(
n
i

)[
i−(2k−n)

∑
�=0

(−1)�
(

i
�

)]
S(n− i,k− i)

= (−1)n−2k
k−1

∑
i=2k−n

(−1)i
(

n
i

)(
i−1

i− (2k−n)

)
S(n− i,k− i).

The formula (2.2) follows. The proof of Theorem 2.1 is complete. �

REMARK 2.1. In [7, Theorem 1], a “diagonal” recurrence relation

s(n,k) =
n

∑
m=1

k−1

∑
�=k−m

(−1)k+m−�

(
n
�

)(
�

k−m

)
s(n− �,k− �) (2.7)
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for n � k � 1 was discovered for the Stirling numbers of the first kind s(n,k) which
may be generated by

[ln(1+ x)]k

k!
=

∞

∑
n=k

s(n,k)
xn

n!
, |x|< 1.

As did in the derivation of (2.2), we may also interchange two sums in (2.1) and
compute the inner sum as follows:

s(n,k) = (−1)k
k−1

∑
�=k−n

(−1)�
(

n
�

)[
n

∑
m=k−�

(−1)m
(

�

k−m

)]
s(n− �,k− �)

= (−1)n−k
k−1

∑
�=k−n

(−1)�
(

n
�

)(
�−1

k−n−1

)
s(n− �,k− �), n � k � 1,

that is,

s(n,k) = (−1)n−k
k−1

∑
�=0

(−1)�
(

n
�

)(
�−1

k−n−1

)
s(n− �,k− �), n � k � 1, (2.8)

where the conventions listed in (2.3) are also adopted. The recurrence relation (2.8)
may also be called as a “diagonal” recurrence relation for the Stirling numbers of the
first kind s(n,k) .

The relations (2.7) and (2.8) are different from two “vertical” and two “horizontal”
recurrence relations collected in [1, p. 215].

3. Inequalities and monotonicity related to S(n,k)

After establishing and discussing “diagonal” recurrence relations for the Stirling
numbers of the fist and second kinds S(n,k) and s(n,k) , we now construct and deduce,
with the help of the formula (2.4) and in light of properties of absolutely monotonic
functions, some inequalities and monotonicity related to the Stirling numbers of the
second kind S(n,k) .

THEOREM 3.1. Let m � 1 be a positive integer and let |ai j|m denote a determi-
nant of order m with elements ai j .

1. If ai for 1 � i � m are non-negative integers, then∣∣∣∣∣S(ai +a j + k,k)(ai+a j+k
k

)
∣∣∣∣∣
m

� 0 and

∣∣∣∣∣(−1)ai+a j
S(ai +a j + k,k)(ai+a j+k

k

)
∣∣∣∣∣
m

� 0

hold true for all given k ∈ N .
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2. Let q = (q1,q2, . . . ,qn) be a real n-tuple of non-negative integers and let a =
(a1,a2, . . . ,an) and b = (b1,b2, . . . ,bn) be non-increasing n-tuples of non-negative
integers such that a	q b, that is,

k

∑
i=1

qiai �
k

∑
i=1

qibi and
n

∑
i=1

qiai =
n

∑
i=1

qibi.

for 1 � k � n−1 . Then the inequality

n

∏
i=1

[
S(ai + k,k)(ai+k

k

)
]qi

�
n

∏
i=1

[
S(bi + k,k)(bi+k

k

)
]qi

(3.1)

hods true for all given k ∈ N .

Proof. A function f is said to be absolutely monotonic on an interval I if f has
derivatives of all orders on I and 0 � f (n)(x) < ∞ for x ∈ I and n � 0. See [4, Chap-
ter XIII]. In [3] and [4, p. 367], it was recited that if f is an absolutely monotonic
function on [0,∞) , then ∣∣ f (ai+a j)(x)

∣∣
m � 0 (3.2)

and ∣∣(−1)ai+a j f (ai+a j)(x)
∣∣
m � 0. (3.3)

In [4, p. 368] and [5, p. 429], it was stated that if f is an absolutely monotonic function
on [0,∞) and a	q b , then

n

∏
i=1

[
f (ai)(x)

]qi �
n

∏
i=1

[
f (bi)(x)

]qi . (3.4)

It is easy to see that(
ex−1

x

)(m)

=
∫ e

1
ux−1(lnu)m du, m � 0.

See the paper [8] and plenty of closely-related references cited therein. This means that
ex−1

x =
∫ e
1 ux−1 du is absolutely monotonic on (−∞,∞) . As a result, the function

Hk(x) =
(

ex−1
x

)k

=
(∫ e

1
ux−1 du

)k

, k ∈ N

is also absolutely monotonic on (−∞,∞) and, by the formula 2.4,

lim
x→0

H(�)
k (x) =

S(�+ k,k)(
�+k
k

) , � ∈ {0}∪N.

Making use of inequalities (3.2), (3.3), and (3.4) and taking the limit x→ 0 find that

0 �
∣∣H(ai+a j)

k (x)
∣∣
m→

∣∣∣∣∣S(ai +a j + k,k)(ai+a j+k
k

)
∣∣∣∣∣
m

,
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0 �
∣∣(−1)ai+a jH

(ai+a j)
k (x)

∣∣
m→

∣∣∣∣∣(−1)ai+a j
S(ai +a j + k,k)(ai+a j+k

k

)
∣∣∣∣∣
m

,

and

n

∏
i=1

[
S(ai + k,k)(ai+k

k

)
]qi

←
n

∏
i=1

[
H(ai)

k (x)
]qi �

n

∏
i=1

[
H(bi)

k (x)
]qi →

n

∏
i=1

[
S(bi + k,k)(bi+k

k

)
]qi

.

The proof of Theorem 3.1 is complete. �

COROLLARY 3.1. For any given k ∈ N , the infinite sequence{
S(n+ k,k)(n+k

k

)
}

n�0

(3.5)

is logarithmically convex with respect to n.

Proof. Letting

n = 2, q1 = q2 = 1, a1 = �+2, a2 = �, and b1 = b2 = �+1

in the inequality (3.1) leads to

S(�+ k+2,k)(�+k+2
k

) S(�+ k,k)(�+k
k

) �
[

S(�+ k+1,k)(�+k+1
k

)
]2

, � � 0. (3.6)

As a result, the sequence (3.5) is logarithmically convex. The proof of Corollary 3.1 is
complete. �

4. Monotonicity

After establishing diagonal recurrence relations and constructing inequalities re-
lated to the Stirling numbers of the second kind S(n,k) , we are now in a position to
create an infinite sequence in terms of the Stirling numbers of the second kind S(n,k)
and to prove its increasing monotonicity.

THEOREM 4.1. For any fixed positive integers n,k with n � k � 2 , let

S1(n,k) = S2(n,k−1)−S(n,k−2)S(n,k). (4.1)

Then the infinite sequence {S1(n+m,k+m)}m�0 is strictly increasing with respect to
m.
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Proof. It is well known in combinatorics that the Stirling numbers of the second
kind S(n,k) satisfy S(0,0) = 1, S(n,0) = S(0,k) = 0 for n,k � 1, and the “triangular”
recurrence relation

S(n,k) = kS(n−1,k)+S(n−1,k−1) (4.2)

for n � k � 1. See [1, p. 208]. Hence, the inequality (3.6) may be rearranged as

S(i+ k+2,k)(i+k+2
k

) S(i+ k,k)(i+k
k

)
=

S(i+ k+1,k−1)+ kS(i+ k+1,k)(i+k+2
k

) S(i+ k,k)(i+k
k

)
=

S(i+ k,k−2)+ (2k−1)S(i+ k,k−1)+ k2S(i+ k,k)(i+k+2
k

) S(i+ k,k)(i+k
k

)
�

[
S(i+ k+1,k)(i+k+1

k

)
]2

=

[
S(i+ k,k−1)+ kS(i+ k,k)(i+k+1

k

)
]2

.

Replacing i+ k by n in the above inequality and simplifying give

S(n,k−2)+ (2k−1)S(n,k−1)+ k2S(n,k)(n+2
k

) S(n,k)(n
k

) �
[

S(n,k−1)+ kS(n,k)(n+1
k

)
]2

,

that is, by the recurrence relation (4.2),

S(n,k−2)S(n,k)(n+2
k

)(n
k

) − S2(n,k−1)(n+1
k

)2

�
[

1(n+1
k

)2 −
1(n+2

k

)(n
k

)
]
k2S2(n,k)+

[
2k(n+1
k

)2 −
2k−1(n+2
k

)(n
k

)
]
S(n,k−1)S(n,k),

S(n,k−2)S(n,k)−S2(n,k−1)(n+2
k

)(n
k

) +

[
1(n+2

k

)(n
k

) − 1(n+1
k

)2

]
S2(n,k−1)

�
[

1(n+1
k

)2 −
1(n+2

k

)(n
k

)
]
k2S2(n,k)+

[
2k(n+1
k

)2 −
2k−1(n+2
k

)(n
k

)
]
S(n,k−1)S(n,k),

S1(n,k)(n+2
k

)(n
k

) �
[

2k−1(n+2
k

)(n
k

) − 2k(n+1
k

)2

]
S(n,k−1)S(n,k)

+

[
1(n+2

k

)(n
k

) − 1(n+1
k

)2

][
k2S2(n,k)+S2(n,k−1)

]
,
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S1(n,k) �
[
2k−1−2k

(n+2
k

)(n
k

)
(n+1

k

)2

]
S(n,k−1)S(n,k)

+

[
1−

(n+2
k

)(n
k

)
(n+1

k

)2

][
k2S2(n,k)+S2(n,k−1)

]
,

S1(n,k) �
[
1−

(n+2
k

)(n
k

)
(n+1

k

)2

][
k2S2(n,k)+2kS(n,k−1)S(n,k)+S2(n,k−1)

]
−S(n,k−1)S(n,k)

=

[
1−

(n+2
k

)(n
k

)
(n+1

k

)2

][
kS(n,k)+S(n,k−1)

]2−S(n,k−1)S(n,k)

=
k

(n+1)(n− k+2)
S2(n+1,k)−S(n,k−1)S(n,k).

In order to prove the increasing monotonicity of the infinite sequence {S1(n+m,k+
m)}m�0 , it suffices to show

kS2(n+1,k)
(n+1)(n− k+2)

−S(n,k−1)S(n,k) � S2(n+1,k)−S(n+1,k−1)S(n+1,k+1)

which may be reformulated as

S(n+1,k−1)S(n+1,k+1)
S2(n+1,k)

− S(n,k−1)S(n,k)
S2(n+1,k)

� (n+2)(n− k+1)
(n+1)(n− k+2)

. (4.3)

In [9, p. 698], it was proved by the recurrence relation in (4.2) and by induction that

(m−1)(n−m)S2(n,m) > (m+1)(n−m+1)S(n,m−1)S(n,m+1) (4.4)

for 2 � m � n−1, which may be rewritten as

S(n+1,k−1)S(n+1,k+1)
S2(n+1,k)

<
(k−1)(n− k+1)
(k+1)(n− k+2)

for 2 � k � n . Therefore, in order to show (4.3), it is sufficient to verify

S(n,k−1)S(n,k)
S2(n+1,k)

� (k−1)(n− k+1)
(k+1)(n− k+2)

− (n+2)(n− k+1)
(n+1)(n− k+2)

=− (n− k+1)(2n+ k+3)
(k+1)(n+1)(n− k+2)

which is obvious. The proof of Theorem 4.1 is complete. �
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5. A conjecture

Finally, motivated by Theorem 4.1, we pose the following conjecture.

CONJECTURE 5.1. For k, �,n ∈ N , let S1(n,k) is defined by (4.1) and let

S�+1(n,k) = S2
�(n,k−1)−S�(n,k−2)S�(n,k)

and

S�(n,k) =
S�+1(n,k)
S�(n,k)

for n � k � �+2 . Then the following claims are valid.

1. For fixed integers � ∈N and n � �+3 , the finite sequence {S�(n,k)}�+1�k�n is
logarithmically concave with respect to k .

2. For fixed integers n � k � 3 , the finite sequence {S�(n,k)}1���k−1 is strictly
increasing with respect to � .

3. For fixed integers � ∈N and n � k � �+1 , the infinite sequence {S�(n+m,k+
m)}m�0 is strictly increasing with respect to m.

4. For fixed integers � ∈ N and k � � + 1 , the infinite sequence {S�(n,k)}n�k is
strictly increasing with respect to n.

5. For fixed integers n � k � �+2 , the infinite sequence {S�(n+m,k+m)}m�0 is
strictly increasing with respect to m.

6. For fixed integers k � � + 2 , the infinite sequence {S�(n,k)}n�k is strictly in-
creasing with respect to n.

REMARK 5.1. This paper is a revised version of the preprint [6].
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